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Background: Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that is characterized by
dementia, cognitive impairment, andmemory loss. Diverse factors are related to the development of AD, such as
increased level of β-amyloid (Aβ), acetylcholine, metal ion deregulation, hyperphosphorylated tau protein, and
oxidative stress.
Methods: The following methods were used: organic syntheses of 1H-phenanthro[9,10-d]imidazole derivatives,
inhibition of self-mediated and metal-induced Aβ1–42 aggregation, inhibition studies for acetylcholinesterase
and butyrylcholinesterase, anti-oxidation activity studies, CD, MTT assay, transmission electron microscopy,
dot plot assay, gel electrophoresis, Western blot, and molecular docking studies.
Results:We synthesized and characterized a new type of 1H-phenanthro[9,10-d]imidazole derivatives as multi-
functional agents for AD treatment. Our results showed thatmost of these derivatives exhibited strong Aβ aggre-
gation inhibitory activity. Compound 9g had 74% Aβ1–42 aggregation inhibitory effect at 10 μM concentration
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E
Cwith its IC50 value of 6.5 μM for self-induced Aβ1–42 aggregation. This compound also showed good inhibition

of metal-mediated (Cu2+ and Fe2+) and acetylcholinesterase-induced Aβ1–42 aggregation, as indicated by
using thioflavin T assay, transmission electron microscopy, gel electrophoresis, and Western blot. Besides, com-
pound 9g exhibited cholinesterase inhibitory activity, with its IC50 values of 0.86 μM and 0.51 μM for acetylcho-
linesterase and butyrylcholinesterase, respectively. In addition, compound 9g showed good anti-oxidation effect
with oxygen radical absorbance capacity (ORAC) value of 2.29.
Conclusions: Compound 9gwas found to be a potent multi-target-directed agent for Alzheimer's disease.
General significance: Compound 9g could become a lead compound for further development as a multi-target-
directed agent for AD treatment.
R © 2014 Published by Elsevier B.V.
48

49

50

51
C
O

1. Introduction

Alzheimer's disease (AD) is themost prevalent formof neurodegener-
ation which is the most common cause of dementia and other cognitive
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is and characterization of 1H-
iophys. Acta (2014), http://dx
functions among elderly adults [1–3], with expected number of patients
increased to 25 million by 2025 [4]. Over one century since the first de-
scription of AD and its predicted increase in incidence in the coming
years as well as the lack of effective treatment strategies make this a
very important research area [2,5–8]. The molecular etiology of AD
remains not completely known, but diverse factors are suggested to be re-
lated to the development of AD, including increased level of β-amyloid
(Aβ), metal ion deregulation, hyperphosphorylated tau protein, oxidative
stress, inflammation, cell cycle regulatory failure, and low level of
acetylcholine.

It is well known that Aβ plaques play a central role in the neuropa-
thology of AD [8–12], and the accumulation of aggregated Aβ species
in brain tissues has been a key feature of the amyloid cascade hypothe-
sis [10,13–15], which cites that these aggregates are possible causative
agents in AD. Therefore, the prevention of Aβ aggregation attracts
much current attention. Besides, elevated concentrations of transition
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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metals such as Fe, Cu, and Zn play important roles in Aβ aggregate depo-
sition [11,16–19] and neurotoxicity as well as inducing formation of re-
active oxygen species (ROS) [20–23]. Thus, lowering the concentration
of metals in brain by chelating metals represents another rational ther-
apeutic approach for halting AD pathogenesis. In addition, cholinergic
hypothesis play important role in the development of AD, acetylcholine
can be degraded by two types of cholinesterases, namely acetylcholin-
esterase (AChE) and butyrylcholinesterase (BuChE) [24]. AChE contains
two binding sites: the catalytic active site (CAS) at the bottom and the
peripheral anionic site (PAS) near the entrance of the gorge [25]. It
has been indicated that AChE promotes amyloid fibril formation by
interacting with the PAS of the enzyme, giving stable AChE–Aβ com-
plexes, which are more toxic than single Aβ peptides [26]. Thus, small
molecules that could bind the CAS site and the PAS site appear to be
very promising therapeutic lead compounds. Due to themultiple factors
and the lack of effective drugs, scientists pay more and more attention
to the multi-target-directed ligands (MTDLs) designing strategies for
AD treatment [27–30].

The benzazole scanffold [31] and benzimidazole derivatives [32,
33] have been used in bioactive molecular design for the treatment
of AD. Based on these structures, we tried to expand their aromatic
plane to improve their π–π interactions and hydrophobic interac-
tions with the targets. The “click” chemistry has been used in the de-
sign of AD modulating agents [34]. Here, we report our design,
synthesis, and evaluation of 1H-phenanthro[9,10-d]imidazole deriv-
atives as multifunctional inhibitors for the treatment of AD. We
found that our compound 9g showed 74% Aβ1–42 aggregation inhib-
itory effect when used at 10 μM concentration, which is better than
resveratrol with only 53% Aβ1–42 aggregation inhibitory effect. Com-
pound 9g could also inhibit and disaggregate metal-induced aggre-
gation of Aβ1–42, which was supported by using thioflavin T (ThT)
assay, transmission electron microscopy (TEM), and gel electropho-
resis. Besides, compound 9g was found to be potent inhibitor for
both AChE and BuChE, with its IC50 values of 0.86 μM and 0.51 μM
for AChE and BuChE, respectively. In addition, compound 9g was
also found to be an anti-oxidation agent with its oxygen radical ab-
sorbance capacity (ORAC) value of 2.29. Thus, compound 9g could
become a lead compound for further development as a multi-
target-directed agent for the treatment of AD.
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R2. Materials and methods

2.1. Materials

All the reagents used in the biological assay were analytically pure.
Chemical reagents used in the synthesiswere of research grade or better
and were obtained from commercial sources.
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N2.2. Organic syntheses of imidazole derivatives

All the chemical reagents used in the synthesiswere of research grade
or better and were obtained from commercial sources. 1H and 13C NMR
spectra were recorded using TMS as the internal standard in DMSO-d6
or CDCl3 with a Bruker BioSpin GmbH spectrometer at 400 MHz and
100 MHz, respectively. High resolution mass spectra (HRMS) were re-
corded on Shimadzu LCMS-IT-TOF spectrometer. Flash column chroma-
tography was performed with silica gel (200–300 mesh) purchased
from Qingdao Haiyang Chemical Co. Ltd. The purities of synthesized
compounds were confirmed to be higher than 95% by using analyti-
cal HPLC with a dual pump Shimadzu LC-20AB system equipped
with an Ultimate-QB-C18 column (4.6 × 250 mm, 5 μm) and eluted
with methanol/water (60:40 to 70:30) containing 0.1% trifluoroacetic
acid at a flow rate of 0.6 mL/min. Organic syntheses of imidazole deriv-
atives were shown in Schemes 1–4.
Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
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2.2.1. General procedure for the preparation of 4-(2-bromoethoxy)
benzaldehyde (1), 4-(3-bromopropoxy)benzaldehyde (2), and
4-(4-bromobutoxy)benzaldehyde (3)

To a solution of 4-hydroxybenzaldehyde (20 mmol, 2.44 g) and an-
hydrous K2CO3 (30 mmol, 5.14 g) in 100mLdry acetonewas added 1,2-
dibromoethane (40 mmol, 7.51 g) or 1,3-dibromopropane (40 mmol,
8.08 g) or 1,4-dibromobutane (40 mmol, 8.64 g). The resultingmixture
was heated under reflux for 6 h until the starting material disappeared,
and then the remaining solution was filtered and washed with acetone
for three times. After concentration, the crude product was purified
with gel chromatography to give desired product 1 or 2 or 3 as a
white liquid.

2.2.2. General procedure for the preparation of 2-(4-(bromomethoxy)
phenyl)-1H-phenanthro[9,10-d]imidazole (4), 2-(4-(3-bromopropoxy)
phenyl)-1H-phenanthro[9,10-d]imidazole (5), and 2-(4-(4-bromobutoxy)
phenyl)-1H-phenanthro[9,10-d]imidazole (6)

A mixture of phenanthrene-9,10-dione (10 mmol, 2.08 g) and 1
(11 mmol, 2.51 g) or 2 (11 mmol, 2.66 g) or 3 (11 mmol, 2.82 g) in
50 mL acetic acid was added ammonium acetate (100 mmol, 7.8 g),
and the solution was heated under reflux at 120 °C for 2 h, resulting
in a gray precipitate. After cooling, the mixture was poured into
100 mL of water and neutralized with concentrated aqueous ammonia.
The gray product was filtered and washed with water to give a crude
product, which was purified with flash gel chromatography to give
compound 4 or 5 or 6 as an off white solid.

2.2.2.1. 2-(4-(bromomethoxy)phenyl)-1H-phenanthro[9,10-d]imidazole
(4). The compound was obtained with a yield of 56%. 1H NMR
(400 MHz, DMSO) δ 13.32 (s, 1H), 8.84 (d, J = 8.2 Hz, 2H), 8.55 (d,
J = 7.6 Hz, 2H), 8.26 (d, J = 8.4 Hz, 2H), 7.72 (t, J = 7.2 Hz, 2H),
7.62 (t, J = 7.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 4.43 (t, J = 5.8 Hz,
2H), 3.86 (t, J = 6.0 Hz, 2H);13C NMR (100 MHz, DMSO) δ 171.9,
158.8, 149.1, 127.7, 127.5, 127.0, 125.0, 123.8, 123.4, 121.8, 115.0,
67.9, 31.3.

2.2.2.2. 2-(4-(3-bromopropoxy)phenyl)-1H-phenanthro[9,10-d]imidazole
(5). The compound was obtained with a yield of 66%. 1H NMR
(400 MHz, CDCl3) δ 8.72 (d, J = 8.4 Hz, 2H), 8.43 (d, J = 8.0 Hz, 2H),
8.01 (d, J = 8.8 Hz,2H), 7.65–7.58 (m, 2H), 6.89 (d, J = 8.4 Hz, 2H),
4.06 (t, J = 5.6 Hz, 2H), 3.72 (t, J = 6.2 Hz, 2H), 2.23–2.17 (m, 2H);
13C NMR (100 MHz, CDCl3) δ 159.2, 149.0, 127.7, 127.3, 127.0, 125.0,
123.7, 123.2, 121.8, 114.8, 67.2, 32.6, 29.8.

2.2.2.3. 2-(4-(4-bromobutoxy)phenyl)-1H-phenanthro[9,10-d]imidazole
(6). The compound was obtained with a yield of 58%. 1H NMR
(400 MHz, DMSO) δ 13.31 (s, 1H), 8.85 (d, J = 8.4 Hz, 2H), 8.54 (d,
J = 8.0 Hz, 2H), 8.24 (d, J = 8.8 Hz, 2H), 7.72 (t, J = 7.4 Hz, 2H),
7.63 (t, J = 7.4 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 4.12 (t, J = 6.2 Hz,
2H), 3.64 (t, J = 6.6 Hz, 2H), 2.05–1.95 (m, 2H), 1.89–1.82 (m, 2H);
13C NMR (100 MHz, DMSO) δ 159.5, 149.2, 127.7, 127.4, 127.0,
125.0, 123.8, 122.9, 121.8, 114.8, 66.8, 34.7, 29.1, 27.4.

2.2.3. General procedure for the preparation of 7a–9f
To a stirred suspension of compound 4 or 5 or 6 (1 mmol) and an-

hydrous K2CO3 (2 mmol) in dry acetonitrile (50 mL) was added ex-
cess alkylamine (3 mmol), and the resulting mixture was heated
under reflux for 6 h until the starting material disappeared. The
K2CO3 was removed through filtration, and the remaining solution
was concentrated under reduced pressure. The crude product was
purified by using gel chromatography with CH2Cl2/MeOH (30:1 to
10:1) as elution solvents to give the desired products.

2.2.3.1. 2-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)-N,N-
diethylethanamine (7a). Compound 4 was treated with diethylamine
following the general procedure to give the desired product 7a as a
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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Scheme 1. The organic synthesis of target compounds 7a–9f. Reagents and conditions: (a) 1,2-dibromoethane or 1,3-dibromopropane, or 1,4-dibromobutane, K2CO3, acetone, reflux 6 h;
(b) phenanthrene-9,10-dione, NH4OAc, AcOH, 120 °C, 3 h; (c) RNH, K2CO3, acetonitrile, reflux, 5–6 h.
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white solid with a yield of 62%, with purity of 98% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.30 (s, 1H), 8.87 (d, J = 8.4 Hz,
1H), 8.84 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 7.8 Hz, 1H), 8.58 (d, J =
8.0 Hz, 1H), 7.77–7.70 (m, 2H), 7.65–7.58 (m, 2H), 4.17 (t, J = 5.6 Hz,
2H), 2.92 (t, J = 5.6 Hz, 2H), 2.76–2.57 (m, 4H), 1.04 (t, J = 7.0 Hz,
6H); 13C NMR (100 MHz, DMSO) δ 159.3, 149.3, 136.9, 127.7, 127.4,
127.0, 125.0, 124.9 124.0, 123.6, 123.1, 122.4, 121.9, 114.8, 66.0, 51.1,
47.0, 11.4. ESI-HRMS m/z: calcd for C27H27N3O [M + H]+ 410.2227,
found 410.2245.

2.2.3.2. 2-(4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-1H-phenanthro[9,10-d]
imidazole (7b). Compound 4 was treated with pyrrolidine following
the general procedure to give the desired product 7b as a light grey
solid with a yield of 47%, with purity of 98% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.37 (s, 1H), 8.88–8.83 (m, 2H),
8.59 (d, J = 7.2 Hz, 2H), 8.30–8.28 (m, 2H), 7.76 (d, J = 7.2 Hz, 1H),
7.72 (d, J = 9.0 Hz, 1H), 7.63 (t, J = 7.4 Hz, 2H), 7.20–7.18 (m, 2H),
4.23 (t, J = 5.2 Hz, 2H), 3.01 (t, J = 5.2 Hz, 2H), 3.81–2.68 (m, 4H),
1.82–1.73 (m, 4H); 13C NMR (100 MHz, DMSO) δ 159.2, 149.2, 136.8,
127.7, 127.4, 127.0, 125.0, 124.0 123.7, 123.2, 122.4, 121.9, 114.8, 66.2,
U

Scheme 2. The organic synthesis of target compounds 7g–

Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
54.0, 23.0. ESI-HRMS m/z: calcd for C27H25N3O [M + H]+ 408.2070,
found 408.2072.

2.2.3.3. 2-(4-(2-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)ethyl)
piperazin-1-yl)ethanol (7c). Compound 4 was treated with N-(2-
hydroxyethyl)piperazine following the general procedure to give the
desired product 7c as a white solid with a yield of 28%, with purity of
95% determined by using HPLC. 1H NMR (400 MHz, MeOD) δ 8.66
(d, J = 8.4 Hz, 2H), 8.41 (d, J = 7.6 Hz, 2H), 8.03 (d, J = 8.8 Hz,
2H), 7.57 (t, J = 7.2 Hz, 2H), 7.50 (t, J = 7.0 Hz, 2H), 6.98 (d, J =
8.8 Hz, 2H), 4.07 (t, J = 5.2 Hz, 2H), 3.69 (t, J = 5.4 Hz, 2H), 3.02–2.90
(m, 4H), 2.89–2.80 (m, 4H), 2.80–2.68 (m, 4H); 13C NMR (100 MHz,
MeOD) δ 161.1, 151.4, 129.6, 129.3, 128.1 126.4, 125.9 124.8, 124.2,
123.0, 116.0, 66.4, 60.1, 57.8, 57.4 53.3, 52.3. ESI-HRMS m/z: calcd for
C29H30N4O2 [M + H]+ 467.2442, found 467.2451.

2.2.3.4. 2-(4-(2-(4-methylpiperazin-1-yl)ethoxy)phenyl)-1H-phenanthro
[9,10-d]imidazole (7d). Compound 4was treated with N-methyl pipera-
zine following the general procedure to give the desired product 7d as a
white solid with a yield of 45%, with purity of 95% determined by using
9g. Reagents and conditions: (a) pyridine, 80 °C, 8 h.

phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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Scheme3. The organic synthesis of target compounds 19a–20e. Reagents and conditions: (a) propargyl bromide, K2CO3, acetone, reflux6 h; (b) phenanthrene-9,10-dione, NH4OAc, AcOH,
120 °C, 3 h; (c) chloroacetyl chloride or 3-chloropropionyl chloride, THF, K2CO3, 0 °C to 50 °C, 16 h; (d) CH3OH, THF, 0 °C to rt, 16 h; (e) NH4CO2, Pb/C, DMF, rt, 4 h; (f) conc. HCl, t-BuONO,
NaN3, H2O; (g) sodium ascorbate, CuSO4∙5H2O, t-BuOH, H2O.
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CHPLC. 1H NMR (400 MHz, DMSO) δ 13.28 (s, 1H), 8.88 (d, J = 8.4 Hz,

1H), 8.84 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.54 (d, J =
8.0 Hz, 1H), 8.25 (d, J = 8.8 Hz, 2H), 7.76–7.70 (m, 2H), 7.63 (t, J =
6.4 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 4.18 (t, J = 5.8 Hz, 2H), 2.74 (t,
J = 5.8 Hz, 2H), 2.52–2.49 (m, 4H), 2.43–2.38 (m, 4H), 2.19 (s, 3H);
13C NMR (100 MHz, DMSO) δ 159.4, 149.3, 127.6, 127.4, 127.0,
125.0, 124.0, 123.6, 123.0, 121.8, 114.8, 65.7, 56.5, 54.6, 52.8, 45.5.
U
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Scheme 4. The organic synthesis of target compounds 22a–22f. Reagents and co

Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
ESI-HRMS m/z: calcd for C28H28N4O [M + H]+ 437.2336, found
437.2352.

2.2.3.5. 2-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-1H-phenanthro[9,10-d]
imidazole (7e). Compound 4 was treated with piperidine following the
general procedure to give the desired product 7e as a white solid with
a yield of 73%, with purity of 99% determined by using HPLC. 1H NMR
nditions: (a) NaN3, H2O; (b) sodium ascorbate, CuSO4∙5H2O, t-BuOH, H2O.

phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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(400 MHz, DMSO) δ 13.34 (s, 1H), 8.84 (t, J = 9.4, 2H), 8.63 (d, J =
7.2 Hz, 1H), 8.58 (d, J = 7.6 Hz, 1H), 8.29 (d, J = 8.0 Hz, 2H), 7.75
(d, J = 6.8 Hz, 2H), 7.63 (t, J = 6.8 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H),
4.16 (t, J = 5.8 Hz, 2H), 2.73 (t, J = 5.4 Hz, 2H), 2.53–2.42 (m, 4H),
1.57–1.46 (m, 4H), 1.42–1.33 (m, 2H); 13C NMR (100 MHz, DMSO)
δ 159.4, 149.3, 136.9, 127.7, 127.4, 127.0, 125.0, 124.9, 124.0, 123.6,
123., 122.4, 121.8, 114.8, 65.5, 57.2, 54.3, 25.4, 23.7. ESI-HRMS m/z:
calcd for C28H28N3O [M + H]+ 422.2227, found 422.2228.

2.2.3.6. 4-(2-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)ethyl)
morpholine (7f). Compound 4 was treated with morpholine following
the general procedure to give the desired product 7f as an off white
solid with a yield of 65%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.29 (s, 1H), 8.88–8.83 (m, 2H),
8.58 (d, J = 8.0 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 2.8 Hz,
1H), 8.28 (d, J = 2.4 Hz, 1H), 7.77–7.70 (m, 2H), 7.63 (t, J = 6.8 Hz,
2H), 7.19 (d, J = 2.4 Hz, 2H), 7.17 (d, J = 2.0 Hz, 2H), 4.20 (t, J =
6.0 Hz, 2H), 3.66–3.56 (m, 4H), 2.75 (t, J = 5.8 Hz, 2H), 2.53–2.49 (m,
4H); 13C NMR (100 MHz, DMSO) δ 159.4, 149.2, 127.7, 127.4, 127.0,
125.0, 124.0, 123.7, 123.0, 121.8, 114.9, 66.1, 65.5, 57.0, 53.6. ESI-
HRMS m/z: calcd for C27H25N3O2 [M + H]+ 424.2020, found 424.2035.

2.2.3.7. 3-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)-N,N-
diethylpropan-1-amine (8a). Compound 5 was treated with di-
ethylamine following the general procedure to give the desired
product 8a as a white solid with a yield of 38%, with purity of 99%
determined by using HPLC. 1H NMR (400 MHz, DMSO) δ 9.07 (s, 1H),
8.87 (d, J = 7.6 Hz, 2H), 8.57 (d, J = 7.6 Hz, 2H), 8.29 (d, J = 6.4 Hz,
2H), 7.75 (t, J = 7.0 Hz, 2H), 7.65 (t, J = 7.0 Hz, 2H), 7.21 (d, J =
6.4 Hz, 2H), 4.21 (t, J = 5.8 Hz, 2H), 3.35 (t, J = 5.6 Hz, 2H), 3.23–3.18
(m, 4H), 2.22–2.09 (m, 2H), 1.24 (t, J = 7.0 Hz, 6H); 13C NMR
(100 MHz, DMSO) δ 159.2, 149.0, 127.9, 127.5, 127.1, 125.2, 123.9,
122.8, 121.8, 114.9, 64.9, 48.1, 46.6, 23.3, 8.6. ESI-HRMS m/z: calcd for
C28H29N3O [M+ H]+ 424.2383, found 424.2396.

2.2.3.8. 2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl)-1H-phenanthro[9,10-
d]imidazole (8b). Compound 5 was treated with pyrrolidine following
the general procedure to give the desired product 8b as a light grey
solid with a yield of 32%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.35 (s, 1H), 8.87 (d, J =
8.4 Hz, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 7.6 Hz, 2H), 8.28
(d, J = 8.4 Hz, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 7.6 Hz,
1H), 7.63 (t, J = 6.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 4.16 (t, J =
5.8 Hz, 2H), 3.01–2.91 (m, 4H), 2.11–2.03 (m, 2H), 1.90–1.78 (m, 4H);
13C NMR (100 MHz, DMSO) δ 159.3, 149.2, 136.8, 127.7, 127.4, 127.0,
125.0, 124.9, 124.0, 1237, 123.1, 122.4, 122.0, 121.8, 99.5, 65.4, 53.3,
51.7, 26.5, 22.8. ESI-HRMS m/z: calcd for C28H27N3O [M + H]+

422.2227, found 422.2227.

2.2.3.9. 2-(4-(3-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
propyl)piperazin-1-yl)ethanol (8c). Compound 5 was treated with
N-(2-hydroxyethyl)piperazine following the general procedure to
give the desired product 8c as a white solid with a yield of 59%,
with purity of 99% determined by using HPLC. 1H NMR (400 MHz,
MeOD) δ 8.64 (d, J = 8.4 Hz, 2H), 8.40 (d, J = 7.6 Hz, 2H), 7.99 (d,
J = 8.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H),
6.90 (d, J = 8.8 Hz, 2H), 3.87 (t, J = 5.8 Hz, 2H), 3.59 (t, J = 5.8 Hz,
2H), 2.59–2.46 (m, 12H), 1.85–1.79 (m, 2H); 13C NMR (100 MHz,
MeOD) δ 161.6, 151.6, 129.6, 129.3, 128.1, 126.4, 124.8, 124.0, 122.9,
115.9, 67.1, 60.8, 59.2, 55.9, 53.7, 53.2, 27.2. ESI-HRMS m/z: calcd for
C30H32N4O2 [M + H]+ 481.2598, found 481.2597.

2.2.3.10. 2-(4-(3-(4-methylpiperazin-1-yl)propoxy)phenyl)-1H-
phenanthro[9,10-d]imidazole (8d). Compound 5 was treated with N-
methyl piperazine following the general procedure to give the de-
sired product 8d as a white solid with a yield of 41%, with purity of
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treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
E
D
 P

R
O

O
F

99% determined by using HPLC. 1H NMR (400 MHz, DMSO) δ 13.30
(s, 1H), 8.85 (s, 2H), 8.59–8.54 (m, 2H), 8.25 (d, J = 6.8 Hz, 2H),
7.73 (d, J = 6.4 Hz, 2H), 7.63 (t, J = 7.2 Hz, 2H), 7.15 (d, J = 6.8 Hz,
2H), 4.10 (t, J = 5.4 Hz, 2H), 2.45 (t, J = 6.2 Hz, 2H), 2.39–2.34 (m,
8H), 2.16 (s, 3H), 1.94–1.89 (m, 2H); 13C NMR (100 MHz, DMSO) δ
159.5, 149.3, 127.7, 127.4, 127.0, 125.0, 123.9, 122.9, 121.8, 114.8,
66.0, 54.7, 54.3, 52.7, 45.7, 26.2. ESI-HRMS m/z: calcd for
C29H30N4O [M + H]+ 451.2492, found 451.2503.

2.2.3.11. 2-(4-(3-(piperidin-1-yl)propoxy)phenyl)-1H-phenanthro[9,10-
d]imidazole (8e). Compound 5 was treated with piperidine following
the general procedure to give the desired product 8e as a white
solid with a yield of 33%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.31 (s, 1H), 8.85 (d, J =
8.0 Hz, 2H), 8.56 (d, J = 7.6 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H), 7.73
(t, J = 7.4 Hz, 2H), 7.65–7.61 (m, 2H), 7.15 (d, J = 8.8 Hz, 2H), 4.10
(t, J = 6.4 Hz, 2H), 2.46 (t, J = 7.2 Hz, 2H), 2.42–2.35 (m, 4H), 1.91
(s, 2H), 1.56–1.48 (m, 4H), 1.43–1.36 (m, 2H); 13C NMR (100 MHz,
DMSO) δ 172.3, 159.5, 149.3, 127.7, 127.4, 126.9, 124.9, 123.8,
123.0, 121.9, 114.7, 66.0, 54.9, 53.8, 25.9, 25.2, 23.8, 21.3. ESI-HRMS
m/z: calcd for C29H30N3O [M + H]+ 436.2383, found 436.2384.

2.2.3.12. 4-(3-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)propyl)
morpholine (8f). Compound 5 was treated with morpholine following
the general procedure to give the desired product 8f as an off white
solid with a yield of 52%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.28 (s, 1H), 8.87 (d, J = 8.4 Hz,
1H), 8.84 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 7.6 Hz, 1H), 8.54 (d, J =
7.6 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H), 7.77–7.70 (m, 2H), 7.63 (m, 2H),
7.16 (d, J = 8.4 Hz, 2H), 4.12 (t, J = 6.4 Hz, 2H), 3.59 (t, J = 4.4 Hz,
2H), 2.46 (t, J = 7.0 Hz, 2H), 2.42–2.33 (m, 2H), 1.96–1.89 (m, 2H);
13C NMR (100 MHz, DMSO) δ 159.5, 149.3, 136.9, 127.7, 127.4, 127.3,
127.0, 125.0, 124.9, 124.0, 123.7, 122.9, 122.4, 121.8, 114.8, 66.1, 66.0,
54.8, 53.3, 25.8. ESI-HRMS m/z: calcd for C28H27N3O2 [M + H]+

438.2176, found 438.2192.

2.2.3.13. 4-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)-N,N-
diethylbutan-1-amine (9a). Compound 6was treated with diethylamine
following the general procedure to give the desired product 9a as a
white solid with a yield of 45%, with purity of 99% determined by
using HPLC. 1H NMR (400 MHz, DMSO) δ 13.38 (s, 1H), 8.92–8.87 (m,
2H), 8.62 (d, J = 6.8 Hz, 2H), 8.31 (d, J = 7.6 Hz, 2H), 7.81–7.75 (m,
2H), 7.69–7.66 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.15 (t, J = 6.0 Hz,
2H), 2.67 (m, 6H), 1.86–1.80 (m, 2H), 1.71–1.64 (m, 2H), 1.07 (t, J =
6.8 Hz, 6H); 13C NMR (100 MHz, DMSO) δ 159.4, 149.3, 136.8, 129.3,
127.8, 127.4, 127.0, 125.0, 123.9, 123.7, 123.1, 122.5, 122.1, 121.9,
118.7, 115.2, 114.8, 67.0, 53.8, 53.1, 25.9, 22.6, 22.5. ESI-HRMS m/z:
calcd for C29H31ON3 [M+ H]+ 438.2540, found 438.2543.

2.2.3.14. 2-(4-(4-(pyrrolidin-1-yl)butoxy)phenyl)-1H-phenanthro[9,10-
d]imidazole (9b). Compound 6 was treated with pyrrolidine following
the general procedure to give the desired product 9b as a light grey
solid with a yield of 38%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.38 (s, 1H), 8.92–8.87 (m, 2H),
8.62 (d, J = 6.4 Hz, 2H), 8.31 (d, J = 7.6 Hz, 2H), 7.81–7.74 (m, 2H),
7.71–7.63 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.15 (t, J = 6.0 Hz, 2H),
2.72–2.60 (m, 6H), 1.85–1.80 (m, 2H), 1.71–1.64 (m, 2H), 1.07 (t, J =
6.8 Hz, 6H); 13C NMR (100 MHz, DMSO) δ 159.5, 149.3, 136.8, 127.7,
127.4, 126.9, 124.9, 123.9, 123.7, 122.9, 121.9, 114.8, 67.5, 51.5, 46.2,
26.4, 22.4, 10.9. ESI-HRMS m/z: calcd for C29H30ON3 [M + H]+

436.2383, found 436.2385.

2.2.3.15. 2-(4-(4-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
butyl)piperazin-1-yl)ethanol (9c). Compound 6 was treated with N-
(2-hydroxyethyl)piperazine following the general procedure to
give the desired product 9c as a white solid with a yield of 75%,
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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with purity of 99% determined by using HPLC. 1H NMR (400 MHz,
DMSO) δ 13.34 (s, 1H), 8.87–8.82 (m, 2H), 8.59 (d, J = 6.8 Hz, 2H),
8.27 (d, J = 8.0 Hz, 2H), 7.74–7.70 (m, 2H), 7.63 (d, J = 6.8 Hz, 2H),
7.15 (d, J = 8.0 Hz, 2H), 4.59 (s, 1H), 4.10 (t, J = 5.4 Hz, 2H), 3.55
(t, J = 5.8 Hz, 2H), 3.36 (t, J = 5.8 Hz, 2H), 2.78–2.54 (m, 10H),
1.86–1.73 (m, 2H), 1.72–1.55 (m, 2H); 13C NMR (100 MHz, DMSO)
δ 159.5, 149.3, 136.8, 127.8, 127.4, 126.9, 125.0, 124.0, 123.6, 122.9,
122.5, 122.1, 121.8, 114.8, 67.4, 59.5, 57.7, 56.8, 52.2, 51.6, 26.4,
22.2. ESI-HRMS m/z: calcd for C31H35O2N4[M + H]+ 495.2755,
found 495.2759.

2.2.3.16. 2-(4-(4-(4-methylpiperazin-1-yl)butoxy)phenyl)-1H-
phenanthro[9,10-d]imidazole (9d). Compound 6 was treated with N-
methyl piperazine following the general procedure to give the de-
sired product 9d as a white solid with a yield of 37%, with purity of
99% determined by using HPLC. 1H NMR (400 MHz, DMSO) δ 13.30
(s, 1H), 8.45 (t, J = 10.0, 2H), 8.58 (t, J = 8.2 Hz, 2H), 8.26 (d, J =
8.4 Hz, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.62
(t, J = 7.0 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 4.08 (t, J = 6.2 Hz, 2H),
2.50 (t, J = 5.8 Hz, 2H), 2.48–2.36 (m, 8H), 2.25 (s, 3H), 1.81–1.73
(m, 2H), 1.64–1.56 (m, 2H); 13C NMR (100 MHz, DMSO) δ 159.5,
149.3, 136.9, 127.7, 127.4, 126.9, 125.0, 124.0, 123.6, 122.9, 122.4,
121.9, 114.7, 67.4, 57.0, 54.2, 52.0, 45.1, 26.5, 22.5. ESI-HRMS m/z:
calcd for C30H33ON4[M + H]+ 465.2649, found 465.2653.

2.2.3.17. 2-(4-(4-(piperidin-1-yl)butoxy)phenyl)-1H-phenanthro[9,10-d]
imidazole (9e). Compound 6 was treated with piperidine following the
general procedure to give the desired product 9e as a white solid with
a yield of 23%, with purity of 99% determined by using HPLC. 1H NMR
(400 MHz, DMSO) δ 13.36 (s, 1H), 8.87 (d, J = 8.8 Hz, 1H), 8.84 (d,
J = 8.8 Hz, 1H), 8.58 (d, J = 7.6 Hz, 2H), 8.27 (d, J = 8.8 Hz, 2H), 7.75
(d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 6.8 Hz, 2H),
7.15 (d, J = 8.4 Hz, 2H), 4.09 (t, J = 6.2 Hz, 2H), 3.35 (m, 2H), 2.48–
2.33 (m, 4H), 1.80–1.73 (m, 2H), 1.68–1.61 (m, 2H), 1.59–1.50 (m,
4H), 1.44–1.37 (m, 2H); 13C NMR (100 MHz, DMSO) δ 159.5, 149.3,
136.8, 127.7, 127.4, 126.9, 124.9, 123.9, 123.6, 122.9, 122.5, 122.0,
121.8, 114.7, 99.5, 67.4, 57.6, 53.5, 48.6, 26.5, 24.9, 23.6, 22.2. ESI-
HRMS m/z: calcd for C30H32ON3 [M+ H]+ 450.2540, found 450.2540.

2.2.3.18. 4-(4-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)butyl)
morpholine (9f). Compound 6 was treated with morpholine following
the general procedure to give the desired product 9f as an off white
solid with a yield of 74%, with purity of 99% determined by using
HPLC. 1H NMR (400 MHz, DMSO) δ 13.27 (s, 1H), 8.85 (d, J =
8.4 Hz, 2H), 8.56 (d, J = 7.6 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H), 7.73
(t, J = 7.4 Hz, 2H), 7.62 (t, J = 7.0 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H),
4.09 (t, J = 6.4 Hz, 2H), 3.57 (t, J = 4.6 Hz, 4H), 2.37–2.31 (m, 8H),
1.81–1.74 (m, 2H), 1.63–1.56 (m, 2H); 13C NMR (100 MHz, DMSO)
δ 159.6, 149.3, 127.7, 127.4, 126.9, 124.9, 123.8, 122.9, 121.8, 114.8,
67.5, 66.2, 57.7, 53.3, 26.5, 22.3. ESI-HRMS m/z: calcd for C29H30O2N3

[M+ H]+ 452.2333, found 452.2336.

2.2.4. General procedure for the preparation of 7g, 8g, and 9g
A solution of 4 or 5 or 6 (0.5 mmol) in pyridine (5 mL) was heated

for 8 h at 80 °C. 5 mL of ether was added to cooled reaction mixture
and the pale yellow precipitate was collected by filtration. The precipi-
tate was washed with ether three times and dried under vacuum to
give 7g, 8g, or 9g.

2.2.4.1. 1-(2-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)ethyl)
pyridin-1-ium bromide (7g). Compound 4was treated with pyridine fol-
lowing the general procedure to give the desired product 7g as a yellow
solid with a yield of 85%, with purity of 96% determined by using HPLC.
1H NMR (400MHz, DMSO) δ 13.36 (s, 1H), 9.22 (d, J=6.4 Hz, 2H), 8.86
(s, 2H), 8.69 (t, J = 7.2 Hz, 2H), 8.57 (d, J = 7.6 Hz, 2H), 8.31–8.21 (m,
4H), 7.77–7.70 (m, 2H), 7.63 (t, J = 7.2 Hz, 2H), 7.18 (d, J = 2.0 Hz,
Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
E
D
 P

R
O

O
F

1H), 7.15 (d, J = 2.0 Hz, 1H), 5.13 (t, J = 6.4 Hz, 2H), 4.66 (t, J =
6.4 Hz, 2H); 13C NMR (100 MHz, DMSO) δ 158.3, 149.0, 146.1, 145.5,
127.8, 127.5, 127.0, 1251, 123.9, 121.9, 115.0, 66.2, 59.9. ESI-HRMS
m/z: calcd for C28H21N3O [M–Br + H]+ 416.1757, found 416.1772.

2.2.4.2. 1-(3-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)propyl)
pyridin-1-ium bromide (8g). Compound 5was treated with pyridine fol-
lowing the general procedure to give the desired product 8g as a yellow
solid with a yield of 76%, with purity of 98% determined by using HPLC.
1H NMR (400 MHz, DMSO) δ 13.37 (s, 1H), 9.21 (s, 2H), 8.86 (d, J =
6.4 Hz, 2H), 8.68–8.64 (m, 1H), 8.60 (d, J = 6.4 Hz, 2H), 8.28 (d, J =
7.2 Hz, 2H), 8.23–8.14 (m, 2H), 7.79–7.69 (m, 2H), 7.68–7.57 (m, 2H),
7.02 (d, J = 7.6 Hz, 2H), 4.88 (t, J = 6.4 Hz, 2H), 4.23 (t, J = 6.4 Hz,
2H); 13C NMR (100 MHz, DMSO) δ 158.8, 149.2, 145.6, 145.0, 127.9,
127.4, 127.0, 125.0, 123.8, 123.2, 122.0, 114.7, 65.0, 58.8, 29.9. ESI-
HRMS m/z: calcd for C29H23N3O [M–Br + H]+ 430.1914, found
430.1917.

2.2.4.3. 1-(2-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)ethyl)
pyridin-1-ium bromide (9g). Compound 6was treatedwith pyridine fol-
lowing the general procedure to give the desired product 9g as a yellow
solid with a yield of 82%, with purity of 99% determined by using HPLC.
1H NMR (400MHz, DMSO) δ 13.31 (s, 1H), 9.18 (d, J=5.6 Hz, 2H), 8.85
(s, 2H), 8.66–8.57 (m, 4H), 8.28 (d, J = 8.8 Hz, 2H), 8.20 (t, J = 6.6 Hz,
2H), 7.73 (s, 2H), 7.63 (t, J = 7.2 Hz, 2H),7.38 (t, J = 6.4 Hz, 1H), 7.16
(d, J = 8.4 Hz, 2H), 4.75 (t, J = 7.2 Hz, 2H), 4.14 (t, J = 5.8 Hz, 2H),
2.20–2.10 (m, 2H), 1.88–1.78 (m, 2H); 13C NMR (100 MHz, DMSO) δ
159.8, 150.0, 149.7, 146.0, 145.2, 136.6, 128.6, 128.2, 127.9, 127.5,
125.5, 124.3, 123.6, 122.4, 115.3, 67.4, 60.9, 28.2, 25.7. ESI-HRMS m/z:
calcd for C30H26N3O [M–Br + H]+ 444.2070, found 444.2071.

2.2.5. General procedure for the preparation of 4-(prop-2-yn-1-yloxy)
benzaldehyde (10)

To a solution of 4-hydroxybenzaldehyde (10 mmol, 1.22 g) and an-
hydrous K2CO3 (15 mmol, 2.57 g) in 100 mL dry acetone was added
propargyl bromide (30 mmol, 3.57 g). The resultingmixturewasheated
under reflux for 6 h until the startingmaterial disappeared, and then the
remaining solution was filtered and washed with acetone for three
times. After concentration, the desired product 10was obtained as a yel-
low solid with nearly 100% yield.

2.2.6. General procedure for the preparation of 2-(4-(prop-2-yn-1-yloxy)
phenyl)-1H-phenanthro[9,10-d]imidazole (11)

The synthesis of 11 was carried out following the procedure for
the synthesis of 4, 5, and 6. The desired product 11 was obtained as
a gray solid with 53% yield. 1H NMR (400 MHz, DMSO) δ 13.32 (s,
1H), 8.86 (s, 2H), 8.57 (s, 2H), 8.28 (s, 2H), 7.74 (s, 2H), 7.64 (s, 1H),
7.24 (s, 2H), 4.93 (s, 2H), 3.64 (s, 1H); 13C NMR (100 MHz, DMSO) δ
158.0, 149.1, 136.9, 135.4, 129.2, 129.1, 127.6, 127.4, 127.0, 125.0,
123.7, 121.8, 115.2, 79.0, 78.4, 55.6.

2.2.7. General procedures for the preparation of 12a–12b, 13a–13d, 14a–
14e, 15a–15d, 16a–16e, 17a–17d, and 18a–18e

The syntheses of 12a–12b, 13a–13d, 14a–14e, 15a–15d, 16a–16e,
17a–17d, and 18a–18ewere carried out following procedures reported
previously. All these compounds were prepared and identified by using
LC-MS.

2.2.8. General procedures for the preparation of 19a–19d, 20a–20e
To a solution of azide (17a–18e, 0.4 mmol, 2 equiv.) dissolved in

t-BuOH (2.5mL) and distilledwater (2.5mL)was added the intermedi-
ate 11 (0.2 mmol, 1 equiv.), sodium ascorbate (19 mg, 0.10 mmol, 0.5
equiv.) and CuSO4∙5H2O (2 mg, 10 μmol, 5 mol%), and the mixture
was heated at 140 °C for 5 h. The reaction was cooled and diluted
with distilled water. The crude product was isolated by filtration,
washed with ice cold distilled water (2 mL), ether (2 × 2 mL), and
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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waspurifiedwith gel chromatography to give desired product 19a–19d,
20a–20e.

2.2.8.1. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-3-(pyrrolidin-1-yl)propanamide
(19a). It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400MHz, DMSO) δ 13.33 (s, 1H), 10.36 (s, 1H), 8.92 (s, 1H), 8.87
(d, J=8.4 Hz, 1H), 8.84 (d, J=8.4 Hz, 1H), 8.59 (d, J=7.6 Hz, 1H), 8.59
(d, J=8.0 Hz, 1H), 8.29 (d, J=8.8 Hz, 2H), 7.87 (d, J=9.2 Hz, 2H), 7.81
(d, J = 9.2 Hz, 2H), 7.77–7.70 (m, 2H), 7.66–7.61 (m, 2H), 7.33 (d, J =
8.8 Hz, 2H), 5.36 (s, 2H), 3.39–3.26 (m, 2H), 2.78 (t, J = 6.8 Hz, 2H),
2.57–2.54 (m, 2H), 2.52–2.50 (m, 2H), 1.73–1.68 (m, 4H); 13C NMR
(100 MHz, DMSO) δ 170.3, 158.9, 149.2, 143.5, 139.6, 136.9, 131.5,
127.7, 127.4, 127.0, 125.1, 125.0, 124.0, 123.7, 123.5, 122.7, 122.4,
121.8, 120.8, 119.7, 115.1, 61.2, 53.4, 51.3, 35.9, 23.1. ESI-HRMS m/z:
calcd for C37H33N7O2 [M+ H]+ 608.2768, found 608.2773.

2.2.8.2. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-3-(diethylamino)propanamide
(19b). It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400MHz, DMSO) δ 13.37 (s, 1H), 10.45 (s, 1H), 8.93 (s, 1H), 8.87
(d, J=8.4 Hz, 1H), 8.84 (d, J=8.4 Hz, 1H), 8.57 (t, J=8.4 Hz, 2H), 8.30
(d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H),
7.77–7.70 (m, 2H), 7.66–7.61 (m, 2H), 7.32 (d, J = 8.4 Hz, 2H), 5.36
(s, 2H), 2.92 (t, J = 8.4 Hz, 2H), 2.73–2.64 (m, 4H), 2.58 (t, J =
8.4 Hz, 2H), 1.05 (t, J = 5.8 Hz, 6H); 13C NMR (100 MHz, DMSO) δ
170.2, 158.8, 149.2, 143.5, 139.5, 136.8, 131.6, 127.8, 127.4, 127.0,
126.9, 125.1, 124.9, 124.0, 123.7, 123.5, 122.8, 122.4, 121.9, 121.8,
120.8, 119.7, 115.1, 61.2, 47.9, 46.2, 33.3, 11.0. ESI-HRMS m/z: calcd
for C37H35N7O2 [M + H]+ 610.2925, found 610.2942.

2.2.8.3. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-3-(piperidin-1-yl)propanamide
(19c). It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400MHz, CDCl3) δ 11.65 (s, 1H), 8.74 (t, J=7.4 Hz, 2H), 8.63 (d, J
= 7.6 Hz, 1H), 8.34 (d, J= 6.8 Hz, 3H), 8.05 (s, 1H), 7.74–7.68 (m, 8H),
7.21 (d, J= 7.4 Hz, 2H), 5.40 (s, 2H), 2.71 (t, J= 8.4 Hz, 2H), 2.57–2.50
(m, 6H), 1.76–1.69 (m, 4H), 1.65–1.57 (m, 2H); 13C NMR (100 MHz,
CDCl3) δ 171.0, 160.5, 144.7, 144.3, 139.7, 135.6, 132.3, 129.2, 129.0
128.9, 127.4, 127.3, 126.3, 126.2, 126.1, 125.3, 123.9, 123.8, 123.4,
123.0, 121.4, 121.2, 121.0, 120.8, 120.2, 115.2, 62.2, 54.2, 53.6, 32.5,
26.3, 24.1. ESI-HRMS m/z: calcd for C38H35N6O3 [M + H]+ 623.2763,
found 623.2768.

2.2.8.4. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-3-(4-(2-hydroxyethyl)piperazin-
1-yl)propanamide (19d). It was obtained with purity of 99% determined
by using HPLC. 1H NMR (400MHz, DMSO) δ 13.33 (s, 1H), 10.36 (s, 1H),
8.91 (s, 2H), 8.87 (d, J=8.4 Hz, 1H), 8.84 (d, J=8.4Hz, 1H), 8.58 (d, J=
7.6 Hz, 1H), 8.54 (d, J=8.0 Hz, 1H), 8.28 (d, J=8.4 Hz, 2H), 7.86 (d, J=
8.8 Hz, 2H), 7.80 (d, J = 8.8 Hz, 2H), 7.77–7.70 (m, 2H), 7.66–7.60 (m,
2H), 7.32 (d, J = 8.4 Hz, 2H), 5.36 (s, 2H), 3.51 (s, 1H), 3.49 (t, J =
8.4 Hz, 2H), 2.65 (t, J = 8.4 Hz, 2H), 2.48–2.37 (m, 10H); 13C NMR
(100 MHz, DMSO) δ 170.5, 158.9, 149.2, 143.5, 139.6, 136.8, 131.5,
129.6, 129.3, 127.7, 127.5, 127.4, 127.0, 126.9, 125.1, 125.0, 124.0,
123.6, 123.4, 122.7, 122.4, 121.8, 120.8, 119.7, 115.1, 69.7, 61.2, 60.0,
58.3, 53.6, 53.0, 52.2, 34.1. ESI-HRMS m/z: calcd for C40H42N8O3 [M
+ H]+ 667.3140, found 667.3140.

2.2.8.5. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-2-(pyrrolidin-1-yl)acetamide
(20a). It was obtained with purity of 96% determined by using HPLC. 1H
NMR (400MHz, DMSO) δ 13.36 (s, 1H), 10.11 (s, 1H), 8.94 (s, 1H), 8.88–
8.83 (m, 2H), 8.60–8.55 (m, 2H), 8.30 (d, J= 8.4 Hz, 2H), 7.88 (m, 4H),
7.77–7.70 (m, 2H), 7.67–7.60 (m, 2H), 7.33 (d, J = 8.4 Hz, 2H), 5.37 (s,
2H), 3.41 (s, 2H), 2.78–2.62 (m, 4H), 1.86–1.70 (m, 4H); 13C NMR
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(100 MHz, DMSO) δ 168.5, 158.9, 149.2, 143.5, 139.0, 136.9, 131.9,
127.8, 127.4, 127.0, 125.0, 124.0, 123.7, 123.6, 122.7, 122.4, 121.9,
120.7, 120.3, 115.1, 61.2, 59.1, 53.7, 23.3. ESI-HRMS m/z: calcd for
C36H31N7O2 [M + H]+ 594.2612, found 594.2625.

2.2.8.6. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-2-(diethylamino)acetamide (20b).
It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400 MHz, DMSO) δ 13.31 (s, 1H), 9.90 (s, 2H), 8.94 (s, 1H),
8.87 (d, J = 8.4 Hz, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.58 (d, J =
7.6 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.4 Hz, 2H), 7.91–
7.85 (m, 4H), 7.78–7.70 (m, 2H), 7.66–7.60 (m, 2H), 7.32 (d, J =
8.4 Hz, 2H), 5.37 (s, 2H), 3.20 (s, 2H), 2.65–2.60 (m, 4H), 1.03 (t, J =
7.0 Hz, 4H); 13C NMR (100 MHz, DMSO) δ 171.2, 159.8, 150.1, 144.5,
139.7, 137.8, 132.8, 128.7, 128.4, 128.3, 127.9, 127.9, 126.0, 125.9,
124.9 124.6, 124.4, 123.7, 123.3, 122.8, 121.6, 121.1, 116.1, 62.1, 58.3,
48.7, 12.8. ESI-HRMS m/z: calcd for C36H34N7O2 [M + H]+ 596.2769,
found 596.2773.

2.2.8.7. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-2-(piperidin-1-yl)acetamide
(20c). It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400 MHz, DMSO) δ 13.31 (s, 1H), 9.93 (s, 1H), 8.93 (s, 1H), 8.58
(d, J = 7.6 Hz, 1H), 8.53 (d, J = 7.6 Hz, 1H), 8.28 (d, J = 8.4 Hz, 2H),
7.88 (s, 4H), 7.77–7.70 (m, 2H), 7.67–7.58 (m, 2H), 7.32 (d, J = 8.4 Hz,
2H), 5.36 (s, 2H), 3.11 (s, 2H), 2.58 (s, 2H), 2.49–2.43 (m, 2H), 1.61–
1.54 (m, 4H), 1.47–1.38 (m, 2H);13C NMR (100 MHz, DMSO) δ 168.9,
158.9, 149.2, 143.6, 138.9, 136.9, 131.8, 127.7, 127.5, 127.4, 127.0,
126.9 125.1, 125.0, 124.0, 123.6, 123.5, 122.7, 122.4, 121.8, 120.7,
120.2, 115.1, 62.6, 61.2, 54.0, 25.3, 23.5. ESI-HRMS m/z: calcd for
C37H34N7O2 [M + H]+ 608.2769, found 608.2773.

2.2.8.8. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-2-morpholinoacetamide (20d). It
was obtained with purity of 98% determined by using HPLC. 1H NMR
(400 MHz, DMSO) δ 13.36 (s, 1H), 10.06 (s, 1H), 8.98 (s, 1H), 8.92
(d, J = 8.4 Hz, 1H), 8.88 (d, J = 8.0 Hz, 1H), 8.63 (d, J = 7.6 Hz,
1H), 8.58 (d, J = 7.6 Hz, 1H), 8.32 (d, J = 8.4 Hz, 2H), 7.92 (s, 4H),
7.82–7.75 (m, 2H), 7.68 (d, J = 3.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H),
5.41 (s, 2H), 3.73–3.67 (m, 4H), 3.22 (s, 2H), 2.62–2.56 (m, 4H); 13C
NMR (100 MHz, DMSO) δ 168.4, 158.9, 149.2, 143.6, 138.9, 137.5,
131.9, 127.7, 127.4, 127.0, 125.1, 125.0, 121, 123.6, 123.5, 122.7, 122.4,
121.8, 120.7, 120.3, 115.1, 66.0, 62.0, 61.2, 53.1. ESI-HRMS m/z: calcd
for C37H32N7O3 [M+ H]+ 610.2561, found 610.2563.

2.2.8.9. N-(4-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)phenyl)-2-(dimethylamino)acetamide
(20e). It was obtained with purity of 99% determined by using HPLC. 1H
NMR (400 MHz, DMSO) δ 13.31 (s, 1H), 10.01 (s, 1H), 8.93 (s, 1H), 8.87
(d, J=8.4 Hz, 1H), 8.84 (d, J=8.4 Hz, 1H), 8.56 (d, J=7.2 Hz, 1H), 8.56
(d, J=7.6Hz, 1H), 8.28 (d, J=8.8Hz, 2H), 7.92–7.85 (m, 4H), 7.75–7.70
(m, 2H), 7.66–7.61(m, 2H), 7.32 (d, J=8.8 Hz, 2H), 5.36 (s, 2H), 3.12
(s, 2H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO) δ 169.0, 158.9,
149.2, 143.5, 139.1, 136.9, 131.8, 127.7, 127.4, 127.0, 125.1, 124.9,
124.0, 123.6, 123.5, 122.7, 122.4, 121.8, 120.6, 120.3, 115.1, 63.2, 61.2,
45.3. ESI-HRMS m/z: calcd for C34H29N7O2 [M + H]+ 568.2455, found
568.2469.

2.2.9. General procedure for the preparation of 21a–21f
The syntheses of 21a–21fwere carried out following procedures re-

ported previously with minor modification [35]. To a solution of amine
salt (30.8 mmol) in 30 mL water was added sodium azide (6.0 g,
92.3 mmol, 3 equiv.), and the mixture was stirred at 80 °C for 16 h.
After removing most of the water by rotary evaporation, the reaction
mixture was cooled in an ice bath. Diethyl ether (50 mL) and then
KOH pellets (4.0 g) were added keeping the temperature below 10 °C.
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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After separation of the organic phase, the aqueous layer was further ex-
tracted with diethyl ether (2 × 20 mL). The combined organic layers
were dried over Na2SO4 and concentrated to give oil products 21a–
21f, whichwere used directly for the next step reaction without further
purification.

2.2.10. The syntheses of 22a–22f were carried out following the procedures
for the syntheses of 19a–19d

2.2.10.1. 3-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)propan-1-amine (22a). It was obtained
with purity of 99% determined by using HPLC. 1H NMR (400 MHz,
DMSO) δ 8.95 (s, 2H), 8.49 (d, J = 5.2 Hz 1H), 8.37 (d, J = 4.8 Hz
1H), 8.30 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 2.8 Hz, 2H), 7.82 (d, J =
2.4 Hz, 2H), 7.32 (d, J = 3.2 Hz, 2H), 5.31 (s, 2H), 4.48 (s, 2H), 2.62
(s, 2H), 2.03–1.89 (m, 2H); 13C NMR (100 MHz, DMSO) δ 161.7,
160.5, 143.9, 142.2, 134.7, 128.7, 128.4, 128.4, 127.7, 127.7, 126.7,
126.4, 125.3, 124.7, 124.2, 124.0, 122.2, 120.4, 120.2, 119.4, 115.5,
61.4, 47.1. ESI-HRMS m/z: calcd for C34H29N7O2 [M + H]+ 568.2455,
found 568.2469.

2.2.10.2. 2-(4-((1-(2-(pyrrolidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)
methoxy)phenyl)-1H-phenanthro[9,10-d]imidazole (22b). It was obtain-
ed with purity of 99% determined by using HPLC. 1H NMR (400 MHz,
CDCl3) δ 8.72 (t, J = 8.0 Hz, 2H), 8.60 (d, J = 8.0 Hz, 1H), 8.30 (d, J =
8.8 Hz, 3H), 7.79 (s, 1H), 7.75–7.64 (m, 4H), 7.16 (d, J = 8.8 Hz, 2H),
5.31 (s, 2H), 4.50 (t, J = 6.4 Hz, 2H), 2.97 (t, J = 6.4 Hz, 2H), 2.60–2.49
(m, 4H), 1.80–1.74 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 162.1,
160.5, 144.5, 143.4, 135.5, 129.0, 128.9, 128.8, 127.3, 127.2, 126.2,
126.1 126.0, 123.7 123.4, 123.4, 122.9, 121.1, 120.7, 120.6, 115.2, 62.2,
55.4, 54.0, 49.5, 23.6. ESI-HRMS m/z: calcd for C30H28N5O2 [M + H]+

490.2238, found 490.2242.

2.2.10.3. 4-(2-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)ethyl)morpholine (22c). It was obtained
with purity of 96% determined by using HPLC. 1H NMR (400 MHz,
CDCl3) δ 8.74 (t, J = 8.2 Hz, 2H), 8.61 (d, J = 7.6 Hz, 1H), 8.32 (d, J =
8.4 Hz, 3H), 7.79 (s, 1H), 7.76–7.65 (m, 4H), 7.17 (d, J = 8.4 Hz, 2H),
5.34 (s, 2H), 4.49 (t, J = 6.0 Hz, 2H), 3.68 (t, J = 7.8, 4H), 2.84 (t, J =
5.6 Hz, 2H), 2.49 (t, J = 4.4 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ
162., 160.4, 144.6, 143.6, 135.6, 129.1, 128.9, 127.3, 127.2, 126.2, 126.0,
123.7, 123., 122.9, 121.1, 120.8, 120.7, 115.2, 66.8, 62.2, 57.8, 53.5,
47.5. ESI-HRMS m/z: calcd for C30H28N5O3 [M + H]+ 506.2187, found
506.2190.

2.2.10.4. 2-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)-N,N-diethylethanamine (22d). It was
obtained with purity of 98% determined by using HPLC. 1H NMR
(400 MHz, CDCl3) δ 8.73 (t, J = 8.2 Hz, 2H), 8.61 (d, J = 7.6 Hz, 1H),
8.30 (d, J = 8.8 Hz, 3H), 7.79 (s, 1H), 7.80–7.64 (m, 4H), 7.16 (d, J =
8.4 Hz, 2H), 5.32 (s, 2H), 4.42 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz,
2H), 2.54 (m, 4H), 0.96 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3)
δ 162.2, 160.5, 144.6, 143.3, 135.6, 129.1, 128.9, 128.9, 127.3, 127.2,
126.2, 126.1, 126.0, 123.7, 123.7, 123.4 122.9, 121.1, 120.8, 120.7,
115.2, 62.2, 53.0, 49.2, 47.4 11.9. ESI-HRMS m/z: calcd for C30H30N5O2

[M+ H]+ 492.2394, found 492.2393.

2.2.10.5. 2-(4-((1-(2-(piperidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)
methoxy)phenyl)-1H-phenanthro[9,10-d]imidazole (22e). It was obtain-
ed with purity of 98% determined by using HPLC. 1H NMR (400 MHz,
CDCl3) δ 8.73 (t, J = 8.0 Hz, 2H), 8.61 (d, J = 7.6 Hz, 1H), 8.31 (d, J =
8.4 Hz, 3H), 7.82 (s, 1H), 7.75–7.64 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H),
5.32 (s, 2H), 4.47 (t, J = 6.2 Hz, 2H), 2.77 (t, J = 6.2 Hz, 2H), 2.42
(t, J = 6.2 Hz, 4H), 1.58–1.53 (m, 4H), 1.45–1.39 (m, 2H); 13C NMR
(100 MHz, CDCl3) δ 162.2, 160.5, 144.6, 143.4, 135.5, 129.1, 128.,
128.8, 127.3, 127.2, 126.2, 126.1, 126.0, 123.7, 123.5, 123.4, 122.9,
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121.1, 120.8, 120.7, 115.2, 62.2, 58.2, 54.5, 47.9, 26.0, 24.1. ESI-
HRMS m/z: calcd for C31H30N5O2 [M + H]+ 504.2394, found
504.2392.

2.2.10.6. 3-(4-((4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)-N,N-dimethylpropan-1-amine (22f). It
was obtained with purity of 99% determined by using HPLC. 1H
NMR (400 MHz, CDCl3) δ 8.72 (t, J = 7.4 Hz, 2H), 8.60 (d, J =
7.4 Hz, 1H), 8.30 (d, J = 7.8 Hz, 3H), 7.77–7.63 (m, 5H), 7.15 (d, J =
8.0 Hz, 2H), 5.32 (s, 2H), 4.44 (t, J = 6.0 Hz, 2H), 2.26 (t, J = 6.0 Hz,
2H), 2.21 (s, 6H), 2.11–2.05 (m, 2H); 13C NMR (100 MHz, CDCl3) δ
162.1, 160.5, 144.6, 143.5, 135.6, 129.1, 128.9, 128.8, 127.3, 127.2,
126.2, 126.1, 126.0, 123.7, 123.4, 123.2, 122.9, 121.1, 120.8, 120.7,
115.2, 62.2, 55.7, 48.1, 45.2, 28.0. ESI-HRMS m/z: calcd for C29H28N5O2

[M+ H]+ 478.2238 found 478.2238.

2.3. Thioflavin T (ThT) assay

Aβ1–42 (Sigma-Aldrich, USA) was dissolved in ammonium hy-
droxide (1% v/v) to give a stock solution (1 mM), which was
aliquoted into small samples and stored at −80 °C. Thioflavin T
(ThT) assay was performed to determine the activities of our com-
pounds on inhibiting Aβ1–42 self-aggregation. Experiments were
performed by incubating the peptides (Aβ1–42, 20 μM, final concen-
tration) in 20 mM phosphate buffer (pH 7.4) at 37 °C for 48 h with
the tested compounds (10 μM, final concentration). After incubation,
the samples were diluted to a final volume of 40 μL with 50 mM gly-
cine–NaOH buffer (pH 8.5) containing 5 μM thioflavin-T. Fluores-
cence signal was measured (excitation wavelength 450 nm,
emission wavelength 485 nm, and slit widths set to 5 nm) on a
monochromators based multimode microplate reader (INFINITE
M1000), adapted for 384 well microtiter plates. Each inhibitor was
examined in triplicate. The fluorescence intensities were recorded,
and the percentage of inhibition on aggregation was calculated by
using the following equation: (1 − IFi/IFc) × 100% in which IFi and
IFc were the fluorescence intensities obtained for absorbance in the
presence and absence of inhibitors, respectively, after subtracting
the background fluorescence of 5 μM thioflavin-T solution.

For the disaggregation of self-induced Aβ fibrils, the Aβ1–42 stock so-
lutionwas dilutedwith 20mMphosphate buffer (pH 7.4). 20 μMAβ1–42

was incubated at 37 °C for 24 h. Then, the 20 μM tested compound was
added and incubated at 37 °C for another 24 h. The sample was diluted
to a final volume of 40 μL with 50 mM glycine–NaOH buffer (pH 8.0)
containing thioflavin T (5 μM). The detection method was the same as
above.

The effects of compounds on metal-induced Aβ1–42 aggregation
were also determined by using thioflavin T. The Aβ1–42 stock solution
was diluted with 20 μM HEPES (pH 6.6) containing 150 μM NaCl. 20
μM Aβ1–42 was incubated with or without 20 μM copper or 20 μM
iron and 20 μM tested compounds at 37 °C for 24 h. The sample
was diluted to a final volume of 40 μL with 50 mM glycine–NaOH
buffer (pH 8.0) containing thioflavin T (5 μM) and assayed as de-
scribed above.

The inhibitory potency of compounds on AChE-induced Aβ1–42 ag-
gregation was determined by using thioflavin T. The mixtures contain-
ing 2 μL of Aβ1–42 and 16 μL of AChE in the presence or absence of the
tested compounds (2 μL) were incubated for 6 h at 37 °C. The final vol-
ume of each vial was 20 μL, and thefinal concentrations of Aβ1–42 (dilut-
ed in 0.215M sodium phosphate buffer, pH 8.0) and AChE (dissolved in
0.1M sodiumphosphate buffer, pH8.0)were 25 μMand0.25 μM. Blanks
containing Aβ1–42, AChE, Aβ1–42 plus the tested compounds in 0.215 M
sodium phosphate buffer were prepared. The percent inhibition on
AChE-induced aggregation was calculated with the following equation:
(1 − IFi/IFc) × 100% where IFi and IFc were the fluorescence intensities
obtained for Aβ1–42 plus AChE in the presence and absence of inhibitors,
respectively, minus the fluorescence of respective blanks.
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005

http://dx.doi.org/10.1016/j.bbagen.2014.05.005


T

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

9J. Liu et al. / Biochimica et Biophysica Acta xxx (2014) xxx–xxx
U
N
C
O

R
R
E
C

2.4. Transmission electron microscope (TEM)

The Aβ1–42 stock solution was diluted with 20mM phosphate buffer
(pH 7.4) for the metal free experiment and 20 μM HEPES (pH 6.6) in-
cluding 150 μM NaCl for the copper and iron containing experiment.
Then concentrations of Aβ1–42, metal ions and tested compounds were
20 μM, 20 μM, and 40 μM, respectively. After incubation at 37 °C for
24 h, aliquots of 10 μL samples were placed on carbon-coated copper/
rhodium grid. After 1 min, the grid was washed with water and nega-
tively stained with 2% uranyl acetate solution for 1 min. After draining
off the excess staining solution by filter paper, the specimen was trans-
ferred for examination in a transmission electron microscope (JEOL
JEM-1400).

2.5. Inhibition studies on AChE and BuChE

Acetylcholinesterase (fromelectric eel), butyrylcholinesterase (from
equine serum), 5,5′-dithiobis-(2-nitrobenzoic acid) (Ellman's reagent,
DTNB), acetylthiocholine chloride (ATC), butylthiocholine chloride
(BTC), and Tacrine hydrochloride were purchased from Sigma Aldrich.

The metal free assays were carried out in 0.1 M KH2PO4/K2HPO4

buffer (pH 8.0). Enzyme solutions were prepared by dissolving lyophi-
lized powder in double-distilled water. Stock solutions of tested com-
pounds (10 mM) were prepared in DMSO and diluted in phosphate
buffer (pH 8.0). The assay solution (200 μL) consists of phosphate buffer
(pH 8.0), with the addition of 10 μL of 0.01 M DTNB, 10 μL of enzyme,
and 10 μL of 0.01 M substrate (ATC or BTC). Five increasing concentra-
tions of inhibitors with their inhibitory activity ranged from 20% to
80% were added to the assay solution and pre-incubated for 10 min at
37 °C with the enzyme followed by the addition of corresponding sub-
strate. Initial rate measurement assays were performed at 37 °C with a
PowerWave XS2 microplate spectrophotometer. Absorbance value at
412 nm was recorded for 2 min, and the calculations were performed
based on the method of Ellman et al. Each concentration was tested in
triplicate, and IC50 values were calculated graphically from log concen-
tration inhibition curve (Origin 7.5 software).

The determination of the inhibition effects on ChE in the presence of
metal ions and Aβ1–42was carried out following the previously reported
method. Compound 9gwas dissolved in HEPES buffer (pH 6.6) and one
of the four conditionswas followed. The assay solutionwas 200 μL. Con-
dition (a): AChE or BuChE (0.08 U/mLfinal concentration)was added to
the inhibitor solutions (100 μL) and incubated for 10 min. Then, the re-
actions were initialized with the addition of 10 μL of 0.01 M DTNB, and
10 μL of 0.01 M substrate (ATC or BTC). Condition (b): AChE or BuChE
(0.08 U/mL final concentration) was added to the inhibitor solutions
(100 μL) and incubated for 10min. Then CuSO4 or FeSO4 or Aβ1–42 pep-
tide (10 μM) was added, and the mixture was incubated for another
10 min. The reactions were initialized with the addition of 10 μL of
0.01 M DTNB, and 10 μL of 0.01 M substrate (ATC or BTC). Condition
(c): CuSO4 or FeSO4 or Aβ1–42 peptide (10 μM) was added to the inhib-
itor solutions (100 μL) and incubated for 10 min. Then AChE or BuChE
(0.08 U/mL final concentration) was added, and the mixture was incu-
bated for another 10 min. The reactions were initialized with the addi-
tion of 10 μL of 0.01 M DTNB, and 10 μL of 0.01 M substrate (ATC or
BTC). Condition (d): A mixture of AChE or BuChE (0.08 U/mL final con-
centration) and CuSO4 or FeSO4 or Aβ1–42 peptide (10 μM)was added to
the inhibitor solutions (100 μL) and incubated for 10 min. The reactions
were initialized with the addition of 10 μL of 0.01 M DTNB, and 10 μL of
0.01 M substrate (ATC or BTC).

2.6. Kinetic characterization of AChE inhibition

Kinetic characterization of AChE inhibition was performed based on
a reported method. The assay solution (200 μL) consists of 0.1 M phos-
phate buffer (pH 8.0), with the addition of 10 μL of 0.01 M DTNB, 10 μL
of enzyme, and 10 μL of substrate (ATC). Four different concentrations of
Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
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inhibitors were added to the assay solution and pre-incubated for 10
min at 37 °C with the enzyme followed by the addition of substrate in
different concentrations. Kinetic characterization for the hydrolysis of
ATC catalyzed by AChE was carried out using spectrometric method at
412 nm. The parallel control experiments were performed without in-
hibitor in the assay.

2.7. Anti-oxidation activity with in vitro-ORAC-FL assay

The anti-oxidation activity was determined based on the oxygen
radical absorbance capacity-fluorescein (ORAC-FL) assay. The reaction
was carried out in 75 mM potassium phosphate buffer (pH 7.4), and
the final volume of reaction mixture was 200 μL. The tested compound
or Trolox standard substance was dissolved in DMSO to 10 mM and
diluted in 75 mM potassium phosphate buffer (pH 7.4). Antioxidant
(20 μL) and fluorescein (FL, 120 μL, final concentration of 140 nM)
were incubated for 15 min at 37 °C placing in the wells of a black 96
well plate. Then 60 μL of 2,2′-azobis(amidinopropane) dihydrochloride
(AAPH, final concentration of 40 mM) solution was added rapidly.
The fluorescence was recorded every minute for 240 min at 485 nm
(excitation wavelength) and 535 nm (emission wavelength). The
final concentration of tested compound or Trolox standard substance
was 1–5 μM. A blank (FL + AAPH in 75 mM potassium phosphate
buffer) instead of the sample and Trolox calibration solution was
used in each assay. All the reactions were carried out in triplicate,
and each reaction was repeated for at least three times. Anti-
oxidation curves (fluorescence versus time) were normalized to
the curve of the blank in the same assay, and then the area under
the fluorescence decay curve (AUC) was calculated. The net AUC of
a sample was obtained by subtracting the AUC of the blank. ORAC-
FL values were expressed as Trolox equivalents by using the standard
curve calculated for each sample, where the ORAC-FL value of Trolox
was taken as 1, indicating the anti-oxidative potency of the tested
compounds.

2.8. Anti-oxidation activity in SH-SY5Y cells

Intracellular ROSweremeasuredwith the a fluorescent probe (2′,7′-
dichlorofluorescein diacetate, DCFH-DA) as reported with some varia-
tion. Human neuroblastoma cells, SH-SY5Y, were routinely grown at
37 °C in a humidified incubator with 5% CO2 in Dulbecco's modified
Eagle's medium (DMEM, GIBCO) containing 15 nonessential amino
acid and supplemented with 10% fetal calf serum (FCS, GIBCO), 1 mM
glutamine, 50 mg/μL penicillin, and 50 mg/μL streptomycin. For assays,
SH-SY5Y cells were sub-cultured in 96-well plates at a seeding density
of 3 × 104 cells per well. After 24 h, the cells were treated with the syn-
thesized compounds at concentrations of 3.125 μM, 6.25 μM, 12.5 μM,
and 25 μM. Trolox was used as a reference compound. After 24 h of
treatment with the compounds, the cells were washed with phosphate
buffer, and then incubated with 5 μM DCFH-DA in phosphate buffer at
37 °C in 5% CO2 for 30 min. After DCFH-DA was removed, the cells
were washed and incubated with 0.1 mM t-BuOOH in phosphate buffer
for 30 min. At the end of the incubation, the fluorescence of the cells
from each well was measured at 485 nm excitation and 535 nm emis-
sionwith amonochromators basedmultimodemicroplate reader (INFI-
NITE M1000). Results are expressed as a percentage of the sample
average divided by the control group data, calculated as follows:
(ODsample − ODblank)/(ODcontrol − ODblank) × 100%.

2.9. Metal-chelating study

The chelating studies were made in buffer (20 mM HEPES, 150 mM
NaCl, pH 7.4) using a UV–vis spectrophotometer (SHIMADZC UV-
2450PC). The absorption spectra of compound 9g (20 μM), alone or in
the presence of CuSO4, FeSO4, and ZnCl2 (40 μM), were recorded at
room temperature in a 1 cm quartz cell.
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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2.10. Cell culture and MTT assay

Cytotoxicity was evaluated with the colorimetric MTT [3-(4,5-di-
methyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. SH-
SY5Y cells were sub-cultured in 96-well plates at a seeding density of
10,000 cells per well. After 24 h, the cells were treated with different
concentrations of compounds (0–50 μM). After 48 h, the survival of
cells was determined with MTT assay. Briefly, 20 μL of MTT (5 mg/mL)
was added to each well and incubated for 4 h. The MTT medium in
each well was carefully removed and 100 μL DMSO was added into
each well, followed by incubation at 37 °C for 10 min with horizontal
shaking. The absorbance of each well was measured with a micro cul-
ture plate reader at thewavelength of 570 nm. The IC50 values were cal-
culated graphically from log concentration–inhibition curve (Origin 7.5
software).

2.11. Determination of neuroprotective activity

Aβ1–42 was dissolved to 10 mMwith DMSO and further diluted into
100 μL of 40, 20, and 10 μM, with Dulbecco's modified Eagle's medium,
respectively. DMSO was added to 100 μL Dulbecco's modified Eagle's
medium to give the blank control. Then the Aβ1–42 of 40, 20, 10 μM
and the blank control were pre-incubated for 48 h for aging fibrils at
37 °C (as prepared in aggregation studies). Aggregated Aβ1–42 (40, 20,
10 μM) were added to the SH-SY5Y cells, which had been incubated
for 24 h. Absorbance value was measured at 570 nm through MTT
methods. To study the protective effect of 9g on the neurotoxicity of
Aβ1–42, 20 μM Aβ1–42 seed samples, with or without 9g (3.125–12.5
μM), were pre-incubated at 37 °C for 48 h. Then the prepared samples
were added to SH-SY5Y cells, and incubated at 37 °C for 48 h. DMSO di-
luted with phosphate buffer solution was also added to the blank con-
trol wells. The final concentration of DMSO in each well was less than
0.5%. At the end of the experiment, samples were tested via MTT
methods. Absorbance value was measured to determine cell viability.

2.12. Dot blot assays

Dot blot assays to detect Aβ1–42 fibril aggregation with B10 were
performed as described previously with minor modification [36]. Brief-
ly, Aβ1–42 was diluted into 20 μM with buffer (20 mM HEPES, 150 mM
NaCl, pH 7.4) and then incubated with or without CuSO4 or FeSO4

(20 μM), and the concentrations of 9gwere 20 μM and 40 μM. After in-
cubation at 37 °C for 24 h, 10 μL aliquots of 20 μMAβ1–42 reactionswere
spotted onto nitrocellulose membranes. Membranes were blocked for
2 hwith 10% non-fatmilk in TBS. Afterwashing,membraneswere incu-
batedwith the anti-Aβfibril antibody (1:2000dilution) dissolved in TBS
containing 3% BSA and 0.01% Tween-20 and developed using an
alkaline-phosphatase antirabbit secondary antibody (1:5000 dilution).
Invitrogen's Western Breeze Chemiluminescent kit was used to visual-
ize the protein dots, and these dots were imaged using a FUJIFILM Lumi-
nescent Image Analyzer LAS-1000CH.

2.13. Native gel electrophoresis and Western blot

Gel electrophoresis andWestern blot [37] were performed to deter-
mine the inhibition of Aβ1–42 aggregation by 9g in the presence or ab-
sence of metal ions with antibody 6E10. The preparation of samples
were the same as that for ThT assay, and 20 μM Aβ1–42 was incubated
with various concentrations of 9g (20 μM, 40 μM) in the presence or ab-
sence of 20 μMCuSO4 or FeSO4 at 37 °C for 24 h. Samples were separat-
ed on 10–20% gradient Tris–tricine mini gels. The gel was transferred to
a nitrocellulosemembrane in an ice bath, and the protocol was followed
as suggested except that the membrane was blocked for 2 h with 10%
non-fat milk in TBS. After blocking, the membrane was incubated in a
solution (1:2000 dilution) of 6E10 anti-Aβ primary antibody (Covance)
for 2 h, and developed using an alkaline-phosphatase antimouse
Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
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secondary antibody (1:5000 dilution). Invitrogen's Western Breeze
Chemiluminescent kit was used to visualize the protein bands, and
these bandswere imaged using a FUJIFILM Luminescent Image Analyzer
LAS-1000CH.

2.14. CD spectroscopy

The secondary structure of Aβ1–42 aggregates was evaluated
using a Jasco-810-150S spectropolarimeter (Jasco, Japan) at room
temperature as described previously [38]. Aβ1–42 (20 μM) was
mixed with and without 10, 20 μM 9g in 20 mM sodium phosphate
buffer (pH 7.4). All solutions were incubated at 37 °C for 48 h. Spec-
tra were recorded at 25 °C between 190 and 260 nm with a band
width of 0.5 nm, a 3 s response time, and scan speed of 10 nm/min.
Background spectra and when applicable, spectra of 9g were
subtracted.

2.15. Molecular docking study

The crystal structure of human AChE (PDB ID: 1B41, resolution =
2.76 Å) was retrieved from the Protein Data Bank. For docking study,
short peptide and water molecules were removed. The apo structure
was superposed with the co-crystal structure of Torpedo californica
AChE and F11 (PDB ID: 2CMF [39], resolution = 2.5 Å), and then the
complex of human AChE and F11 was kept. The complex was prepared
in the“Protein Preparation Wizard” workflow in Maestro, version 9.4
[40], and bond orders were assigned. All the heavy atoms were mini-
mized to reach the converge root mean square deviation (RMSD) of
0.30 Å with the OPLS_2005 force field. After preparation, the docking
gridwas generated using “Receptor Grid Generation”, the grid enclosing
boxwas centered on the original ligand (F11) a size of 10 × 8× 10 (x× y
× z, Å), and a scaling factor of 0.80was set to vanderWaals radii of those
receptor atoms with a partial atomic charge less than 0.15. Compound
9g was optimized using MMFF force field [41] and the Powell method
was used for energy minimization by default parameters in Discovery
studio 2.5 (Accelrys Inc.). Extra precision mode (Glide XP) was
employed for identifying the potential binding of compound 9g to the
human AChE.

The initial coordinates of human BuChE used in our computational
studies came from the X-ray crystal structure (PDB ID: 1POP) [42]. The
missing residues (D2, D3, E255, D378, D379, N455, L530, E531, and
M532)were built using the automated homologymodeling tools in Dis-
covery Studio 2.5. The binding site was defined as a box with the center
of the native ligand. Extra precision mode (Glide XP) was applied for
identifying the potential binding of compound 9g to the BuChE with
the default parameters.

For Aβ1–42 docking study, the initial structure of Aβ1–42 was taken
from the NMR structure (PDB ID: 1IYT) [43]. Autodock 4.0 was
employed to identify the binding poses of 9g for Aβ1–42 with a La-
marckian genetic algorithm [44]. The grid map, with 80 × 80 × 80
points spaced equally at 0.375 Å, was generated using the Auto
Grid program to evaluate the binding energies between ligand and
receptor. All docked poses of compound 9g were clustered using a
tolerance of 2 Å for the RMSD and ranked on the basis of the binding
docking energies, and the lowest energy conformation in the most
populated cluster was chosen for further study.

3. Results and discussion

3.1. Organic syntheses of imidazole derivatives

Compounds 7a–9f, 7g–9g, 19a–20e, 22a–22fwere synthesized as de-
scribed in Schemes 1–4. As shown in Scheme 1, commercially available
4-hydroxybenzaldehyde was first reacted with 1,2-dibromoethane,
1,3-dibromopropane, or 1,4-dibromobutane to give product 1, 2, or 3, re-
spectively. The product 1, 2, or 3 was reacted with phenanthrene-9,10-
phenanthro[9,10-d]imidazole derivatives asmultifunctional agents for
.doi.org/10.1016/j.bbagen.2014.05.005
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Fig. 1. TEM image analysis of Aβ1–42 aggregation in the presence of 9g. (A) Aβ1–42 (20 μM),
0 h. (B) Aβ1–42 (20 μM) alone was incubated at 37 °C for 24 h. (C) Aβ1–42 (20 μM) and res-
veratrol (20 μM) were incubated at 37 °C for 24 h. (D) Aβ1–42 (20 μM) and 9g (20 μM)
were incubated at 37 °C for 24 h.
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dione to produce intermediate 4, 5, or 6, which was then reacted with
various amines to give final products 7a–9f. In Scheme 2, the intermedi-
ate 4, 5, or 6 was used to react with pyridine to produce 7g, 8g, and 9g.
Similarly, as shown in Scheme 3, 4-hydroxybenzaldehyde was first
reacted with propargyl bromide, followed with phenanthrene-9,10-
dione to give intermediate 11. The syntheses of 12a–12b, 13a–13d,
14a–14e, 15a–15d, 16a–16e, 17a–17d, and 18a–18e were carried out
by following the procedures reported previously [45–47]. The intermedi-
ate 11was then reactedwith 17a–18e through “click” chemistrywith in-
troduction of triazole rings to afford products 19a–20e [45–48]. The
intermediate 11 was also reacted with azide 21a–21f to give products
22a–22f as shown in Scheme 4.

3.2. Inhibition of self-mediated Aβ1–42 aggregation

The inhibition of self-mediated Aβ1–42 aggregation by our synthe-
sized imidazole derivatives were studied by using thioflavin T (ThT)
assay [49] with resveratrol as a reference compound. The effects of
these compounds on Aβ1–42 peptide aggregation at concentration of
10 μM and the IC50 of these compounds against self-mediated Aβ1–42

aggregation were summarized as shown in Table 1. The IC50 value of
resveratrol against Aβ1–42 aggregation was 10 μM, in comparison,
more than half of our compounds displayed better inhibition effects
than resveratrol. The first series of our compounds 7a–9g almost all
showed more than 50% inhibition effect except 7f with 28% inhibitory
activity when used at 10 μM concentration. Compound 9g was found
to have 74% Aβ1–42 aggregation inhibitory effect when used at 10 μM
concentration with its IC50 value of 6.5 μM. The compounds with incor-
poration of triazole rings also displayed some inhibitory activity from
13% to 71% for Aβ1–42 aggregation when used at 10 μM concentration,
and the IC50 value of 19a against Aβ1–42 aggregation was 6.7 μM. The
reason of the similarities of anti-Aβ1–42 aggregation activity of our com-
pounds were explored by using molecular docking experiment and the
scores of the representative compounds 9d, 19a, 22e, and 9g were
−3.9514, −4.8855, −4.2690, −4.6432, respectively, and the binding
modes of these compounds with Aβ1–42 were similar (Fig. 3S).

3.3. Inhibition studies for AChE and BuChE

The inhibitory activity of our synthetic derivatives was evaluated
against AChE and BuChEusing themethod of Ellman et al. [50]with Tac-
rine as a positive control. AChE from electric eel and BuChE from equine
U
N
C
O

RTable 1
Effects of our compounds on Aβ1\42 aggregation.

Compound Aβ1\42 aggregation inhibition (%)a Aβ1\42 IC50 (μM)b

7a 51 ± 3 8.9 ± 0.2
7b 65 ± 1 7.9 ± 0.4
7c 54 ± 1 9.2 ± 0.3
7d 77 ± 1 7.0 ± 0.6
7e 62 ± 1 8.0 ± 0.1
7f 28 ± 3 n.d.c

7 g 55 ± 1 9.0 ± 0.4
8a 55 ± 1 9.7 ± 0.7
8b 56 ± 5 9.2 ± 1.2
8c 59 ± 3 9.0 ± 1.0
8d 61 ± 3 7.9 ± 1.5
8e 72 ± 7 7.0 ± 0.8
8f 60 ± 2 8.5 ± 2.2
8 g 64 ± 4 7.4 ± 1.4
9a 58 ± 8 8.5 ± 2.1
9b 68 ± 2 8.3 ± 0.3
9c 72 ± 5 7.3 ± 0.6
9d 73 ± 4 7.0 ± 1.0
9e 52 ± 2 9.8 ± 1.1

a The thioflavin-T fluorescence method was used. The values are expressed as the mean ±
concentration of 10 μM.

b The IC50 (μM) values shown are the mean ± SD of three experiments.
c n.d. means not determined.
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to the human enzymes. As shown in Table S1, ourmost synthesized im-
idazole derivatives displayed strong inhibitory activity to ChE at micro-
mole level, which were weaker than Tacrine. Compound 9g had potent
inhibitory activity for both AChE and BuChE with its IC50 values of
860 nM and 510 nM for AChE and BuChE, respectively, which were
much better than those reported previously for other imidazole deriva-
tives [32,33]. The Lineweaver Burk plots showed a mixed-type inhibi-
tion of 9g to AChE (Fig. S1), indicating that 9g could bind to both
catalytic active site (CAS) and peripheral anionic site (PAS) of AChE.
The expanded aromatic plane and the pyridine moiety at the end of
the chain facilitated the binding of 9g to the ChE, which is consistent
with our following molecular modeling studies.
Compound Aβ1\42 aggregation inhibition (%) Aβ1\42 IC50 (μM)

9f 70 ± 2 7.0 ± 0.8
g 74 ± 2 6.5 ± 0.4

19a 71 ± 1 6.7 ± 0.4
19b 63 ± 4 8.0 ± 1.2
19c 13 ± 1 n.d.
19d 58 ± 4 7.5 ± 1.2
20a 60 ± 3 8.6 ± 2.2
20b 51 ± 1 10.0 ± 1.1
20c 50 ± 1 n.d.
20d 55 ± 2 8.4 ± 0.3
20e 65 ± 3 7.4 ± 0.8
22a 41 ± 6 n.d.
22b 23 ± 3 n.d.
22c 35 ± 2 n.d.
22d 57 ± 3 9.0 ± 1.0
22e 24 ± 4 n.d.
22f 54 ± 2 8.4 ± 0.6
Resveratrol 53 ± 2 10.0 ± 0.6

SD of at least three independent measurements. All values were obtained at a compound
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Fig. 2.Disaggregation experimental result. (A) ThT binding assay for Aβ1–42without andwith test compound. (B) TEM images for Aβ1–42 disaggregation. (a) Aβ1–42 (20 μM)was incubated
at 37 °C for 24 h in phosphate buffer. (b) Aβ1–42 (20 μM) was incubated with 9g (20 μM) at 37 °C for 24 h. (c) Aβ1–42 (20 μM) was incubated with resveratrol (20 μM) at 37 °C for 24 h.
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3.4. Anti-oxidation activity studies

The reduction of the oxidative stress is another crucial aspect in de-
signing agents for AD treatment. The anti-oxidation activities of the
U
N
C
O

R
R

Fig. 3.Metal inducedAβ aggregationwas carried outwith incubation for 2min, followedwith te
assay formetal induced Aβ aggregation, and test compound induced Aβ disaggregation. (B) TEM
The incubationswere carried outwith following reagents: (a) 20 μMAβ1–42 alone. (b) 20 μMAβ
40 μM 9g. (e) 20 μM Aβ1–42, 20 μM Fe2+, and 40 μM 9g. (f) 20 μM Aβ1–42, 20 μM Cu2+, and 40

Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
imidazole derivatives have been studied by using the oxygen radical ab-
sorbance capacity assay method with fluorescein (ORAC-FL) [51,52],
and vitamin E analogue Trolox has been used as a standard. We studied
our compounds for anti-oxidation activity with this assay method, and
st compound inducedAβdisaggregation upon incubation at 37 °C for 24 h. (A) ThT binding
images formetal induced Aβ aggregation, and test compound induced Aβ disaggregation.

1–42 and 20 μMCu2+. (c) 20 μMAβ1–42 and 20 μMFe2+. (d) 20 μMAβ1–42, 20 μMCu2+, and
μM resveratrol. (g) 20 μM Aβ1–42, 20 μM Fe2+, and 40 μM resveratrol.
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Fig. 4. Percentage increase in intracellular ROS induced by exposure to t-BuOOH, as deter-
mined by DCFH-DA. The concentrations of compounds were 3.125 μM, 6.25 μM, 12.5 μM,
and 25 μM.

Fig. 6. The inhibitory activity of our imidazole derivatives to AChE-induced Aβ1–42 aggre-
gation. The concentration of Aβ1–42 was 25 μM, and the concentration ratio of Aβ1–42,
AChE, compound was 100:1:100.
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found that most of our compounds showed relatively low ORAC-FL
values compared to Trolox, as shown in Table S1. In comparison, com-
pound 9g displayed relatively high anti-oxidation activity, with approx-
imately 2.29 times higher activity than Trolox when used at 5 μM
concentration. The anti-oxidation mechanism of 9g is not clear at this
time. We think that 9g could have several possible mechanisms for its
anti-oxidation activity in cells. The core structure of phenanthro-
imidazole is somehow similar to that of melatonin, a well-known anti-
oxidation agent, which could prevent the generation of ROS through
its interaction with intracellular superoxide anion. Besides, 9g may
play an indirect anti-oxidation role through activation of some anti-
oxidation enzymes in cells. In addition, higher concentration of metal
ions could cause increased ROS, and 9g could reduce the generation of
ROS through metal chelation.

3.5. Cytotoxic studies on SH-SY5Y neuroblastoma cells

The cytotoxicity of our imidazole derivatives to the human neuro-
blastoma SH-SY5Y cells was evaluated by using colorimetric MTT
assay. The cells were treatedwith various concentrations of compounds
for 48 h with maximum concentration of 50 μM. As shown in Table 1,
most compounds showed their IC50 values of more than 10 μM, indicat-
ing their low neural cytotoxic effects. Compound 9g had its IC50 value of
more than 50 μM, indicating its very low neural cytotoxicity. As men-
tioned above, considering that compound 9g inhibited 74% Aβ1–42
U
N
C
O

Fig. 5. Protective effect of 9g on Aβ1–42-induced toxicity in SH-SY5Y cell lines. (A) Aβ1–42 (10, 20
with SH-SY5Y cells in the absence or presence of various concentrations of 9g for 48 h. Cell via
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Raggregation, and had its IC50 values of 860 nM and 510 nM for AChE
and BuChE respectively, with 2.29 times higher anti-oxidation activity
than Trolox and very low cytotoxic effect to neural cells, this compound
could become a promising lead compound for further development for
AD treatment.

3.6. Inhibition of Aβ1–42 fibril formation monitored by using transmission
electron microscopy (TEM)

To further study the activity of compound 9g for its inhibition of
Aβ1–42 aggregation, its inhibitory activitywasmonitored by using trans-
mission electronmicroscopy (TEM) [53], with resveratrol as a reference
compound. After 24 h of incubation at 37 °C, Aβ1-42 alone aggregated
into well-defined Aβ fibrils (Fig. 1B). In contrast, few and slender Aβ fi-
brils were observed in the presence of compound 9g (Fig. 1D) under
identical conditions. Therefore, based on the TEM and ThT measure-
ment results, we can conclude that compound 9g could effectively in-
hibit Aβ1–42 fibril formation.

3.7. Disaggregation of self-induced Aβ1–42 aggregation fibrils by 9g

The ability of 9g to disaggregate self-induced Aβ1–42 aggregation fi-
brils was investigated. Aβ1–42 fibrils were generated by incubating
fresh Aβ1–42 for 24 h at 37 °C. The test compound was then added to
and 40 μM)were incubatedwith SH-SY5Y cells for 48 h. (B) Aβ1–42 (20 μM)was incubated
bility was determined by using MTT methods.
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t2:1 Table 2
t2:2 IC50 values for inhibition of ChE by compound 9g in HEPES buffer (nM).

IC50 (nM)t2:3

AChE BuChEt2:4

Experiment CuSO4 FeSO4 Aβ1–42 CuSO4 FeSO4 Aβ1–42t2:5

a 796 796 796 495 495 495t2:6

b 820 845 903 527 478 493t2:7

c 766 642 800 445 483 511t2:8

d 753 822 829 400 367 515t2:9

t2:10 Experiments: (a) 9g was incubated with AChE (or BuchE) for 10 min. (b) 9g was
t2:11 incubated with AChE (or BuchE) for 10 min, followed with addition of Cu2+ or Fe2+ or
t2:12 Aβ1–42 and incubation of the mixture for additional 10 min. (c) 9g was incubated with
t2:13 Cu2+ or Fe2+ or Aβ1–42 for 10 min, followed with addition of AChE (or BuChE) and
t2:14 incubation of the mixture for additional 10 min. (d) AChE (or BuChE) was incubated
t2:15 with Cu2+ or Fe2+ or Aβ1–42 for 10 min, followed with addition of 9g and incubation of
t2:16 the mixture for additional 10 min.
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the sample and incubated for another 24 h at 37 °C. Our ThT binding
assay result showed that compound 9g, resveratrol, and compound
19a could all disaggregate Aβ1–42 fibrils at 20 μM concentration with
ratio of 73.3%, 68.7%, and 52%, respectively, as shown in Fig. 2(A). Our
TEM result further demonstrated thedisaggregation effect of compound
9g in comparison with resveratrol, as shown in Fig. 2(B).
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3.8. Effect of 9g on metal-induced Aβ1–42 aggregation

Transition metal ions, especially Cu, Fe, Zn, play important role in
the development of AD. The interaction of 9g with Cu(II), Fe(II), and
Zn(II) was studied by using UV–vis spectroscopy [37,54,55]. As
shown in Fig. S2, the addition of 2 equivalents of metal ions to
20 μM 9g caused decreased UV absorbance for 9g, indicating the in-
teraction of metal ions with 9g.

To investigate the ability of our imidazole derivatives to inhibit
metal-induced Aβ aggregation, we studied the effect of 9g on
metal-induced Aβ1–42 aggregation by ThT fluorescence and TEM.
After incubation at 37 °C for 24 h, Cu2+ and Fe2+ could induce the
fibrillization of Aβ1–42 at the levels of 151.6% and 176.9%, respective-
ly, in comparisonwith the fibrillization of Aβ1–42 alone as 100%. More
fibrils could be observedwith the TEM (Fig. 3b and c). The addition of
9g could significantly reverse these effects, rescuing 129.5% and
151.4% Aβ1–42 aggregation induced by Cu2+ and Fe2+ respectively,
and its disaggregation effect was better than resveratrol (rescuing
104.0% aggregation induced by Cu2+, and 120.0% aggregation in-
duced by Fe2+). These disaggregation effects were consistent with
our TEM image results, and we could barely see the fibrils for 9g-
treated Aβ1–42 (Fig. 3d and e).
U
N
C

Fig. 7.Dot plot analysis for the inhibition of self-aggregation andmetal-induced formation of Aβ
20 μM, and the concentrations of 9gwere 20 μM and 40 μM. (A) Dot plot image of Aβ1–42 in t
graphical analysis for the relative intensity of the dot plot result.
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3.9. Anti-oxidation activity of 9g in SH-SY5Y cells

The ability of 9g to counteract the formation of ROS was assayed in
human neuroblastoma cells (SH-SY5Y) based on dichlorofluorescein
diacetate (DCFH-DA), after the treatmentwith tert-butyl hydroperoxide
(t-BuOOH), a compound used to induce oxidative stress [56,57]. Trolox
was used as a reference control compound. The concentrations of tested
compounds were 3.125 μM, 6.25 μM, 12.5 μM, and 25 μM. As shown in
Fig. 4, both Trolox and compound 9g exhibited dose-dependent anti-
oxidant activity, and the activity of 9g was higher than that of Trolox.

3.10. Compound 9g protects cells against Aβ1–42-induced toxicity

As mentioned before, compound 9g had low cell toxicity, with its
IC50 value of more than 50 μM for SH-SY5Y cells. The neuroprotective
activity of 9g was further studied following a procedure reported
previously with minor modification [58]. SH-SY5Y cells were treated
with Aβ1–42 solutions at 10 μM, 20 μM, and 40 μM concentrations.
Aβ1–42-induced cytotoxicity was determined as shown in Fig. 5a,
which indicated that Aβ1–42 significantly reduced cell viability in a
dose-dependent manner. It was found that the cells were well
protected when 20 μM Aβ1–42 was mixed with compound 9g at
3.125 μM, 6.25 μM, and 12.5 μM concentrations, as shown in Fig. 5b.
This result showed that 9g was a neuroprotective agent against
Aβ1–42-induced toxicity at low concentration.

3.11. Inhibition of 9g on AChE-induced Aβ1–42 aggregation

It has been reported that Aβ deposition in AD brain is linked to AChE
expression, and the PAS of AChE can bind to the Aβ, accelerating the for-
mation of amyloidfibrils [59,60]. The inhibitory activity of our imidazole
derivatives to AChE-induced Aβ1–42 aggregation was also determined
by using thioflavin T (ThT) assay, with Tacrine, propidium iodide, and
Congo-red as reference compounds. As shown in Fig. 6, Tacrine, with
its high affinity for CAS rather than PAS of AChE, showed 33.4% inhibito-
ry effect against AChE-induced Aβ1–42 aggregation. In comparison,
propidium iodide significantly reduced about 85.9% Aβ1–42 aggregation
as a result of its noncompetitive inhibition type. Our imidazole deriva-
tives 9g and 19a displayed 65.2% and 36.0% inhibition of ChE-induced
Aβ1–42 aggregation, respectively. Compound 9gwas better than the sin-
gle site inhibitor Tacrine, indicating its possible dual binding effect to
AChE with mixed type inhibitory activity.

3.12. Effects of metal ions and Aβ1–42 on inhibition of ChE by compound 9g

It is possible that Aβ and metal ions could interact with compound
9g, which could prevent the binding of 9g with ChE. Therefore, the
fibrils by9gwith Aβfibrils antibody B10. The concentrations of Aβ1–42 andmetal ionswere
he presence or absence of metal ions and/or 9g after incubation at 37 °C for 24 h. (B) Bar
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Fig. 8. Gel electrophoresis andWestern blot analysis for the inhibition of Aβ1–42 aggrega-
tion by 9g in the presence or absence of metal ions with antibody 6E10. Aβ1–42 used was
20 μM, themetal ionsusedwas 20 μM, and the concentrations of9gwere 20 μMand 40 μM
for the inhibition of Aβ1–42 aggregation and40 μMfor the inhibition ofmetal-induced Aβ1–

42 aggregation. (a) Incubation of Aβ1–42 alone for 24 h at 37 °C. (b) Incubation of Aβ1–42

with 20 μM 9g for 24 h at 37 °C. (c) Incubation of Aβ1–42 with 40 μM 9g for 24 h at
37 °C. (d) Incubation of Aβ1–42 with 20 μMCu2+ and 40 μM 9g for 24 h at 37 °C. (e) Incu-
bation of Aβ1–42 with 20 μM Fe2+ and 40 μM 9g for 24 h at 37 °C. (f) Incubation of Aβ1–42

with 20 μM Cu2+ for 24 h at 37 °C. (g) Incubation of Aβ1–42 with 20 μM Fe2+ for 24 h at
37 °C.
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ability of 9g to inhibit ChE in the presence of metal ions and Aβ1–42 was
examined by following a procedure reported previously [61]. As shown
in Table 2, 9g showed good inhibition to both AChE and BuChE,with IC50
values of 796 nMand495 nM for AChE andBuChE respectively in HEPES
buffer (pH 6.6, Condition a). The presence of metal ions or Aβ1–42 (Con-
ditions b–d) had little effect to the inhibitory activity of 9g to ChE. Com-
pound 9g retained good inhibition to ChE in the presence of metal ions
or Aβ1–42, indicating that inhibition of ChE by compound 9g is not influ-
enced by its Aβ disaggregation and anti-oxidation activity for
Alzheimer's disease and the multifunctional effects of 9g.

3.13. Dot plot, gel electrophoresis and Western blot analysis for the inhibi-
tion of Aβ1–42 aggregation by 9g

The inhibition of Aβ1–42 aggregation by 9g was further analyzed by
using dot plot, gel electrophoresis, and Western Blotting. Dot-blot as-
says of the Aβ samples were performed using Aβ fibril-specific antibody
B10 [62], which preferentially recognizes amyloid fibrils but does not
bind to monomers or small oligomers. The antibody used in the gel
electrophoresis was 6E10. As shown in Fig. 7, Cu2+ and Fe2+ could
U
N
C
O

Fig. 9. (A) CD spectroscopy for incubation of Aβ1–42 alone (20 μM) and Aβ1–42 with compoun
(20 μM) and Aβ1–42 with compound 9g (20 μM, 40 μM) at 37 °C for 48 h.

Please cite this article as: J. Liu, et al., Synthesis and characterization of 1H-
treatment of Alzheimer's disease, Biochim. Biophys. Acta (2014), http://dx
E
D
 P

R
O

O
F

accelerate the formation of Aβ1–42, which is consistent with our ThT re-
sult. The incubation of Aβ1–42 with 9g reduced Aβ fibril formation, as in-
dicated by B10 immunoreactivity. Our results showed that 9g could
reduce both Aβ self-aggregation and metal-induced Aβ-aggregation.
Besides, as shown in Fig. 8b and c, more lower molecular weight
(≤25 kDa) Aβ species were visualized by using native gel electrophore-
sis followed by Western blot with 6E10. Compound 9g had dose-
dependent inhibition of Aβ fibril formation, and stabilized lowermolec-
ular weight Aβ species. For Cu2+-induced (Fig. 8f) and Fe2+-induced
(Fig. 8g) Aβ-aggregation, more lower molecular weight Aβ species
could be observed upon incubation with 9g (Fig. 8d and e), indicating
that 9g could reduce metal-induced Aβ-aggregation.

3.14. Effect of 9g on Aβ β-sheet formation

It has been known that Aβ adopt a conformational mixture of α-
helix, β-sheet, and random coil in aqueous solution, and undergo a con-
formational change to form intramolecular β-sheet structure in the
fibrillization [63]. These β-sheets have been suggested of contributing
to the toxicity of Aβ [64]. In order to further investigate the mechanism
of 9g-induced Aβ conformational transformation, CD spectroscopy was
used tomonitor the change of Aβ1–42 secondary structure during the as-
sembly stage without or with different concentrations of 9g. As shown
in Fig. 9, freshly prepared Aβ1–42 in phosphate buffer solution had no
obvious α-helix and β-sheet (Fig. 9A), which indicates unfolded peptide
structure. After 48 h of incubation at 37 °C, a maximal positive absor-
bance around 195 nm (the general characteristic of α-helix) and a neg-
ative absorbance around 218 nm (the general characteristic ofβ-sheets)
were observed (Fig. 9b). The addition of 9g decreased the absorbance at
both 195 nm and 218 nm. Thus, 9g could stabilize random Aβ1–42 and
reduce the formation of α-helix and β-sheet structure of the peptide,
which could partially explain its inhibition of Aβ aggregation.

3.15. Molecular modeling study for the binding mode of 9g with AChE and
BuChE as well as Aβ1–42

To investigate the binding modes between compound 9g and AChE,
BuChE, as well as Aβ, molecular docking studies were carried out. As
shown in Fig. 10A, compound 9g could well occupy the PAS of AChE
and forms hydrophobic interactions with residues Phe297, Phe295,
Leu289, Val294, Trp286, Tyr337, Phe338, Tyr341, and Trp86. The intro-
duction of pyridinemoiety at the end of chain can enhance AChE inhibi-
tion activity because it can form π–π stacking interactions with Tyr336
and Trp86 (Fig. 10B). Compared the binding modes of compound 9g
with ligand F11 (a known inhibitor occupies two binding sites of
d 9g (20 μM, 40 μM) at 37 °C for 0 h. (B) CD spectroscopy for incubation of Aβ1–42 alone
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Fig. 10. Binding mode for 9g–AChE complex. (A) 3D ligand-interaction diagram. (B) 2D ligand-interaction diagram. (C) The polar and hydrophobic surface profile of human AChE with
compound 9g. (D) Superposition of 9gwith F11 in ligand-binding pocket. Blue carbon represents compound 9g and cyan carbon represents compound F11.

Fig. 11.Bindingmodes for9g–BuChE and 9g–Aβ1–42 complexes. (A) 3D ligand-interaction diagramof 9g–BuChE. (B) 2D ligand-interaction diagramof 9g–BuChE. (C) 3D ligand-interaction
diagram of 9g–Aβ1–42. (D) 2D ligand-interaction diagram of 9g–Aβ1–42.
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AChE), the binding mode of 9g with AChE was similar to that of the
ligand F11 (Fig. 10D), suggesting its dual binding mode and mixed
type inhibition of AChE. These results are consistent with our biological
assay results. In addition, the binding mode of 9gwith BuChE was also
investigated. As shown in Fig. 11A and B, compound 9g binds to the cat-
alytic site of BuChE. The 1H-phenanthro[9,10-d]imidazole structure of
9g forms H–π interactions with Trp231 and Leu286, while the pyridine
moiety of 9g forms the H–π interaction with residue Trp82. Like com-
pound 9g against AChE, the hydrophobic interactions are favourable
to the inhibitory effect of 9g for BuChE, which is consistentwith our bio-
assay results.

Previous studies have suggested that the formation of the β-sheet
structure in Aβ can promote the aggregation of Aβ [65], and molecules
binding to C-terminus of Aβ could decrease the formation of β-sheet
so as to inhibit Aβ aggregation [66,67]. The binding mode of 9g with
Aβ1–42 was studied based on previous docking method [58]. As shown
in Fig. 11C and D, compound 9g binds to the C-terminus of Aβ1–42 and
is stabilized by hydrophobic interactions. 9g can form H–π stacking in-
teractions with Ile31 and Phe20, and the expanded aromatic structure
of 9g facilitates the formation of its hydrophobic interactions with
Ile31, Val24, Ala21, Phe20, and Leu34. The C-terminus binding mode
and the hydrophobic interactions may explain the mechanism for the
disaggregation of Aβ1–42 by 9g, which is also consistent with our CD re-
sults. Our above analyses rationalized our experimental result, which
indicated that compound 9g could be a multifunctional agent for the
treatment of AD.
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