

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com/loi/gpss20

Synthesis of 2-substituted-4-methyl-5,13dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3b]quinoxaline as a new heterocyclic system

Marzieh Akbarzadeh, Mehdi Bakavoli, Hossein Eshghi, Ali Shiri, Hamid Azizollahi & Joel T. Mague

To cite this article: Marzieh Akbarzadeh, Mehdi Bakavoli, Hossein Eshghi, Ali Shiri, Hamid Azizollahi & Joel T. Mague (2018): Synthesis of 2-substituted-4-methyl-5,13dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-b]quinoxaline as a new heterocyclic system, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: <u>10.1080/10426507.2018.1455199</u>

To link to this article: https://doi.org/10.1080/10426507.2018.1455199

View supplementary material 🕝

-	0
H	H

Accepted author version posted online: 21 Mar 2018.

Submit your article to this journal 🕑

View related articles 🗹

View Crossmark data 🗹

Publisher: Taylor & Francis

Journal: Phosphorus, Sulfur, and Silicon and the Related Elements

DOI: https://doi.org/10.1080/10426507.2018.1455199

Synthesis of 2-substituted-4-methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3b]quinoxaline as a new heterocyclic system

Marzieh Akbarzadeh^a, Mehdi Bakavoli^a*, Hossein Eshghi^a, Ali Shiri^a,

Hamid Azizollahi^a, Joel T. Mague

^a Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran.

^b Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.

*E-mail: mbakavoli@um.ac.ir, mbakavoli@yahoo.com

Abstract

2-Substituted-4-methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-*b*]quinoxalines (7a-g), derivatives of a new heterocyclic system were synthesized through cyclocondensation of 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine (**3**) with 3aminoquinoxaline-2-thiol (**4**) and subsequent substitution by various secondary amines. Regioselective heterocyclization was confirmed by X-ray crystallographic analysis for 4methyl-2-(pyrrolidin-1-yl)-5,13-dihydropyrimido[4',5':5,6] [1,4]thiazepino[2,3-*b*]quinoxaline (7a).

Introduction

The 1,4-thiazepine-containing aryl- and heteroaryl-fused structures play a vital role in natural and synthetic biologically active compounds ¹⁻². They are recognized as antiviral ³, antitumor ⁴, and antiulcer agents ⁵ as well as inhibitors of HIV-1 integrase and reverse transcriptase ⁶. Some of these compounds also show interesting pharmacological properties such as angiogenic ⁷ antispasmodic ⁸ and antiarrhythmic ⁹ activities.

Examples of synthetic methods to prepare 1,4-thiazepine-containing compounds include the condensation of dichloropyrimidine with 3,4-dimethoxythiophenol under basic conditions followed by cyclization in the presence of paraformaldehyde ¹⁰, cyclization of *N*-acyl derivatives of 2-arylthioethylbenzamide under Bischler-Napieralski conditions ¹¹, reductive cyclization of 2-((3-nitropyrid in-4-yl)thio)benzaldehyde under catalytic hydrogen conditions ¹² and Sonogashira coupling of electron poor (hetero)aryl halides and 1-phenyl propynol in the presence of 2-amino thiophenols ¹³.

A literature survey revealed that various methods are reported for the synthesis of fused thiazepines including cyclocondensation of 5-amino-6-methylpyrimidine-4-thiols and 2-chloroquinoline-3-carbaldehydes in the presence of K_2CO_3 in DMF ¹⁴, reaction of 6-methyl-4-phenyl-N-(pyridin-2-yl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide with 2-(benzo[*d*]thiazol-2-yl)-4-chloro-3-oxobutannitrile ¹⁵, treatment of 6-chloro-1-methyluracil with 2-aminothophenol followed by heating with appropriate aromatic aldehydes ¹⁶ and treatment of 4-methoxy-5-amino-6-mercaptopyrimidine with 4,6-dichloro-5-formylpyrimidine in methanolic KOH medium ¹⁷.

Prompted by these findings and as part of our ongoing studies towards the synthesis of various fused pyrimidines ¹⁸⁻²⁴, herein, we wish to report the synthesis of 2-substituted-4-methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-*b*]quinoxalines (**7a-g**) as a new

heterocyclic system and a possible candidate in designing new biologically active compounds.

Results and discussion

Initially, the reaction of 6-methylpyrimidine-2,4-(1*H*,3*H*)-dione (1) with formaldehyde in aqueous NaOH solution at room temperature gave 5-(hydroxymethyl)-6-methylpyrimidine-2,4-(1*H*,3*H*)-dione (2) which was subsequently treated with POCI₃ to give 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine (3) ²⁵. Alternatively, 3-aminoquinoxaline-2-thiol (4) was prepared in quantitative yield according to the previously published method ²⁶. The reaction of 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine (3) with compound (4) in CHCl₃ at -15 ^oC gave compound (5) in good yield. (Scheme 1)

[Insert Scheme 1]

The evidence which confirms that the chlorine atom of chloromethyl group on the pyrimidine core of compound **(3)** was initially substituted by sulfur atom of 3-

aminoquinoxaline-2-thiol (4) and produces compound (5) was gathered from the previously published method ²⁷.

The ¹H NMR spectrum of compound **(5)** showed two singlet signals at δ 2.76 and 4.82 ppm, attributed to methyl and thiomethylene group, respectively. The presence of a broad singlet signal at δ 5.02 ppm due to the NH₂ group as well as the multiplet signal at δ 7.45-7.85 ppm

corresponding to the hydrogens of aromatic moieties clearly confirms the depicted structure. The ¹³C NMR spectrum demonstrates fourteen signals for the corresponding carbons of the desired compound **(5)**. Two signals at δ 22.9 and 27.5 ppm assigned to the carbons of the methyl and methylene group and twelve signals at δ 125.7, 125.9, 126.5, 127.0, 129.0, 137.9, 139.5, 143.7, 148.8, 158.4, 162.8, 171.1 ppm are attributed to the unsaturated carbons. The IR spectrum of **(5)** revealed the existence of two absorption bands at 3455 and 3297 cm⁻¹ attributed to the NH₂ group and the mercaptan absorption was omitted. The mass spectrum also showed the molecular ion peak at *m/z* 308 (M⁺) corresponding to the molecular formula of C₁₄H₁₁Cl₂N₅S.

The subsequent cyclization reaction of the compound **(5)** in an intramolecular S_NAr type reaction in the presence of K₂CO₃ in DMF at 90 °C provided pyrimidothiazepinoquinoxaline as a new heterocyclic system. The structure of the product was assessed by IR, ¹H NMR, ¹³C NMR and mass spectra. The IR spectrum of this compound revealed the absence of NH₂ signals and the presence of characteristic absorption NH stretching vibration band at 3346 cm⁻¹. In the ¹H NMR spectrum, the addition of a new signal at δ 10.96 ppm to the other signals of the precursor confirmed the heterocylization but we found a challenge as to whether the reaction proceeded via path (I) or (II) and provided pyrimidothiazepinoquinoxaline **(6)** or **(6')** according to Scheme 2.

[Insert Scheme 2]

Some of our previous studies ²⁸⁻²⁹shows the occurrence of the Smiles rearrangement ³⁰⁻³¹ on similar heterocyclic systems. In order to answer this ambiguity, we decided to prepare a single crystal of this compound to confirm the structure by X-ray analysis. Since no

acceptable crystal was obtained, we decided to displace the remaining chlorine atom in compound **(6)** or **(6')** with the appropriate secondary amines in ethanol under reflux condition to furnish the corresponding **(7a-g)** or **(7'a-g)**.

The attempt to prepare a suitable single crystal for X-ray diffraction studies was accomplished for **(7a)**. **(Figures 1, 2)** The single crystal X-ray crystallographic data (Table 1) of this compound showed that the sulfur atom of thiazepine ring is linked to the methylene group and the nitrogen atom is bonded to C4 of pyrimidine ring and no Smiles rearrangement had occurred. Therefore, the products have the depicted structures (7a-g) in Scheme 2. The crystallographic data for the structure reported here has been deposited with the Cambridge Crystallographic Data Centre (deposition No. CCDC 1576194).

[Insert Figure 1]

[Insert Figure 2]

[Insert Table 1]

The formation of the seven-membered ring differs from all other similar compounds here. The thiazepine ring fragment is in a boat conformation in most compounds while in this structure, the ring is folded along C10---S1 and consequently a 55.61° angle is formed. The resonance within the adjacent rings leads to this phenomenon which can also inhibit the extra bending of the thiazepine ring. This folding causes the pyrimidine and quinoxaline planar rings to form a dihedral angle equals of 33.63° so that the structure become twisted. Since the similar compound (ref. No. TASBEX) has just one saturated ring with no suitable resonance, that structure forms the boat conformation, therefore, the resonance resulted from adjacent unsaturated rings in compound (**7a**) is very significant. The C18-S1 bond length (1.754(2) Å) due to resonance with the adjacent ring is shorter than C1-S1 bond (1.827(2) Å). (Table 2)

[Insert Table 2]

All physical, chemical and spectral data were in agreement with the newly synthesized compounds (7a-g). For example, the ¹H NMR spectrum of (7a) showed two triplet signals at δ 1.91 ppm and 3.48 ppm corresponding to the hydrogens of the pyrrolidine molety, two singlet signals at δ 2.38 ppm and 4.27 ppm assigned to the hydrogens of the CH₃ of pyrimidine and CH₂ of thiazepine ring, respectively. Two triplet doublet signals at δ 7.59 and 7.69 ppm, two doublet signals at δ 7.75 ppm and 7.84 ppm due to aryl hydrogens and D₂O exchangeable broad peak of NH molety was also appeared at δ 9.39 ppm. The ¹³C NMR spectrum reveals four signals at δ 22.2, 25.4, 27.3 and 46.7 ppm for the aliphatic carbons and twelve distinct signals for unsaturated carbons at δ 108.3, 125.6, 126.6, 127.9, 130.5, 137.5, 139.3, 148.4, 159.2 and 164.4 ppm.

Experimental

Melting points were recorded on an Electrothermal type 9200 melting point apparatus. The IR spectra were obtained on Avatar 370 FT-IR Thermo Nicolet and only noteworthy absorptions were listed. The ¹H NMR (300 and 400 MHz) and the ¹³C NMR (75 and 100 MHz) spectra were recorded on Bruker DRX-300 Avance spectrometers, Bruker DRX-400 Avance spectrometers. Chemical shifts were reported in ppm downfield from TMS as internal standard. The mass spectra were scanned on a Varian Mat CH-7 at 70 eV. Elemental analyses were performed on a Thermo Finnigan Flash EA microanalyzer.

Synthesis of 3-(((2,4-dichloro-6-methylpyrimidin-5-yl)methyl)thio)quinoxalin-2-arrine (5) To a stirred solution of 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine **(3)** (1 mmol, 0.211 g) and triethylamine (1.2 mmol, 0.12 g) in CHCl₃ (2 mL), 3-arrinoquinoxaline-2-thiol **(4)** (1 mmol, 0.177 g) in DMSO (2 mL) was added dropwise with vigorous stirring at -15 °C. After 2 hours, the solvent was evaporated under reduced pressure. The formed precipitate washed with water (5 mL) and crystallized from ethanor. This compound was obtained in 80% yield as a yellow powder. mp 240-242 °C; IR (KBr) v. 3456, 3297, 3105, 3064, 3019, 2946, 2745, 1645, 1597, 1547, 1523, 1426, 1377, 1332, 1249, 1219, 1123, 1062 cm⁻¹, ¹H NMR (300 MHz, CDCl₃) δ: 2.76 (s, 3H, CH₃), 4.82 (s, 2H, CH₂), 5.02 (br s, 2H, NH₂, D₂O exchangeable), 7.45 (t, 1H, *J* = 7.3 Hz, Ar-H), 7.55 (t, 1H, *J* = 7.5 Hz, Ar-H), 7.66 (d, 1H, *J* = 7.8 Hz, Ar-H), 7.85 (d, 1H, *J* = 7.8 Hz, Ar-H), ¹³C NMR (75 MHz, CDCl₃) δ: 22.9, 27.5, 125.7, 125.9, 126.5, 127.0, 129.0, 137.9, 139.5, 143.7, 148.8, 158.4, 162.8, 171.1; MS *m/z*: 350 (M⁺), 351, 352, 316 (M⁺ - Cl), 176 (M[±] - CeH₅Cl₂N₂); Anal. Calcd. For C₁₄H₁₁Cl₂N₅S: C, 47.74; H, 3.15; N, 19.88; S, 9.10. Found: C, 47, 79; H, 3.18; N, 19.98; S, 9.02.

Synthesis of 2-chloro-4-methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3b]quinoxaline (6) A mixture of 3-(((2,4-dichloro-6-methylpyrimidin-5-

yl)methyl)thio)quinoxalin-2-amine (5) (1 mmol, 0.35 g) and potassium carbonate (3 mmol,

0.42 g) in DMF (5 mL) was heated at 100 °C for 9 h. After the completion of the reaction which was monitored by TLC using chloroform: methanol (9:1), the solvent was removed in vacuum. Water (5 mL) was added to the resulting residue and extracted with EtOAc (3×5 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated to provide a brown solid. The desired products were purified by column chromatography eluting with a 9:1 mixture of CHCl₃/MeOH. mp 243-245 °C; IR (KBr) *v*: 3346, 2962, 2922, 2848, 1522, 1529, 1396, 1374, 1294, 1220, 1175, 1135, 1033 cm⁻¹, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.52 (s, 3H, CH₃), 4.36 (s, 2H, CH₂), 7.67 (td, *J* = 1.2 Hz, 1H, *J* = 6.8 Hz, Ar-H), 7.75 (td, 1H, *J* = 6.8 Hz, *J* = 1.2 Hz, Ar-H), 7.82 (d, 1H, *J* = 8.0 Hz, Ar-H), 7.90 (d, 1H, *J* = 8.0 Hz, Ar-H), 10.96 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 21.9, 27.6, 117.2, 127.1, 127.8, 128.8, 130.9, 137.2, 139.4, 147.9, 148.3, 157.0, 160.7, 166.7; MS *m/z*: 315 (M⁺), 316, 317, 280 (M⁺-Cl), 239 (M⁺-C₆H₄); Anal. Calcol. For C₁₄H₁₀ClN₅S: C, 53.25; H, 3.19; N, 22.18; S, 10.15. Found: C, 53.20; H, 3.15; N, 22.29; S, 10.06.

General procedure for the synthesis of 2-substituted-4-methyl-5,13-

dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-b]quinoxaline (7a-g) A mixture of 2-chloro-4methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-b]quinoxaline **(6)** (1 mmol, 0.31 g) and appropriate secondary amine (3 mmol) in EtOH (5 mL) was refluxed for 8 h. After being cocled to r.t, the resulting precipitate was filtered off, washed with water (5 mL) and recrystallized from EtOH.

4-Methyl-2-(pyrrolidin-1-yl)-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-

b]quinoxaline (7a) yield 65%; yellow powder; mp 234-236 °C; IR (KBr) *v*: 3358, 2954, 2919, 1844, 1597, 1535, 1523, 1474, 1398, 1376, 1332, 1303, 1249, 1176, 1127 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.91 (t, 4H, *J* = 6.8 Hz, CH₂), 2.38 (s, 3H, CH₃), 3.48 (t, 4H, *J* = 6.8 Hz,

CH₂-N), 4.27 (s, 2H, CH₂), 7.59 (td, 1H, J = 7.6 Hz, J = 1.2 Hz, Ar-H), 7.69 (td, 1H, J = 8.2 Hz, J = 1.2 Hz, Ar-H), 7.75 (d, 1H, J = 7.6 Hz, Ar-H), 7.84 (d, 1H, J = 7.2 Hz, Ar-H), 9.39 (s, 1H, NH, D₂O exchangeable);¹³C NMR (100 MHz, DMSO- d_6) δ : 22.2, 25.4, 27.3, 46.7, 108.3, 126.6, 127.5, 127.9, 130.5, 136.9, 139.3, 148.2, 148.4, 159.2; MS m/z: 350 (M⁺), 280 (M⁺- C₄H₈N); Anal. Calcd. For C₁₈H₁₈N₆S: C, 61.69; H, 5.18; N, 23.98; S, 9.15. Found: C, 61.60; H, 5.14; N, 23.87; S, 9.11.

4-(4-Methyl-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-*b***]quinoxalin-2yl)morpholine (7b)** yield 78%; yellow powder; mp 245-246 °C; IR (KEr) v: 3367, 2956, 2919, 2852, 1597, 1524, 1474, 1395, 1360, 1302, 1255, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 2.49 (s, 3H, CH₃), 3.75-3.83 (m, 8H, morpholine), 4.12 (s, 2H, CH₂), 7.59 (t, 1H, *J* =7.2 Hz, Ar-H), 7.68 (t, 1H, *J* = 6.8 Hz, Ar-H), 7.78 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.94 (d, *J* = 8.0 Hz, 1H, Ar-H), 8.12 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (100 MHz, CDCl₃) δ: 22.2, 28.0, 44.2, 66.9, 106.9, 126.5, 127.7, 127.8, 130.2, 137.7, 139.5, 147.0, 147.4, 158.7, 159.9, 164.4; MS *m/z*: 366 (M⁺); Anal. Calcd. For C₁₈H₁₈N₆OS: C 59.00; H, 4.95; N, 22.93; S, 8.75. Found: C, 58.92; H, 4.91; N, 22.85; S, 8.80.

4-Methyl-2-(piperidin-1-yi)-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3b]quinoxaline (*c) yield 58%; yellow powder; mp 212-214 °C; IR (KBr) *v*: 3370, 3047, 2998, 2922, 2850, 1598, 1522, 1474, 1441, 1394, 1302, 1257, 1178, 1091, 1023 cm⁻¹; ¹H NMR (300 MHz, CDCi₃) δ: 1.61-1.69 (m, 6H, CH₂), 2.43 (s, 3H, CH₃), 3.79 (t, 4H, *J* = 5.4 Hz, CH₂-N), 4.11 (s, 2H, CH₂), 7.54 (td, 1H, *J* = 7.5 Hz, *J* =1.2 Hz, Ar-H), 7.64 (td, 1H, *J* = 8.2 Hz, *J* = 1.2 Hz, Ar-H), 7.75 (d, 1H, *J* = 8.1 Hz, Ar-H), 7.90 (d, 1H, *J* = 7.8 Hz, Ar-H), 8.05 (br s, 1H, NH, D₂O exchangeable); ¹³C NMR (75 MHz, CDCl₃) δ: 22.2, 24.9, 25.8, 28.0, 44.7, 105.9, 126.5, 127.5, 127.8, 130.0, 137.7, 139.6, 147.2, 147.6, 158.8, 159.9, 164.2; MS *m/z*: 364 (M⁺), 280 (M⁺- C₅H₁₀N); Anal. Calcd. For C₁₉H₂₀N₆S: C, 62.61; H, 5.53; N, 23.06; S, 8.80. Found: C, 62.73; H, 5.58; N, 23.13; S, 8.85.

4-Methyl-2-(4-methylpiperidin-1-yl)-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3b]quinoxaline (7d) yield 60%; yellow powder; mp 198-200 °C; IR (KBr) *v*: 3367, 3056, 3007, 2942, 2917, 2868, 2835, 1598, 1525, 1474, 1394, 1366, 1319, 1252, 1205, 1135, 1082 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 0.99 (d, 3H, J = 6.0 Hz, CH₃), 1.10-1.24 (m, 2H, axial hydrogens of CH₂), 1.60-1.74 (m, 3H, equatorial hydrogens of CH₂, CH), 2.43 (s, 3H, CH₃), 2.84 (td, 2H, J = 13.5 Hz, J = 1.8 Hz, axial hydrogens of CH₂-N), 4.12 (s, 2H, CH₂), 4 69-4.76 (m, 2H, equatorial hydrogens of CH₂-N), 7.56 (td, 1H, J = 8.2 Hz, J = 1.2 Hz, Ar-H), 7.65 (td, 1H, J = 9.2 Hz, J = 1.5 Hz, Ar-H), 7.76 (dd, 1H, J = 8.2 Hz, J = 1.2 Hz, Ar-H), 7.90 (dd, 1H, J = 8.1 Hz, J = 0.9 Hz, Ar-H), 8.04 (br s, 1H, NH, D₂O exchangeable); ¹³C NMR (75 MHz, CDCl₃) δ: 22.2, 28.0, 43.3, 46.0, 54.8, 106.7, 126.5, 127.7, 127.8, 130.2, 137.7, 139.5, 147.0, 147.4, 158.7, 159.7, 164.4; MS *m/z*: 378 (M⁺), 280 (M⁺ - C₆H₁₂N); Anaĭ. Calcd. For C₂₀H₂₂N₆S: C, 63.47; H, 5.86; N, 22.20; S, 8.47. Found: C, 63.55; H, 5.89; N, 22.31; S, 8.52.

4-Methyl-2-(4-methylpiperazin-1-yl)-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3 b]quinoxaline (7e) yield 73%; yellow powder; mp 209-211 °C; IR (KBr) *v*: 3367, 2958, 2926, 2935, 2793, 2758, 1600, 1560, 1524, 1473, 1445, 1396, 1363, 1305, 1250, 1207, 1146, 1005 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 2.46 (s, 3H, CH₃), 2.62 (s, 3H, CH₃), 2.84 (t, 4H, CH₂), 4.12 (m, 6H, CH₂-N, CH₂), 7.59 (t, 1H, *J* = 7.2 Hz, Ar-H), 7.68 (t, 1H, *J* = 6.8 Hz, Ar-H), 7.78 (d, 1H, *J* = 8.2 Hz, Ar-H), 7.93 (d, 1H, *J* = 8.2 Hz, Ar-H), 8.08 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (75 MHz, CDCl₃) δ: 22.5, 31.4, 32.9, 34.1, 44.1, 104.9, 120.9, 121.6, 126.9, 128.2, 133.1, 142.4, 158.9, 159.6, 163.5; MS *m/z*: 379 (M⁺), 294 (M⁺- C₅H₁₁N₂), 364 (M⁺-CH₃); Anal. Calcd. For C₁₉H₂₁N₇S: C, 60.14; H, 5.58; N, 25.84; S, 8.45. Found: C, 60.07; H, 5.53; N, 25.72; S, 8.38. **2-(4-Ethylpiperazin-1-yl)-4-methyl-5,13-dihydropyrimido**[**4**',**5**':**5**,**6**][**1**,**4**]thiazepino[**2**,**3***b*]quinoxaline (7f) yield 75%; yellow powder; mp 200-202 °C; IR (KBr) *v*: 3366, 2970, 2934 2808, 2766, 1598, 1527, 1473, 1396, 1363, 1306, 1252, 1135, 1013 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 1.16 (t, 3H, *J* = 7.2 Hz, CH₃), 2.44 (s, 3H, CH₃), 2.50-2.53 (m, 6H, CH₂ of piperazine, CH₂ of ethyl), 3.86 (t, 4H, *J* = 5.1 Hz, CH₂-N), 4.11 (s, 2H, CH₂), 7.56 (td, 1H, *J* = 7.6 Hz, *J* = 1.2 Hz, Ar-H), 7.65 (td, 1H, *J* = 8.2 Hz, *J* = 1.2 Hz, Ar-H), 7.75 (d, 2H, *J* = 7.5 Hz, Ar-H), 7.90 (d, 1H, *J* = 8.1 Hz, Ar-H), 8.08 (br s, 1H, NH, D₂O exchangeable); ¹³C NMR (75 MHz, CDCl₃) δ : 12.0, 22.2, 28.0, 43.7, 52.5, 52.8, 106.5, 126.5, 127.6, 127.8, 130.1, 137.7, 139.6, 147.1, 147.5, 158.8, 159.8, 164.3; MS *m/z*: 393 (M⁺), 280 (M⁺- C₆H₁₃N₂); Anal. Calcd. For C₂₀H₂₃N₇S: C, 61.04; H, 5.89; N, 24.92; S, 8.15. Found: C, 60.91; H, 5.85; N, 24.81; S, 8.07.

4-Methyl-2-(4-phenylpiperazin-1-yl)-5,13-dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3*b*]quinoxaline (7g) yield 68%; yellow powder; mp 246-247 °C; IR (KBr) v: 3358, 3052, 2974, 2921, 2856, 2803, 1594, 1558, 1527, 1472, 1443, 1395, 1367, 1338, 1232, 1204, 1046, 1005 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 2.47 (s, 3H, CH₃), 3.27 (t, 4H, *J* = 5.2 Hz, CH₂), 4.00 (t, 4H, *J* = 5.2 Hz, CH₂N), 4.34 (s, 2H, CH₂), 6.93 (t, 1H, *J* = 7.2 Hz, Ar-H), 7.02 (d, 2H, *J* = 7.8 Hz, Ar-H), 7.33 (d, 2H, *J* = 7.5 Hz, Ar-H), 7.58 (td, 1H, *J* = 6.9 Hz, *J* = 1.2 Hz, Ar-H), 7.67 (td, 1H, *J* = 6.9 Hz, *J* = 1.2 Hz, Ar-H), 7.78 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.93 (d, 1H, *J* = 7.8 Hz, Ar-H), 8.08 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (75 MHz, CDCl₃) δ: 22.2, 28.0, 43.7, 49.4, 106.8, 116.6, 120.1, 126.5, 127.7, 127.8, 129.2, 130.2, 137.7, 139.6, 147.1, 145.5, 151.4, 158.8, 159.8, 164.4; MS *m/z*: 441 (M⁺), 280 (M⁺- C₁₀H₁₃N₂), 322 (M⁺- C₈H₉N); Anal. Calcd. For C₂₄H₂₃N₇S: C, 65.28; H, 5.25; N, 22.21; S, 7.26. Found: C, 65.37; H, 5.5.29; N, 22.32; S, 7.31.

Conclusions

We have successfully synthesized new four cyclic 2-substituted-4-methyl-5,13dihydropyrimido[4',5':5,6][1,4]thiazepino[2,3-*b*]quinoxaline (**7a-g**) through the initial treatment of 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine (**3**) with 3aminoquinoxaline-2-thiol (**4**) to produce compound (**5**). The cyclocondensation of this compound in the presence of K₂CO₃ gave 2-chloro-4-methyl-5,13dihydropyrimido[4',5':5,6][1,4]thiazepino [2,3-*b*]quinoxaline which was further substituted with various *sec*-amines to obtain compounds (**7a-g**). Compound (**7a**) as one of the synthesized compounds was conducted to study its true regiochemistry *via* X-ray crystallographic data and the results showed that no Smiles rearrangement occurred.

Acknowledgments

The authors gratefully acknowledge Research Council of Ferdowsi University of Mashhad for financial support of this project (3/25480).

References

14

- Aastha, P.; Navneet, K.; Anushu, A.; Pratima, S.; Dharma, K. *Res. J. Chem. Sci.* 2013, 3, 90-103.
- [2] Chen, Y.; Le, V.; Xu, X.; Shao, X.; Liu. J.; Li, Z. *Bioorg. Med. Chem. Lett.* 2014, 24, 3948-3951.

- [3] Struga, M.; Kossakowski, J.K.; Kedzierska, A.E. *Eur. J. Med. Chem.* 2009, 22, 4960-4969.
- [4] Arya, K.; Dandi, A. Bioorg. Med. Chem. Lett. 2008, 18, 114-119.
- [5] Bariwal, J.B.; Upadhyay, K.D.; Trivedi, J.C.; Ingh, J.S.; Jain, K.S.; Shah, A.K. Eur. J.
 Med. Chem. 2008, 43, 2279–2290.
- [6] Neamati, N.; Turpin, J.A.; Winslow, H.E.; Christensen, J.L.; Williamson, K.; Orr, A.;
 Rice, W.G.; Pommier, Y.; Garofalo, A.; Brizzi, A.; Campiani, G. J. Med. Chem. 1999, 42, 3334-3341.
- [7] Hansen, A.J.; Jorgensen, T.K.; Olsen, U.B. (Novo Nordisk A/S, Den.). PCT International Application 0032193, 2000.
- [8] Zhang, H.; Bolton, T.B. Br. J. Pharmacol. 1995, 114, 1657-1665.
- [9] Katano, K.; Satoh, T.; Soneda, T.; Kamitoh, N.; Fujishima, K.; Hachisu, M. (Meiji Seika Kaisha, Ltd., Japan) European Patent Application 878475, 1998.
- [10] Smith, L.; Wong, W.C.; Kiselyov, A.S; Wizemann, S.B.; Mao, Y.; Xu, Y.; Duncton, M.A.J.; Kim, K.; Piatnitski, E.L., Doody, J.F.; Wang, Y.; Rosler, R.L.; Milligan, D.; Columbus, J.; Balagtas, C.; Lee, S.P.; Konovalova, A.; Hadarib. Y.R. *Bioorg. Med. Chem. Lett.* 2096, 16, 5102-5106.
- [11] Voskressensky, L.G.; Akbulatov, S.V.; Borisova, T.N.; Kulikova, L.N.; Listratova,
 A.V., Sorokina, E.A.; Varlamov, A.V. *Chem. Heterocycl. Compd.* 2013, 49, 331-340.
- [12] Storck, P.; Aubertin, A.M.; Grierson, D.S. *Tetrahedron Lett.* 2005, 46, 2919–2922.
 [13] Braun, R.U.; Muller, T.J.J. *Tetrahedron*, 2004, 60, 9463–9469.
- [14] Karimian, A.; Eshghi, H.; Bakavoli, M.; Shiri, A. *Heterocycl. Commun.* **2014**, 20, 275–279.
- [15] Fadda, A.A.; Bondock, S.B.; Khalil, A.M.; Tawfik, E.H. J. Heterocycl. Chem. 2013, 50, 838-843.

- [16] Mousa, B.A.; Bayoumi, A.H.; Korraa, M.M.; Assy, M.G.; El-kalyoubi, S.A. *Afinidad***2012**, 69, 144-149.
- [17] Safonova, T.S.; Nemeryuk, M.P.; Grineva, N.A.; Likhovidova, M.M.; Keremov. A.F.*Pharm. Chem. J.* 2008, 42, 60-63.
- [18] Ebrahimpour, Z.; Bakavoli, M.; Shiri, A.; Seyedi, S.M.; Asghari, T.; Mague, J.T. J. Fluoresc. 2017, 27, 1183-1189.
- [19] Mozafari, S.S.; Shiri, A.; Bakavoli, M.; Akbarzadeh, M.; Saadat, K.; Eternadi, Y.
 J. Chem. Res. 2016, 40, 579-644.
- [20] Akbarzadeh, M.; Bakavoli, M.; Eshghi, H.; Shiri, A. J. Heterocycl. Chem. 2015, 53, 832-839.
- [21] Bakavoli, M.; Eshghi, H.; Azizollahi, H.; Saberi, S.; Bazrafshan, F. J. Chem. Res.
 2014, 38, 189-191.
- [22] Rahimizadeh, M.; Shiri, A.; Ranaei, M.; Bakavoli, M. Heterocycl. Commun. 2012, 18, 39-42.
- Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Akbarzadeh, M.; Mousavi, S.H.; Tayarani-Najaran, Z.; Atapour-Mashhad, H.; Nikpour, M. J. Heterocyclic. Chem. 2011, 48, 183-187.
- Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Eshghi, H.; Pordeli, P.; Pordel, M.;
 Nikpour, M. J. Heterocycl. Chem. 2011, 48, 149-152.
- Eichberger, G.; Hayden, W.; Schwarz, W.; Griengl, H. *Monatsh. Chem.*, **1980**, 117, 385-392.
- [26] Sonawane, Y.A.; Rajule, R.N.; Shankarling, G.S. Monatsh. Chem. 2010, 141, 1145-1151.

- [27] Akbarzadeh, M.; Bakavoli, M.; Eshghi, H.; Shiri, A.; Tajabadi, J. J. Chem. Res. 2015, 39. 531-534.
- [28] Ebrahimpour, Z.; Bakavoli, M.; Shiri, A.; Seyedi, S.M.; Asghari, T.; Mague, J.T. J. *Heterocycl. Chem.* 2017, 54, 235-241.
- [29] Sheikhi M.S.; Shiri, A.; Bakavoli, M.; Mague. J. J. Heterocycl. Chem. 2016, 53, 1231 1235.
- [30] Rodig, O.R.; Collier, R.E.; Schlatzer, R.K. J. Org. Chem. 1964, 29, 2652-2658.
- [31] Bunnett, J.F.; Zahler, R.E. Chem. Rev. 1951, 49, 273-412.

Scheme 2. Synthetic route for the synthesis of compounds (7a-g)

Chemical formula	$C_{18}H_{18}N_6S$	
Formula weight	350.44 g/mol	
Temperature	150(2) K	
Wavelength	1.54178 Å	
Crystal size	0.066 x 0.141 x 0.266 mm	
Crystal habit	light yellow block	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	$a = 13.5002(4) \text{ Å}$ $\alpha = 90^{\circ}$	
	$b = 7.1431(2)$ Å $\beta = 90.8160(10)^{\circ}$	
	$c = 16.8731(5)$ Å $\gamma = 90^{\circ}$	
Volume	1626.96(8) Å ³	
Z	4	
Density (calculated)	1.431 g/cm ³	
Absorption coefficient	1.878 mm ⁻¹	
F(000)	736	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS	
Radiation source	'INCOATEC IμS micro-focus source', Cu	
Theta range for data collection	3.27 to 72.44°	
Reflections collected	5926	
Independent reflections	5926 [R(int) = 0.0803]	
Coverage of independent reflection	ns 98.6%	
Absorption correction	multi-scan	

Table 1: Sample, crystal data and structure refinement for JTM548.

Max. and min. transmission	0.8860 and 0.6350
Structure solution technique	direct methods
Structure solution program	SHELXT (Sheldrick, 2015)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$
Data / restraints / parameters	5926 / 0 / 228
Goodness-of-fit on F ²	1.042
Final R indices	5028 data; I>2σ(I) R1 = 0.0428, wR2 = 0.1057
	all data $R1 = 0.0530, wR2 = 0.1123$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0561P) ² +0.4693P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.216 and -0.315 eA ³
R.M.S. deviation from mean	0.051 eÅ ³
	22

Table 2: Selected bond lengths (Å) and angles for compound 7a

S1-C18	1.754(2)	S1-C1	1.827(2)
N1-C3	1.343(3)	N1-C5	1.350(3)
N2-C5	1.352(3)	N2-C6	1.460(3)
N2-C9	1.466(3)	N3-C10	1 338(3)
N3-C5	1.345(3)	N4-C11	1.384(3)
N4-C10	1.393(3)	N4-H4N	0.91
N5-C11	1.318(3)	N5-C12	1.365(3)
N6-C18	1.313(3)	N6-C17	1.366(3)
C1-C2	1.496(3)	Cl-HIA	0.99
C1-H1B	0.99	C2-C3	1.386(3)
C2-C10	1.401(3)	C3-C4	1.505(3)
C4-H4A	0.92	C4-H4B	0.98
C4-H4C	0.98	C6-C7	1.530(3)
C6-H6A	0.99	C6-H6B	0.99
C7-C8	1.518(3)	С7-Н7А	0.99
C7-IH7B	0.99	C8-C9	1.528(3)
C8-H8A	0.99	C8-H8B	0.99
C9-H9A	0.99	С9-Н9В	0.99
C11-C18	1.449(3)	C12-C13	1.413(3)
C12-C17	1.415(3)	C13-C14	1.374(3)
C13-H13	0.95	C14-C15	1.414(3)

C14-H14	0.95	C15-C16	1.365(3)	
С15-Н15	0.95	C16-C17	1.413(3)	
C16-H16	0.95			
				\sim
			<	$\langle \langle \rangle \rangle$
				\bigvee
				\checkmark
			$(\bigcirc)^{\star}$	
		$\mathcal{A}\mathcal{D}\mathcal{P}\mathcal{D}\mathcal{P}$		
		\sim		
		\bigcirc		
		× ·		
		, ,		
	\bigcirc $>$			
	\sum			
$\square(\bigcirc)^{\vee}$				
\bigcirc				