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Abstract 

In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and 
evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 
41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. 
Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 
1.6 µM and 0.6 µM, respectively. Further structure-activity relationship study suggested that presence of a 
long-chain heterocyclic in one of the rings played a critical role in the dual enzymes’ inhibition. The 
Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS 
and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both 
compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing 
long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further 
investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer. 

Keywords: 

Acetylcholinesterase; Butyrylcholinesterase; 2-Benzoyl-6-benzylidenecyclohexanone; Kinetic studies; 
Molecular docking  

 

1. Introduction 

Acetylcholinesterase and butyrylcholinesterase are important enzymes that catalyze the degradation of 
acetylcholine, an important neurotransmitter involved in memory and cognition.1-3 These enzymes have been 
closely associated to Alzheimer’s disease (AD), a progressive and irreversible neurodegenerative brain 
disorder characterized by permanent memory loss, cognitive impairment, disorientation, confusion and 
language deficits.4 It is the most common type of age-related dementia which affects more than 46 million 
elderly globally and the number is expected to be triple by the year 2050.5 Cholinesterase enzymes have also 
been found to promote the aggregation of neurotoxic β-amyloid which responsible for neuronal cell apoptosis.6, 

7 Therefore, targeting AChE and BChE may be one of the most promising approaches in treating AD. 

To date, several cholinesterase inhibitors such as tacrine, donepezil, rivastigmine and galantamine have 
been approved for the treatments of AD. Although they offered some improvement in AD, several adverse 
effects including nausea, diarrhea, dizziness and vomiting, have also been observed.8-10 These unpleasant side 
effects may not only affect the patients’ health but also reduce their quality of life. New safer cholinesterase 
inhibitors with minimal side effects are therefore urgently warranted. 

Curcumin is a well-known chemical constituent abundantly found in Curcuma longa, which has been 
extensively studied for centuries due to its valuable medicinal properties, especially the anti-oxidant and anti-
inflammatory activities.11-14 Recent studies showed that curcumin could be an ideal agent for treating AD upon 
its excellent safety profile and distinctive interference on several AD-related pathological pathways including 
acetylcholine degradation, β-amyloid aggregation, tau protein accumulation and neuronal cell destruction.15-19 
However, the therapeutic potential of curcumin is constrained by its poor absorbability and stability, resulting 
in low oral bioavailability, which therefore diminishes its usefulness in clinical trials.20 

Diarylpentanoids, a bioactive group of compounds derived from curcumin has received increasing attention 
for its multiple medicinal properties. Diarylpentanoids have been found to exhibit excellent anti-oxidant and 
anti-inflammatory properties based on their distinctive suppressing effects on numerous free radicals and pro-
inflammatory cytokines such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, superoxide radical, 
hydroxyl radical, tumor necrosis factor alpha (TNF-α), and interleukins.21-24 Recent studies showed that 
diarylpentanoids could be the most impactful candidate to substitute curcumin as therapeutic agent for AD due 
to its better stability and anti-Alzheimer properties including anti-cholinesterase and anti-β-amyloid 
aggregation activities.25, 26 On the basis of this, we therefore further derivatize and investigate the anti-



  

3 

 

cholinesterase potential of our novel cyclohexanone containing diarylpentenedione series, which has also been 
shown to exhibit anti-inflammatory properties with excellent metabolic stability.27   

 

2. Results and discussion 
 

2.1.  Chemistry 

Synthesis of target compounds was performed according to the reaction sequence outlined in Scheme 1 and 
2.  

Scheme 1. General synthetic steps for compounds 1-37x 

 
xReagents and conditions: (a) pyrrolidine, p-toluene-sulphonic acid, toluene, reflux (2h); (b) benzoic anhydride, RT (24h); (c) 
H2O, reflux (0.5h); (h) benzaldehyde, acetic acid, H2SO4, RT (overnight). 

As shown in Scheme 1, cyclohexanone was first reacted with pyrrolidine to prepare the enamine 
intermediate I. The reaction was carried out using Dean-Stark trap to remove water by product in order to 
prevent the hydrolysis of the desired enamine. Enamine I was then reacted with a benzoic anhydride to afford 
II, the key intermediate in the synthesis of the target compounds. The formation of diketone intermediate II 
was confirmed by the detection of a triplet at 4.38 ppm in the proton NMR spectra (data not shown). The 
purified intermediate II was further reacted with commercially available aromatic aldehydes to achieve 
compounds 1-37 with appreciable yield, ranging from 35-70 %.  

Scheme 2. General synthetic steps for compounds 38-41x 

 
 xReagents and conditions: (d) 1,2-dibromoethane, K2CO3, DMF, 80ºC (6h);  (e) pyrrolidine or piperidine, K2CO3, DMF, reflux 
(8h); (f) acetic acid, H2SO4, RT (overnight). 
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To prepare compounds 38-41 (Scheme 2), hydroxylated benzaldehydes were first reacted with 1,2-
dibromoethane to form alkoxylated benzaldehyde III. The reactions were carried out in DMF with the 
presence of K2CO3. Excellent yield (>95%) was obtained for both the 3’- and 4’-hydroxybenzaldehydes after 
six hours of reaction time. The product III was then reacted with appropriate heterocyclic amines to form 
aminated aldehyde IV. Finally, aminated aldehydes were further reacted with previously synthesized diketone 
intermediate II to afford the target compounds 38-41. All synthesized compounds were purified by column 
chromatography and characterized by 1H-NMR, 13C-NMR, and high-resolution electron impact-mass 
spectrometry. All purified compounds were of 95–99% purity based on their respective HPLC profiles (refer to 
Supplementary data). 

 

2.2.  In-vitro AChE and BChE inhibitory activity 

The in-vitro AChE and BChE inhibitory activities of the compounds were determined by Ellman's method 
and the preliminary screening results for synthesized compounds are presented in Figure 1. 

 

 
Figure 1. AChE (A) and BChE (B) inhibitory effects of compounds 1-41 at a testing concentration of 10 µM. 

 
 

As depicted in Figure 1, twenty-five compounds were found to inhibit AChE activity as compared to only 
seven compounds that showed reasonable inhibition on BChE activity. These results suggested that 
cyclohexanone containing diarylpentenedione scaffold is generally more selective towards AChE. The IC50 
values of the compounds are listed in Table 1.  

Table 1. AChE and BChE inhibitory activities of compounds 1-41. 

 
Compounds Ar (Ring B) AChE IC50 (µM) BChE IC50 (µM) 

1 Phenyl ND ND 
2 2-fluorophenyl 6.6 ± 0.5 ND 
3 3-fluorophenyl 9.7 ± 1.1 ND 
4 4-fluorophenyl 6.6 ± 0.3 ND 
5 3,4-difluorophenyl 8.7 ± 0.8 ND 
6 2-bromophenyl 8.4 ± 0.6 ND 
7 4-bromophenyl 8.7 ± 0.7 ND 
8 3,4-dibromophenyl 9.0 ± 0.4 ND 
9 2-chlorophenyl 8.2 ± 0.9 ND 
10 3-chlorophenyl ND ND 
11 4-chlorophenyl 7.6 ± 0.4 ND 

BA 
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12 2,3-dichlorophenyl 5.9 ± 0.6 ND 
13 2,4-dichlorophenyl 5.4 ± 0.2 ND 
14 3,4-dichlorophenyl 9.8 ± 0.2 ND 
15 3-methylphenyl 8.6 ± 0.6 ND 
16 4-methylphenyl 8.5 ± 0.2 ND 
17 2-methoxyphenyl ND ND 
18 3-methoxyphenyl 7.4 ± 0.5 ND 
19 4-methoxyphenyl ND ND 
20 2,3-dimethoxyphenyl ND ND 
21 2,5-dimethoxyphenyl ND ND 
22 3,4-dimethoxyphenyl ND ND 
23 2,3,4-trimethoxyphenyl ND ND 
24 3,4,5-trimethoxyphenyl ND ND 
25 3-hydroxyphenyl ND ND 
26 4-hydroxyphenyl ND ND 
27 3,4-dihydroxyphenyl ND 6.5 ± 0.6 
28 3-hydroxy-4-methoxyphenyl ND ND 
29 4-hydroxy-3-methoxyphenyl ND ND 
30 3-chloro-4-hydroxyphenyl ND 10.6 ± 0.3 
31 3-bromo-4-hydroxyphenyl ND 4.7 ± 0.2 
32 naphthalen-1-yl 7.6 ± 0.1 ND 
33 naphthalen-2-yl 8.3 ± 1.5 ND 
34 thiophen-2-yl 5.1 ± 0.3 ND 
35 5-methylthiophen-2-yl 5.9 ± 0.5 ND 
36 3-benzylphenyl 7.8 ± 0.7 ND 
37 4-benzylphenyl 8.4 ± 0.7 ND 
38 3-(2-(piperidin-1-yl)ethoxy)phenyl 3.1  ± 0.4 1.4 ± 0.4 
39 4-(2-(piperidin-1-yl)ethoxy)phenyl 1.6 ± 0.2 2.7 ± 0.6 
40 3-(2-(pyrrolidin-1-yl)ethoxy)phenyl 3.5 ± 0.3 0.6 ± 0.1 
41 4-(2-(pyrrolidin-1-yl)ethoxy)phenyl 2.0 ± 0.3 2.3 ± 0.2 

Tacrine - 0.095 ± 0.011 0.010 ± 0.004  
         ND = Not determine 
 

Based on the IC50 values of diarylpentenedione analogs against AChE, four compounds were found to 
exhibit significant anti-AChE activity with IC50 values ranging from 1.6 to 3.5 µM. Compound 39 was 
identified as the most potent due to its strong inhibition profile with IC50 value of 1.6 µM. The overall results 
suggested that heterocyclic amine is particularly important for AChE inhibitory activity as all compounds 
bearing pyrrolidine or piperidine fragments exhibited strong AChE inhibition. With respect to the substitution 
pattern of heterocyclic amines on aryl ring, para- substitution is preferable since compounds 39 and 41 
exhibited approximately 2-fold higher inhibition than their respective meta-aminated analogs, 38 and 40. On 
the other hand, the presence of thiophene ring in place of aryl (ring B) was found to contribute moderately to 
AChE inhibition on the basis that compounds 34 and 35 achieved the IC50 values of 5.1 and 5.9 µM, 
respectively. In contrast, presence of any halogen group in aryl ring B was not favorable since analogs 2-14 
generally displayed weaker inhibition. Besides, methoxy and hydroxy groups (17-31) are considered to be 
undesirable due to their poor AChE inhibition.  

The BChE was strongly inhibited by compounds 38-41 with the IC50 values ranging from 0.6 to 2.7 µM. 
Compound 40 demonstrated the strongest inhibitory activity with IC50 value of 0.6 µM. This observation 
suggested that heterocyclic amine is not only important for AChE inhibition but is also critical for BChE 
inhibitory effect. Unlike the SAR trend exhibited by AChE, the presence of heterocyclic amine at meta-
position is more preferable for BChE inhibition activity, as shown by analogs 38 and 40, which were 2- to 4-
fold more active than the para-aminated analogs 39 and 41. In addition, pyrrolidine fragment appeared to be a 
better choice than piperidine, on account that compound 40 exhibited 2.3-fold better activity than 38. Apart 
from heterocyclic amine, the only other contributing factor for BChE inhibitory activity was the hydroxyl 
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Table 2. Data resulted from the flexible docking of compounds 39 and 40 in active site gorge of 
TcAChE and hBChE receptors. 

Compound Structure Enzyme 
Interacting 

site 

Amino 
acid 

residue 
Bond type 

Bonding 
distance 

(Å) 

 

TcAChE 

PAS 

Ser-286 
Hydrogen 
bonding 

2.77, 2.91 

Trp-279 Hydrophobic 4.69 

Try-334 π- π stacking 4.17 

Anionic site 
Phe-330 π- π stacking 5.48 

Phe-331 Hydrophobic 5.28 

Catalytic 
triad 

Gly-118 
Amide - π 
stacking 

3.87 

Oxyanion 
site 

Ser-200 
Hydrogen 
bonding 

2.22 

Glu-199 
Hydrogen 
bonding 

2.20 

 

hBChE 

PAS 

Asp-70 
Hydrogen 
bonding 

2.60 

Ser-79 
Hydrogen 
bonding 

2.62, 2.58 

Cation – π 
site 

Trp-82 
Hydrophonic; 
π- π stacking 

4.17, 5.35; 
4.93 

Ala-328 Hydrophobic 4.79 

Catalytic 
triad 

His-438 
Hydrogen 
bonding 

2.02 

Ser-198 
Hydrogen 
bonding 

2.77 

Acyl 
binding site 

Leu-286 Hydrophobic 4.96 

Trp-231 Hydrophobic 4.84, 4.73 
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2.5. ADMET analysis 

Apart from strong cholinesterase inhibitory activity, the most fundamental condition for a promising 
cholinesterase inhibitor is to exhibit high blood brain barrier (BBB) penetration. Therefore, ADMET analysis 
was carried out, specifically to predict the BBB penetration of compounds 39 and 40. The ADMET plot of 
compounds 39 and 40 is presented in Figure 6. 

 
Figure 6. ADMET plot of compounds 39 and 40 

Compounds 39 and 40 are within the ellipses of 95 and 99% blood brain barrier (BBB) confidence region, 
indicating that both compounds could be highly BBB-penetrating agents (Figure 6). This observation further 
supports the promising potential of compounds 39 and 40 as cholinesterase inhibitors. Apart from BBB-
penetration prediction, ADMET analysis was also used to predict their aqueous solubility (AS), human 
intestinal absorption (HIA), cytochrome P450 2D6 (CYP2D6) inhibition, plasma protein binding (PPB), and 
hepatotoxicity (HT). Based on the results in Table 3, both compounds are non-hepatotoxic with good human 
intestinal absorption. This implies that they have huge potential to serve as oral drugs. Poor water solubility of 
compounds 39 and 40 is the only possible drawback in developing the practical use of them. However, the 
presence of nitrogen atom in both compounds could allow the formation of salt which therefore improve their 
solubility.32 On the other hand, these compounds were also found to bind to plasma protein with no interaction 
with cytochrome enzymes, indicating that higher dose may be required to achieve therapeutic concentration in 
treatments. 

Table 3. Results of ADMET predictions on six important parameters. 
Compounds AS HIA BBB CYP2D6 PPB HT 

39 Low Good High Non-inhibit Bound Non-hepatotoxin 
40 Low Good High Non-inhibit Bound Non-hepatotoxin 

Notes: AS = Aqueous Solubility; HIA = Human Intestinal Absorption; BBB = Blood Brain Barrier; 
CYP2D6 = cytochrome P450 2D6; PPB = Plasma Protein Binding; HT = Hepatotoxicity. 
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3. Conclusion 
 

In summary, forty-one analogs of cyclohexanone containing diarylpentenedione have been synthesized and 
evaluated for their AChE and BChE inhibitory activities. Compounds 39 and 40 appeared to be the most active 
analogs based on the determined IC50 values for both AChE and BChE inhibition, respectively. Further kinetic 
analyses and docking studies revealed that these compounds exhibited mixed-type inhibition. The overall 
findings suggested that the diarylpentenedione core structure is selective towards AChE inhibition, while the 
long chain heterocyclic moieties are critical for both AChE and BChE inhibitory activities. ADMET analysis 
further confirmed the potential development of both compounds on the basis of their high blood brain barrier 
penetration. As a conclusion, we believe that diarylpentenedione containing a long chain heterocyclic amines 
is a promising class, which deserve further investigation for their development of novel cholinesterase 
inhibitors. 
 
 
4. Experimental Section 
 
4.1. Chemistry 
 

Starting materials and chemical reagents were purchased from Sigma-Aldrich and Merck, and were used 
without purification. Solvents, which were purchased from common commercial suppliers, were dried and 
distilled before use. The chemical reactions were routinely checked on 0.20 mm Merck TLC plate silica gel 60 
F254 in every reaction step. Purification procedures were conducted using column chromatography on Merck 
silica gel 60 (mesh 70-230). Melting points were determined using Fisher-Johns melting point apparatus and 
were uncorrected. Mass spectra were measured by GCMS-QP5050A (Shimadzu) Mass Spectrometer. High-
resolution electron ionization-mass spectrometry (HREI-MS) was determined using a DFS high resolution 
GC/MS (Thermo Scientific, San Jose, CA, USA). Nuclear Magnetic Resonance Spectra were recorded on 
Varian 500 MHz NMR Spectrometer. 
 
4.1.1. General procedure for the synthesis of I and II 

A toluene solution (100 mL) containing cyclohexanone (20 mmol), pyrrolidine (20 mmol) and a catalytic 
amount of p-toluenesulphonic acid (0.1 g) was heated under Dean-Stark condition for 2 hours to obtain I. Then, 
the reaction mixture was cooled to room temperature and further stirred with 20 mmol of benzoic anhydride 
for 24 hours. Upon completion, the reaction mixture was added with 10 mL of distilled water and refluxed for 
30 minutes. The resulting reaction mixture was extracted thrice with 100 mL HCl (3M) and once with 20 mL 
water. The toluene layer was dried over anhydrous magnesium sulphate and concentrated in vacuo to give a 
crude product of 2-benzoylcyclohexanone (II). The resulting crude product was purified by column 
chromatography. 

4.1.2. General procedure for the synthesis of compounds 1-37  

One millimole of 2-benzoylcyclohenxanone (II) was reacted with an equivalent amount of appropriate 
aromatic aldehyde in acetic acid (30 mL) in the presence of sulfuric acid as catalyst. The reaction mixture was 
stirred at room temperature for overnight. Upon completion, the reaction mixture was poured into 100 mL of 
distilled water and stirred for 10 minutes, followed by extraction with 100 mL of ethyl acetate. The organic 
layer was then washed with 10% sodium bicarbonate solution and dried over anhydrous magnesium sulphate. 
The further evaporation in vacuo gave crude of targeted compounds 1-37.  The resulting crude product was 
purified by column chromatography. 

2-benzoyl-6-benzylidenecyclohexen-1-ol (1). Yellow; m.p.: 126-127ºC; Mass calculated: 290.1307; Mass 
found: 290.1324. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.04 Hz, 2 H) 2.50 - 2.57 (m, 2 H) 2.75 - 2.82 
(m, 2 H) 7.29 - 7.35 (m, 1 H) 7.38 - 7.49 (m, 7 H) 7.59 (dd, J=7.86, 1.46 Hz, 2 H) 7.78 (s, 1 H) 16.78 (s, 1 
H).13C NMR (125 MHz, CDCl3) δ: 23.6, 27.2, 27.6, 108.4, 127.6, 128.1, 128.2, 128.4, 130.1, 130.6, 132.6, 
133.4, 136.3, 138.3, 176.3, 195.0 
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2-benzoyl-6-(2-fluorobenzylidene)cyclohexen-1-ol (2). Yellow; m.p.: 124-125ºC; Mass calculated: 308.1213; 
Mass found: 308.1218. 1H NMR (500 MHz, CDCl3) δ: 1.67 (m, 2 H) 2.54 (t, J=6.12 Hz, 2 H) 2.62 - 2.68 (m, 2 
H) 7.08 - 7.13 (m, 1 H) 7.14 - 7.19 (m, 1 H) 7.28 - 7.34 (m, 1 H) 7.36 - 7.41 (m, 1 H) 7.41 - 7.50 (m, 3 H) 7.58 
(d, J=6.99 Hz, 2 H) 7.78 (br. s., 1 H) 16.56 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 27.3, 27.5, 108.5, 
115.8, 123.7, 124.2, 125.8, 127.5, 128.1, 129.9, 130.6, 134.6, 138.4, 161.6, 174.8, 196.5 

2-benzoyl-6-(3-fluorobenzylidene)cyclohexen-1-ol (3). Yellow; m.p.: 121-122ºC; Mass calculated: 308.1213; 
Mass found: 308.1228. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.12 Hz, 2 H) 2.51 - 2.58 (m, 2 H) 2.73 - 
2.79 (m, 2 H) 7.02 (td, J=8.45, 1.75 Hz, 1 H) 7.14 (d, J=10.19 Hz, 1 H) 7.21 (d, J=7.57 Hz, 1 H) 7.36 (td, 
J=8.01, 6.12 Hz, 1 H) 7.41 - 7.51 (m, 3 H) 7.55 - 7.61 (m, 2 H) 7.70 (s, 1 H) 16.64 (s, 1 H). 13C NMR (125 
MHz, CDCl3) δ: 23.5, 27.2, 27.5, 108.7, 115.0, 116.5, 125.9, 127.6, 128.2, 129.9, 130.7, 131.8, 133.6, 138.2, 
138.5, 163.6, 175.3, 196.1 

2-benzoyl-6-(4-fluorobenzylidene)cyclohexen-1-ol (4). Yellow; m.p.: 127-128ºC; Mass calculated: 308.1213; 
Mass found: 308.1218. 1H NMR (500 MHz, CDCl3) δ: 1.68 (m, 2 H) 2.54 (t, J=6.12 Hz, 2 H) 2.71 - 2.76 (m, 2 
H) 7.05 - 7.12 (m, 2 H) 7.39 - 7.50 (m, 5 H) 7.55 - 7.59 (m, 2 H) 7.71 (s, 1 H) 16.74 (s, 1 H).  13C NMR (125 
MHz, CDCl3) δ: 23.5, 27.1, 27.5, 108.3, 115.5, 127.6, 128.1, 130.6, 131.9, 132.1, 132.3, 132.4, 138.2, 163.4, 
176.1, 195.4 

2-benzoyl-6-(3,4-difluorobenzylidene)cyclohexen-1-ol (5). Yellow; m.p.: 97-98ºC; Mass calculated: 
326.1118; Mass found: 326.1123. 1H NMR (500 MHz, CDCl3) δ: 1.69 (quin, J=6.12 Hz, 2 H) 2.51 - 2.57 (m, 
2 H) 2.68 - 2.76 (m, 2 H) 7.16 (d, J=8.45 Hz, 1 H) 7.25 (d, J=8.45 Hz, 1 H) 7.41 - 7.50 (m, 4 H) 7.58 (d, 
J=8.25 Hz, 2 H) 7.63 (s, 1 H) 16.62 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.4, 27.1, 27.4, 108.7, 117.2, 
118.4, 126.5, 126.6, 127.6, 128.1, 130.7, 130.8, 133.3, 138.2, 147.1, 148.3, 175.2, 196.0 

2-benzoyl-6-(2-bromobenzylidene)cyclohexen-1-ol (6). Yellow; m.p.: 107-109ºC; Mass calculated: 368.0412; 
Mass found: 368.0427. 1H NMR (500 MHz, CDCl3) δ: 1.64 - 1.70 (m, 2 H) 2.54 (t, J=6.12 Hz, 2 H) 2.57 - 
2.62 (m, 2 H) 7.13 - 7.21 (m, 1 H) 7.33 (d, J=4.66 Hz, 2 H) 7.39 - 7.50 (m, 3 H) 7.57 (d, J=6.99 Hz, 2 H) 7.64 
(d, J=8.15 Hz, 1 H) 7.78 (s, 1 H) 16.54 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.2, 27.3, 108.6, 124.9, 
126.8, 127.5, 128.1, 129.3, 130.5, 130.6, 132.4, 132.9, 133.9, 136.6, 138.4, 174.6, 196.7 

2-benzoyl-6-(4-bromobenzylidene)cyclohexen-1-ol (7). Yellow; m.p.: 140-141ºC; Mass calculated: 368.0412; 
Mass found: 368.0417. 1H NMR (500 MHz, CDCl3) δ: 1.68 (dt, J=12.23, 6.12 Hz, 2 H) 2.54 (t, J=5.82 Hz, 2 
H) 2.70 - 2.75 (m, 2 H) 7.30 (d, J=8.15 Hz, 2 H) 7.41 - 7.49 (m, 3 H) 7.52 (d, J=8.74 Hz, 2 H) 7.57 (d, J=6.99 
Hz, 2 H) 7.67 (s, 1 H) 16.65 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 27.1, 27.5, 108.5, 122.3, 127.6, 
128.1, 130.6, 131.5, 131.5, 131.9, 13325, 135.2, 138.2, 175.5, 195.9 

2-benzoyl-6-(3,4-dibromobenzylidene)cyclohexen-1-ol (8). Yellow; m.p.: 125-126ºC; Mass calculated: 
445.9517; Mass found: 445.9561. 1H NMR (500 MHz, CDCl3) δ: 1.68 (dt, J=12.23, 6.12 Hz, 2 H) 2.54 (t, 
J=6.12 Hz, 2 H) 2.70 (t, J=5.82 Hz, 2 H) 7.21 (d, J=8.15 Hz, 1 H) 7.42 - 7.50 (m, 3 H) 7.55 - 7.60 (m, 3 H) 
7.63 (d, J=8.74 Hz, 1 H) 7.68 (s, 1 H) 16.54 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.4, 27.1, 27.4, 108.8, 
124.3, 124.8, 127.6, 128.1, 129.8, 130.2, 130.8, 133.5, 134.3, 134.6, 137.1, 138.2, 174.6, 196.5 

2-benzoyl-6-(2-chlorobenzylidene)cyclohexen-1-ol (9). Yellow; m.p.: 92-94ºC; Mass calculated: 324.0917; 
Mass found: 324.0932. 1H NMR (CDCl3) δ: 1.67 (quin, J=6.12 Hz, 2 H) 2.54 (t, J=5.97 Hz, 2 H) 2.59 - 2.64 
(m, 2 H) 7.23 - 7.30 (m, 2 H) 7.35 (dd, J=6.99, 2.04 Hz, 1 H) 7.41 - 7.50 (m, 4 H) 7.58 (dd, J=8.15, 1.46 Hz, 2 
H) 7.85 (s, 1 H) 16.56 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.3, 27.4, 108.7, 126.2, 127.5, 128.1, 
129.2, 129.7, 130.1, 130.5, 130.7, 134.2, 134.7, 134.8, 138.4, 174.7, 196.7 

2-benzoyl-6-(3-chlorobenzylidene)cyclohexen-1-ol (10). Yellow; m.p.: 97-99ºC; Mass calculated: 324.0917; 
Mass found: 324.0928. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.04 Hz, 2 H) 2.54 (t, J=5.97 Hz, 2 H) 
2.71 - 2.78 (m, 2 H) 7.27 - 7.35 (m, 3 H) 7.40 - 7.51 (m, 4 H) 7.58 (dd, J=8.01, 1.31 Hz, 2 H) 7.67 (s, 1 H) 
16.62 (s, 1 H). 13C NMR (125 MHz, CDCl3 CDCl3) δ: 23.5, 27.2, 27.5, 108.7, 127.6, 128.0, 128.2, 128.2, 
129.6, 129.6, 130.7, 131.5, 133.8, 134.3, 138.14, 138.2, 175.2, 196.2 



  

13 

 

2-benzoyl-6-(4-chlorobenzylidene)cyclohexen-1-ol (11). Yellow; m.p.: 129-130ºC; Mass calculated: 
324.0917; Mass found: 324.0925. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.12 Hz, 2 H) 2.50 - 2.57 (m, 
2 H) 2.70 - 2.76 (m, 2 H) 7.37 (s, 4 H) 7.42 - 7.50 (m, 3 H) 7.58 (dd, J=8.01, 1.31 Hz, 2 H) 7.69 (s, 1 H) 16.69 
(s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 27.2, 27.5, 108.6, 127.6, 128.1, 128.6, 130.7, 131.3, 131.9, 
133.1, 134.0, 134.8, 138.2, 175.6, 195.8 

2-benzoyl-6-(2,3-dichlorobenzylidene)cyclohexen-1-ol (12). Yellow; m.p.: 131-132ºC; Mass calculated: 
358.0527; Mass found: 358.0545. 1H NMR (500 MHz, CDCl3) δ: 1.66 (dt, J=12.23, 6.12 Hz, 2 H) 2.51 - 2.62 
(m, 4 H) 7.19 - 7.25 (m, 2 H) 7.41 - 7.50 (m, 4 H) 7.57 (d, J=6.99 Hz, 2 H) 7.79 (s, 1 H) 16.47 (s, 1 H). 13C 
NMR (125 MHz, CDCl3) δ: 23.5, 27.2, 27.3, 108.8, 126.7, 127.5, 128.1, 128.6, 129.7, 129.8, 130.7, 132.6, 
133.5, 134.8, 137.1, 138.3, 174.0, 197.1 

2-benzoyl-6-(2,4-dichlorobenzylidene)cyclohexen-1-ol (13). Yellow; m.p.: 135-136ºC; Mass calculated: 
358.0527; Mass found: 358.0537. 1H NMR (500 MHz, CDCl3) δ: 1.67 (dt, J=12.23, 6.12 Hz, 2 H) 2.54 (t, 
J=5.82 Hz, 2 H) 2.56 - 2.61 (m, 2 H) 7.24 - 7.30 (m, 2 H) 7.41 - 7.50 (m, 4 H) 7.57 (d, J=6.99 Hz, 2 H) 7.76 (s, 
1 H) 16.48 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 27.3, 27.3, 108.7, 126.6, 127.5, 128.1, 128.8, 129.6, 
130.7, 131.2, 133.3, 134.2, 134.7, 135.4, 138.3, 174.1, 197.0 

2-benzoyl-6-(3,4-dichlorobenzylidene)cyclohexen-1-ol (14). Yellow; m.p.: 133-135ºC; Mass calculated: 
358.0527; Mass found: 358.0544. 1H NMR (500 MHz, CDCl3) δ: 1.68 (dt, J=12.23, 6.12 Hz, 2 H) 2.53 - 2.56 
(m, 2 H) 2.69 - 2.73 (m, 2 H) 7.25 (dt, J=7.3, 2.3 Hz, 1 H) 7.42 - 7.49 (m, 4 H) 7.52 (d, J=2.33 Hz, 1 H) 7.57 
(d, J=6.99 Hz, 2 H) 7.61 (s, 1 H) 16.56 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.4, 27.1, 27.5, 108.8, 127.6, 
128.1, 129.2, 130.3, 130.3, 130.8, 131.4, 132.0, 132.5, 134.1, 136.3, 138.2, 174.7, 196.4 

2-benzoyl-6-(3-methylbenzylidene)cyclohexen-1-ol (15). Yellow; m.p.: 84-86ºC; Mass calculated: 304.1463; 
Mass found: 304.1470. 1H NMR (500 MHz, CDCl3) δ: 1.67 (dt, J=12.23, 6.12 Hz, 2 H) 2.54 (t, J=5.82 Hz, 2 
H) 2.76 - 2.80 (m, 2 H) 7.14 (d, J=6.99 Hz, 1 H) 7.25 - 7.31 (m, 3 H) 7.41 - 7.49 (m, 3 H) 7.58 (dd, J=6.99, 
1.16 Hz, 2 H) 7.75 (s, 1 H) 16.79 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 21.5, 23.6, 27.2, 27.6, 108.3, 127.1, 
127.6, 128.1, 128.2, 129.0, 130.6, 130.8, 132.3, 133.6, 136.2, 137.9, 138.3, 176.4, 195.4, 

2-benzoyl-6-(4-methylbenzylidene)cyclohexen-1-ol (16). Yellow; m.p.: 121-122ºC; Mass calculated: 
304.1463; Mass found: 304.1468. 1H NMR (500 MHz, CDCl3) δ: 1.67 (quin, J=6.12 Hz, 2 H) 2.51 - 2.56 (m, 
2 H) 2.76 - 2.80 (m, 2 H) 7.22 (d, J=8.15 Hz, 2 H) 7.37 (d, J=8.15 Hz, 2 H) 7.41 - 7.50 (m, 3 H) 7.58 (d, 
J=6.99 Hz, 2 H) 7.75 (s, 1 H) 16.84 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 21.4, 23.6, 27.2, 27.7, 108.2, 
127.6, 128.1, 129.1, 130.2, 130.5, 131.7, 133.4, 133.5, 138.3, 138.4, 176.8, 195.0, 

2-benzoyl-6-(2-methoxybenzylidene)cyclohexen-1-ol (17). Yellow; m.p.: 127-128ºC; Mass calculated: 
320.1412; Mass found: 320.1422. 1H NMR (500 MHz, CDCl3) δ: 1.66 (dt, J=11.43, 5.79 Hz, 2 H) 2.53 (t, 
J=5.68 Hz, 2 H) 2.70 (t, J=5.82 Hz, 2 H) 3.88 (s, 3 H) 6.93 (d, J=8.15 Hz, 1 H) 6.98 (t, J=7.43 Hz, 1 H) 7.29 - 
7.37 (m, 2 H) 7.41 - 7.48 (m, 3 H) 7.54 - 7.61 (m, 2 H) 7.96 (s, 1 H) 16.77 (s, 1 H). 13C NMR (125 MHz, 
CDCl3) δ: 23.7, 27.4, 27.6, 55.5, 108.1, 110.6, 119.9, 125.3, 127.6, 128.1, 129.2, 129.7, 130.2, 130.1, 132.4, 
138.5, 158.0, 176.4, 195.5 

2-benzoyl-6-(3-methoxybenzylidene)cyclohexen-1-ol (18) . Yellow; m.p.: 95-97ºC; Mass calculated: 
320.1412 ; Mass found: 320.1424. 1H NMR (500 MHz, CDCl3) δ: 1.67 (quin, J=6.12 Hz, 2 H) 2.51 - 2.56 (m, 
2 H) 2.75 - 2.81 (m, 2 H) 3.84 (s, 3 H) 6.88 (dd, J=8.15, 2.04 Hz, 1 H) 6.99 (s, 1 H) 7.05 (d, J=7.57 Hz, 1 H) 
7.32 (t, J=7.86 Hz, 1 H) 7.41 - 7.50 (m, 3 H) 7.58 (dd, J=8.01, 1.60 Hz, 2 H) 7.74 (s, 1 H) 16.75 (s, 1 H). 13C 
NMR (125 MHz, CDCl3) δ: 23.6, 27.2, 27.6, 55.3, 108.5, 113.8, 115.5, 122.6, 127.6, 128.1, 129.3, 130.6, 
132.8, 133.2, 137.7, 138.3, 159.5, 176.2, 195.5 

2-benzoyl-6-(4-methoxybenzylidene)cyclohexen-1-ol (19). Yellow; m.p.: 120-121ºC; Mass calculated: 
320.1412; Mass found: 320.1421. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.04 Hz, 2 H) 2.54 (t, J=5.97 
Hz, 2 H) 2.78 (t, J=5.39 Hz, 2 H) 3.85 (s, 3 H) 6.94 (d, J=8.74 Hz, 2 H) 7.40 - 7.47 (m, 5 H) 7.58 (dd, J=7.72, 
1.60 Hz, 2 H) 7.74 (s, 1 H) 16.93 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ : 23.6, 27.1, 27.7, 55.4, 108.0, 113.9, 
127.7, 128.1, 129.0, 130.5, 130.6, 131.9, 133.4, 138.3, 159.7, 177.5, 194.3 
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2-benzoyl-6-(2,3-dimethoxybenzylidene)cyclohexen-1-ol (20). Yellow; m.p.: 69-71ºC; Mass calculated: 
350.1518; Mass found: 350.1535. 1H NMR (500 MHz, CDCl3) δ: 1.65 (dt, J=11.87, 6.15 Hz, 2 H) 2.53 (t, 
J=5.82 Hz, 2 H) 2.66 (t, J=5.39 Hz, 2 H) 3.84 (s, 3 H) 3.89 (s, 3 H) 6.93 (dd, J=16.02, 7.86 Hz, 2 H) 7.04 - 
7.09 (m, 1 H) 7.41 - 7.49 (m, 3 H) 7.56 - 7.59 (m, 2 H) 7.89 (s, 1 H) 16.69 (s, 1 H). 13C NMR (125 MHz, 
CDCl3) δ: 23.6, 27.3, 27.6, 55.9, 61.1, 108.2, 112.4, 122.1, 123.4, 127.5, 128.1, 128.9, 130.5, 130.7, 133.5, 
138.4, 148.0, 152.8, 175.9, 195.9  

2-benzoyl-6-(2,5-dimethoxybenzylidene)cyclohexen-1-ol (21). Yellow; m.p.: 128-129ºC; Mass calculated: 
350.1518; Mass found: 350.1545. 1H NMR (500 MHz, CDCl3) δ: 1.66 (quin, J=6.04 Hz, 2 H) 2.53 (t, J=5.82 
Hz, 2 H) 2.71 (t, J=5.39 Hz, 2 H) 3.80 (s, 3 H) 3.84 (s, 3 H) 6.85 (d, J=1.46 Hz, 2 H) 6.91 (s, 1 H) 7.40 - 7.50 
(m, 3 H) 7.55 - 7.59 (m, 2 H) 7.91 (s, 1 H) 16.71 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.3, 27.6, 
55.8, 56.1, 108.2, 111.5, 114.0, 116.4, 126.1, 127.6, 128.1, 128.9, 130.5, 132.7, 138.5, 152.4, 152.9, 176.1, 
195.6 

2-benzoyl-6-(3,4-dimethoxybenzylidene)cyclohexen-1-ol (22). Yellow; m.p.: 152-153ºC; Mass calculated: 
350.1518; Mass found: 350.1542 1H NMR (500 MHz, CDCl3) δ: 1.69 (quin, J=6.04 Hz, 2 H) 2.52 - 2.57 (m, 2 
H) 2.76 - 2.84 (m, 2 H) 3.92 (s, 3 H) 3.92 (s, 3 H) 6.91 (d, J=8.45 Hz, 1 H) 7.00 (d, J=1.75 Hz, 1 H) 7.09 (dd, 
J=8.30, 1.60 Hz, 1 H) 7.41 - 7.49 (m, 3 H) 7.58 (dd, J=7.72, 1.60 Hz, 2 H) 7.72 (s, 1 H) 16.89 (s, 1 H). 13C 
NMR (125 MHz, CDCl3) δ: 23.6, 27.1, 27.7, 55.9, 56.0, 108.1, 110.9, 113.5, 123.5, 127.7, 128.1, 129.3, 130.5, 
130.8, 133.5, 138.3, 148.7, 149.3, 177.2, 194.4 

2-benzoyl-6-(2,3,4,-trimethoxybenzylidene)cyclohexen-1-ol (23). Yellow; m.p.: 140-141ºC; Mass calculated: 
380.1624; Mass found: 380.1643. 1H NMR (500 MHz, CDCl3) δ: 1.63 - 1.69 (m, 2 H) 2.53 (t, J=5.82 Hz, 2 H) 
2.69 (t, J=5.24 Hz, 2 H) 3.90 (s, 6 H) 3.91 (s, 3 H) 6.69 (d, J=8.74 Hz, 1 H) 7.09 (d, J=8.74 Hz, 1 H) 7.40 - 
7.48 (m, 3 H) 7.55 - 7.59 (m, 2 H) 7.88 (s, 1 H) 16.80 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.7, 27.3, 27.7, 
56.1, 61.0, 61.5, 106.7, 107.9, 123.3, 125.0, 127.6, 128.1, 128.7, 130.4, 131.8, 138.5, 142.3, 153.1, 154.1, 
176.8, 195.1 

2-benzoyl-6-(3,4,5-trimethoxybenzylidene)cyclohexen-1-ol (24). Yellow; m.p.: 150-151ºC; Mass calculated: 
380.1624; Mass found: 380.1631. 1H NMR (500 MHz, CDCl3) δ: 1.69 (t, J=5.68 Hz, 2 H) 2.54 (t, J=5.97 Hz, 
2 H) 2.80 (t, J=5.24 Hz, 2 H) 3.89 (s, 6 H) 3.89 (s, 3 H) 6.69 (s, 2 H) 7.42 - 7.48 (m, 3 H) 7.58 (dd, J=7.86, 
1.46 Hz, 2 H) 7.69 (s, 1 H) 16.79 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.1, 27.7, 56.2, 56.2, 61.0, 
107.6, 108.3, 127.6, 128.1, 130.6, 131.8, 131.9, 131.9, 133.5, 138.2, 138.4, 153.0, 176.4, 195.2 

2-benzoyl-6-(3-hydroxybenzylidene)cyclohexen-1-ol (25). Yellow; m.p.: 120-121ºC; Mass calculated: 
306.1256; Mass found: 306.1258. 1H NMR (500 MHz, CDCl3) δ: 1.66 (quin, J=6.04 Hz, 2 H) 2.53 (t, J=5.97 
Hz, 2 H) 2.76 (t, J=5.53 Hz, 2 H) 5.39 (br. s., 1 H) 6.80 (dd, J=8.01, 2.18 Hz, 1 H) 6.91 (s, 1 H) 7.02 (d, 
J=7.86 Hz, 1 H) 7.22 - 7.29 (m, 1 H) 7.40 - 7.50 (m, 3 H) 7.58 (d, J=7.28 Hz, 2 H) 7.70 (s, 1 H) 16.71 (s, 1 H). 
13C NMR (125 MHz, CDCl3) δ: 23.5, 27.2, 27.6, 108.6, 115.4, 116.7, 122.7, 127.6, 128.2, 129.5, 130.7, 132.8, 
133.1, 137.8, 138.2, 155.5, 176.2, 195.8 

2-benzoyl-6-(4-hydroxybenzylidene)cyclohexen-1-ol (26). Yellow; m.p.: 158-160ºC; Mass calculated: 
306.1256; Mass found: 306.1268. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=5.97 Hz, 2 H) 2.53 (t, J=5.82 
Hz, 2 H) 2.77 (t, J=5.53 Hz, 2 H) 6.87 (d, J=8.45 Hz, 2 H) 7.38 (d, J=8.15 Hz, 2 H) 7.41 - 7.49 (m, 3 H) 7.57 
(d, J=7.28 Hz, 2 H) 7.71 (s, 1 H) 16.87 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.1, 27.7, 108.1, 115.4, 
127.6, 128.1, 129.1, 130.5, 130.6, 132.1, 133.4, 138.2, 155.8, 177.5, 194.4 

2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (27). Yellow; m.p.: 212-213ºC; Mass calculated: 
322.1205; Mass found: 322.1215. 1H NMR (500 MHz, acetone) δ: 1.67 (quin, J=5.61 Hz, 2 H) 2.54 (t, J=5.24 
Hz, 2 H) 2.79 (t, J=5.97 Hz, 2 H) 6.87 - 7.00 (m, 2 H) 7.09 (s, 1 H) 7.44 - 7.56 (m, 3 H) 7.58 - 7.68 (m, 3 H) 
8.22 (br. s., 2 H) 17.12 (s, 1 H). 13C NMR (125 MHz, acetone) δ: 23.4, 26.7, 27.5, 107.8, 115.4, 117.2, 123.4, 
127.6, 128.1, 128.3, 129.9, 130.5, 133.7, 138.2, 144.9, 146.1, 177.8, 193.8 
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2-benzoyl-6-(3-hydroxyl-4-methoxybenzylidene)cyclohexen-1-ol (28). Yellow; m.p.: 152-153ºC; Mass 
calculated: 336.1362; Mass found: 336.1375. 1H NMR (500 MHz, CDCl3) δ: 1.69 (quin, J=6.12 Hz, 2 H) 2.50 
- 2.56 (m, 2 H) 2.77 - 2.81 (m, 2 H) 3.92 (s, 3 H) 5.83 (s, 1 H) 6.95 (d, J=8.44 Hz, 1 H) 6.98 (d, J=2.04 Hz, 1 
H) 7.06 (dd, J=8.15, 2.04 Hz, 1 H) 7.42 - 7.47 (m, 3 H) 7.58 (dd, J=7.86, 1.75 Hz, 2 H) 7.71 (s, 1 H) 16.92 (s, 
1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.1, 27.7, 56.00, 108.1, 113.0, 114.4, 124.1, 127.7, 128.1, 128.8, 
130.5, 130.6, 133.7, 138.2, 146.1, 146.3, 177.4, 194.3 

2-benzoyl-6-(4-hydroxyl-3-methoxybenzylidene)cyclohexen-1-ol (29). Yellow; m.p.: 153-154ºC; Mass 
calculated: 336.1362; Mass found: 336.1382. 1H NMR (500 MHz, CDCl3) δ: 1.67 (quin, J=5.97 Hz, 2 H) 2.53 
(t, J=5.82 Hz, 2 H) 2.78 (t, J=5.39 Hz, 2 H) 3.93 (s, 3 H) 5.67 (s, 1 H) 6.89 (d, J=8.44 Hz, 1 H) 7.00 (d, 
J=8.45 Hz, 1 H) 7.10 (s, 1 H) 7.39 - 7.49 (m, 3 H) 7.58 (d, J=6.70 Hz, 2 H) 7.68 (s, 1 H) 16.88 (s, 1 H). 13C 
NMR (125 MHz, CDCl3) δ: 23.5, 27.1, 27.7, 56.0, 108.1, 110.4, 115.9, 123.4, 127.7, 128.1, 129.8, 130.5, 
131.0, 133.4, 138.3, 145.3, 146.8, 177.3, 194.4 

2-benzoyl-6-(3-chloro-4-hydroxybenzylidene)cyclohexen-1-ol (30). Yellow; m.p.: 164-165ºC; Mass 
calculated: 340.0866; Mass found: 340.0878. 1H NMR (500 MHz, CDCl3) δ: 1.69 (quin, J=6.04 Hz, 2 H) 2.51 
- 2.56 (m, 2 H) 2.69 - 2.78 (m, 2 H) 5.74 (s, 1 H) 7.05 (d, J=8.44 Hz, 1 H) 7.30 (dd, J=8.59, 1.89 Hz, 1 H) 
7.42 - 7.50 (m, 4 H) 7.56 - 7.60 (m, 2 H) 7.63 (s, 1 H) 16.75 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 
27.1, 27.6, 108.4, 116.2, 120.0, 127.6, 128.1, 130.1, 130.5, 130.6, 130.7, 131.7, 131.8, 138.2, 151.3, 176.3, 
195.2 

2-benzoyl-6-(3-bromo-4-hydroxybenzylidene)cyclohexen-1-ol (31). Yellow; m.p.: 172-173ºC; Mass 
calculated: 384.0361; Mass found: 384.0379. 1H NMR (500 MHz, CDCl3) δ: 1.69 (quin, J=6.04 Hz, 2 H) 2.50 
- 2.57 (m, 2 H) 2.71 - 2.78 (m, 2 H) 5.70 (br. s., 1 H) 7.05 (d, J=8.45 Hz, 1 H) 7.34 (dd, J=8.45, 2.04 Hz, 1 H) 
7.41 - 7.50 (m, 3 H) 7.55 - 7.61 (m, 3 H) 7.63 (s, 1 H) 16.74 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 
27.1, 27.6, 108.3, 110.3, 116.0, 127.6, 128.1, 130.5, 130.6, 131.4, 131.5, 131.9, 133.6, 138.2, 152.2, 176.2, 
195.2 

2-benzoyl-6-(1-naphthalenylmethylene)cyclohexen-1-ol (32). Yellow; m.p.: 109-110ºC; Mass calculated: 
340.1463; Mass found: 340.147. 1H NMR (500 MHz, CDCl3) δ: 1.64 (quin, J=5.97 Hz, 2 H) 2.56 (t, J=5.82 
Hz, 2 H) 2.63 (t, J=5.39 Hz, 2 H) 7.43 - 7.56 (m, 7 H) 7.59 - 7.64 (m, 2 H) 7.84 (d, J=8.15 Hz, 1 H) 7.87 - 
7.91 (m, 1 H) 8.03 - 8.08 (m, 1 H) 8.31 (s, 1 H) 16.74 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.7, 27.5, 27.6, 
108.4, 124.9, 125.1, 126.1, 126.4, 126.9, 127.6, 128.2, 128.5, 128.5, 130.6, 131.4, 131.9, 133.5, 133.5, 134.4, 
138.5, 175.5, 196.4 

2-benzoyl-6-(2-naphthalenylmethylene)cyclohexen-1-ol (33). Yellow; m.p.: 114-115ºC; Mass calculated: 
340.1463; Mass found: 340.1488. 1H NMR (500 MHz, CDCl3) δ:1.71 (quin, J=5.82 Hz, 2 H) 2.57 (t, J=5.68 
Hz, 2 H) 2.89 (t, J=5.53 Hz, 2 H) 7.42 - 7.53 (m, 5 H) 7.55 - 7.64 (m, 3 H) 7.81 - 7.89 (m, 3 H) 7.93 (br. s., 2 
H) 16.80 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.2, 27.7, 108.5, 126.4, 126.7, 127.6, 127.6, 127.9, 
128.1, 128.3, 129.7, 130.6, 132.8, 132.9, 133.2, 133.4, 133.9, 138.3, 176.2, 195.5 

2-benzoyl-6-(thien-2-ylmethylene)cyclohexen-1-ol (34). Orange; m.p.: 110-111ºC; Mass calculated: 
296.0871; Mass found: 296.0896. 1H NMR (500 MHz, CDCl3) δ: 1.77 (dt, J=12.09, 6.19 Hz, 2 H) 2.52 - 2.58 
(m, 2 H) 2.75 - 2.82 (m, 2 H) 7.14 (dd, J=4.95, 3.79 Hz, 1 H) 7.33 (d, J=3.49 Hz, 1 H) 7.43 - 7.48 (m, 3 H) 
7.51 (d, J=4.95 Hz, 1 H) 7.58 (dd, J=7.86, 1.46 Hz, 2 H) 7.95 (s, 1 H) 16.87 (s, 1 H). 13C NMR (125 MHz, 
CDCl3) δ: 23.0, 26.8, 27.7, 108.4, 126.5, 127.6, 127.7, 128.1, 129.3, 129.4, 130.5, 131.9, 138.1, 139.9, 177.3, 
193.8 

2-benzoyl-6-(5-methyl-2-thienylmethylene)cyclohexen-1-ol (35). Yellow; m.p.: 100-102ºC; Mass calculated: 
310.1028; Mass found: 310.1035. 1H NMR (500 MHz, CDCl3) δ: 1.75 (quin, J=6.19 Hz, 2 H) 2.49 - 2.58 (m, 
5 H) 2.75 (t, J=5.39 Hz, 2 H) 6.79 - 6.82 (m, 1 H) 7.14 (d, J=3.49 Hz, 1 H) 7.39 - 7.48 (m, 3 H) 7.57 (dd, 
J=7.86, 1.46 Hz, 2 H) 7.86 (s, 1 H) 16.96 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 15.7, 23.0, 26.8, 27.6, 
108.1, 126.1, 127.2, 127.8, 128.0, 128.1, 130.4, 132.5, 138.0, 138.1, 144.9, 178.0, 193.0 
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2-benzoyl-6-(3-benzyloxybenzylidene)cyclohexen-1-ol (36). Yellow; m.p.: 97-98ºC; Mass calculated: 
396.1725; Mass found: 396.1735. 1H NMR (500 MHz, CDCl3) δ: 1.64 (dt, J=12.23, 6.12 Hz, 2 H) 2.53 (t, 
J=6.12 Hz, 2 H) 2.68 - 2.72 (m, 2 H) 5.11 (s, 2 H) 6.95 (dd, J=7.57, 1.16 Hz, 1 H) 7.02 - 7.07 (m, 2 H) 7.29 - 
7.36 (m, 2 H) 7.37 - 7.50 (m, 7 H) 7.58 (d, J=7.57 Hz, 2 H) 7.72 (s, 1 H) 16.74 (s, 1 H). 13C NMR (125 MHz, 
CDCl3) δ: 23.5, 27.2, 27.6, 70.1, 108.5, 114.8, 116.3, 123.0, 127.4, 127.6, 128.0, 128.1, 128.6, 129.3, 130.6, 
132.8, 133.1, 136.8, 137.6, 158.6, 176.1, 195.6 

2-benzoyl-6-(4-benzyloxybenzylidene)cyclohexen-1-ol (37). Yellow; m.p.: 133-135ºC; Mass calculated: 
396.1725; Mass found: 396.1738. 1H NMR (500 MHz, CDCl3) δ: 1.68 (quin, J=6.12 Hz, 2 H) 2.52 - 2.55 (m, 
2 H) 2.75 - 2.80 (m, 2 H) 5.11 (s, 2 H) 7.01 (d, J=8.74 Hz, 2 H) 7.32 - 7.37 (m, 1 H) 7.38 - 7.48 (m, 9 H) 7.58 
(dd, J=6.99, 1.16 Hz, 2 H) 7.73 (s, 1 H) 16.91 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 27.1, 27.7, 70.0, 
114.8, 127.5, 127.7, 128.1, 128.1, 128.7, 129.2, 130.5, 130.6, 131.9, 133.3, 136.6, 138.2, 158.8, 177.4, 194.4 

4.1.3. General procedure for the synthesis of III  

A DMF solution (100 mL) containing hydroxylated benzaldehyde (20 mmol), 1,2-dibromoethane (60 mmol) 
and anhydrous potassium carbonate (40 mmol) was heat at 70-80˚C for 6 hours to obtain III. Upon completion, 
the reaction mixture was poured into 200 mL of distilled water and stirred for 10 minutes, followed by 
extraction with 100 mL of ethyl acetate. The organic layer was then washed twice with 100 mL of distilled 
water and dried over anhydrous magnesium sulphate. Further evaporation in vacuo gave crude product of the 
targeted intermediate (III).  The resulting crude product was purified by column chromatography. 

4.1.4. General procedure for the synthesis of IV  

A DMF solution (50 mL) containing intermediate III (2 mmol), appropriate secondary amine (3 mmol) and 
anhydrous potassium carbonate (4 mmol) was heated under reflux for 8 hours to obtain IV. Upon completion, 
the reaction mixture was poured into 200 mL of distilled water and stirred for 10 minutes, followed by 
extraction with 100 mL of ethyl acetate. The organic layer was then washed twice with 100 mL of distilled 
water and dried over anhydrous magnesium sulphate. Further evaporation in vacuo gave crude product of the 
targeted intermediate (IV).  The resulting crude product was purified by column chromatography. 

4.1.5. General procedure for the synthesis of compounds 38-41  

One milimole of 2-benzoylcyclohenxanone (II) was reacted with equivalent amount of aminated 
benzaldehyde in acetic acid (30 mL), in the presence of sulfuric acid as catalyst. The reaction mixture was 
stirred at room temperature for overnight. Upon completion, the reaction mixture was poured into 100 mL of 
distilled water and stirred for 10 minutes, followed by extraction with 100 mL of ethyl acetate. The organic 
layer was then washed with 10% sodium bicarbonate solution and dried over anhydrous magnesium sulphate. 
Further evaporation in vacuo gave crude product of the targeted compounds 38-41.  The resulting crude 
product was purified by column chromatography. 

2-benzoyl-6-(3-(2-(piperidin-1-yl)ethoxy)benzylidene)cyclohexen-1-ol (38). Yellow; m.p.: - ; Mass 
calculated: 417.2304; Mass found: 417.2344. 1H NMR (500 MHz, CDCl3) δ: 1.41 - 1.51 (m, 2 H) 1.57 - 1.71 
(m, 6 H) 2.50 - 2.58 (m, 6 H) 2.74 - 2.84 (m, 4 H) 4.14 (td, J=6.26, 1.46 Hz, 2 H) 6.88 (d, J=8.15 Hz, 1 H) 
6.98 (s, 1 H) 7.03 (d, J=7.57 Hz, 1 H) 7.28 - 7.33 (m, 1 H) 7.41 - 7.49 (m, 3 H) 7.58 (d, J=7.57 Hz, 2 H) 7.72 
(s, 1 H) 16.71 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.6, 24.2, 25.9, 27.2, 27.6, 55.0, 57.9, 66.0, 108.41, 
114.5, 116.1, 122.7, 127.1, 127.6, 128.2, 129.3, 130.6, 132.7, 133.2, 137.6, 138.3, 176.1, 195.5  

2-benzoyl-6-(4-(2-(piperidin-1-yl)ethoxy)benzylidene)cyclohexen-1-ol (39). Yellow; m.p.: 102-104ºC; Mass 
calculated: 417.2304; Mass found: 417.2321. 1H NMR (500 MHz, CDCl3) δ: 1.42 - 1.49 (m, 2 H) 1.62 (quin, 
J=5.68 Hz, 4 H) 1.67 (dt, J=12.23, 6.12 Hz, 2 H) 2.48 - 2.58 (m, 6 H) 2.73 - 2.84 (m, 4 H) 4.11 - 4.18 (m, 2 H) 
6.93 (d, J=8.74 Hz, 2 H) 7.38 - 7.49 (m, 5 H) 7.57 (dd, J=7.57, 1.16 Hz, 2 H) 7.72 (s, 1 H) 16.91 (s, 1 H). 13C 
NMR (125 MHz, CDCl3) δ: 23.6, 24.2, 25.9, 27.1, 27.7, 55.0, 57.8, 66.0, 108.0, 114.5, 127.7, 128.1, 129.0, 
130.5, 130.5, 131.9, 133.4, 138.2, 158.9, 177.5, 194.3 



  

17 

 

2-benzoyl-6-(3-(2-(pyrrolidin-1-yl)ethoxy)benzylidene)cyclohexen-1-ol (40). Yellow; m.p.: 78-80ºC; Mass 
calculated: 403.2147; Mass found: 403.2161. 1H NMR (500 MHz, CDCl3) δ: 1.59 - 1.70 (m, 2 H) 1.80 - 1.85 
(m, 4 H) 2.53 (t, J=5.82 Hz, 2 H) 2.65 (t, J=6.41 Hz, 4 H) 2.73 - 2.80 (m, 2 H) 2.93 (t, J=6.12 Hz, 2 H) 4.14 (t, 
J=6.12 Hz, 2 H) 6.89 (dd, J=8.15, 2.91 Hz, 1 H) 6.99 (s, 1 H) 7.03 (d, J=7.57 Hz, 1 H) 7.30 (t, J=7.86 Hz, 1 
H) 7.39 - 7.49 (m, 3 H) 7.57 (d, J=7.57 Hz, 2 H) 7.71 (s, 1 H) 16.71 (s, 1 H).  13C NMR (125 MHz, CDCl3) δ: 
23.4, 23.5, 27.2, 27.6, 54.7, 55.0, 67.1, 107.9, 114.5, 116.1, 122.7, 127.6, 127.8, 128.1, 129.2, 130.5, 132.7, 
133.2, 137.6, 176.1, 193.2, 195.5 

2-benzoyl-6-(4-(2-(pyrrolidin-1-yl)ethoxy)benzylidene)cyclohexen-1-ol (41). Yellow; m.p.: 99-101ºC; Mass 
calculated: 403.2147; Mass found: 403.2171. 1H NMR (500 MHz, CDCl3) δ: 1.67 (quin, J=6.12 Hz, 2 H) 1.78 
- 1.86 (m, 4 H) 2.51 - 2.55 (m, 2 H) 2.64 (t, J=6.41 Hz, 4 H) 2.74 - 2.80 (m, 2 H) 2.92 (t, J=5.82 Hz, 2 H) 4.15 
(t, J=6.12 Hz, 2 H) 6.95 (d, J=8.74 Hz, 2 H) 7.39 - 7.47 (m, 5 H) 7.57 (dd, J=7.86, 1.46 Hz, 2 H) 7.72 (s, 1 H) 
16.91 (s, 1 H). 13C NMR (125 MHz, CDCl3) δ: 23.5, 23.6, 27.1, 27.7, 54.7, 55.0, 67.1, 108.00, 114.5, 127.7, 
128.1, 130.5, 130.5, 131.9, 133.4, 138.2, 158.9, 177.5, 194.3 

4.2. In-vitro AChE and BuChE inhibition assay 

AChE and BChE inhibitory activity of the compounds were evaluated using Ellman’s microplate assay 
following the conditions described by A. Basiri et al. with slight modifications. Electric eel AChE (type V-S, 
Sigma Chemical Co. code: C2888) and equine serum BChE (Sigma Chemical Co. code: C7512) were used as 
the sources of cholinesterases, while acetylthiocholine iodide (Sigma Chemical Co. [ATCI] code: A5751) and 
S-butyrylthiocholine iodide (Sigma Chemical Co. [BTCI] code: 20820) were used as the sources of substrates. 
The enzymes were prepared in 0.1M sodium phosphate buffer (pH 7.4) with the concentration of 0.25 
units/mL while the substrates were prepared in water with the concentration of 0.25 mM.  

For cholinesterase inhibitory assays, 190 µL of 0.15 mM of 5,5-dithiobis-2-nitrobenzoic acid (DTNB) 
(Sigma Chemical Co. Code: D21200, 99%) in sodium phosphate buffer ( 0.1M, pH 7.4) was first added to 96-
well microplate followed by the addition of 20 µL of AChE/BChE solution and 20 µL of test compounds. The 
mixture was incubated at 37 ºC for 15 minutes. Then, 20 µL of ATCI/BTCI was added to initiate the enzyme 
reaction and the reaction mixture was further incubated for 30 minutes at 37 ºC. The absorbance of the colored 
end-product was measured at 412 nm using SpectraMax Plus 384 Microplate Reader (Molecular Devices LLC, 
Sunnyvale, CA, USA). All reactions were carried out in triplicate. The IC50 values were calculated in µM 
using graph Pad software. 

4.3. Kinetic studies of AChE and BChE inhibition 
 
The kinetic studies were performed as described in the above Section (4.2.) using different concentrations 

of substrate and compounds. Compound 39 with concentrations of 5, 2.5, 1.25 and 0 µM were used for AChE 
kinetic analysis while compound 40 with concentrations of 0.625, 0.313, 0.157 and 0 µM were used for BChE 
kinetic analysis. Meanwhile, the concentrations of substrate for both assays were set at 0.2, 0.3, 0.4 and 0.5 
mM. Lineweaver-Burk plots were derived from the resulting data and the Ki values of both compounds were 
calculated using GraphPad Prism 5.  

 
4.4. Molecular modeling 

Molecular docking studies were carried out using Discovery Studio 3.1 (Accelrys, San Diego, USA) on an 
Intel® (TM)2 Quad CPU Q8200 @2.33 GHz running under a Windows XP Professional environment.  

4.4.1. Receptors preparation 

The crystal structure of AChE from Torpedo californica (TcAChE; Code ID: 1EVE) and BChE from Homo 
sapiens (hBChE; Code ID: 4BDS) were obtained from the Protein Data Bank. Then, all water molecules and 
co-crystalized ligands were removed followed by protein preparation protocol with CHARMm force field. The 
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crystal structures of TcAChE and hBChE were used for docking studies due to their sequential similarity with 
EeAChE and equine serum BChE, respectively. 

4.4.2. Ligands preparation 
 

Compounds 39 and 40, as well as co-crystallized ligands (donepezil and tacrine) were drawn with 
ChemDraw Ultra 12.0.Then, the structures were imported to the Discovery Studio 3.1 followed by ligands 
preparation protocol with the default setting, as recommended by Accelrys. The prepared ligands were then 
subjected to ligands minimization with CHARMm force field before being used for docking analyses. 

 
 
4.4.3. Flexible docking 

 
Minimized co-crystallized ligands were re-docked into their respective enzymes with several sets of 

amino acids as flexible residues. The top ranked conformations resulted from the docking experiment 
were compared to their original crystallographic confirmation in terms of RMSD. The parameters with 
lowest RMSD values were selected for the flexible docking of compounds 39 and 40. The flexible 
docking results were analyzed using Discovery Studio Visualizer v4.1.0.14169 (Accelrys, San Diego, 
USA). 
 

4.5. ADMET analysis 

Compounds 39 and 40 were selected for Discovery Studio 3.1 ADMET analysis based on their best 
performance in cholinesterase inhibitory activity. The ADMET analysis performed was on their aqueous 
solubility (AS), human intestinal absorption (HIA), blood brain barrier (BBB), cytochrome P450 2D6 
(CYP2D6), plasma protein binding (PPB), and hepatotoxicity (HT) descriptors.  
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