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1. Introduction 

Pyrimidine is one of the most important heterocycles, which is 
an essential constituent of natural compounds such as nucleic 
acids and vitamins (thiamine, riboflavin and folic acid).1,2 It is not 
surprising therefore that pyrimidine derivatives are extremely 

popular in drug discovery;3 they are represented by numerous 
examples of marketed drugs with a broad range of 
pharmacological activities, i.e. anticancer,4–10 antiviral,11–14 
anxiolytic,15 antioxidant,16–18 antifungal,19 anticonvulsant,20 and 
antibacterial agents.5,21 Within just 2017–2018, several 
pyrimidine-containing drugs were approved by FDA.19 

 
Figure 1 Examples of pyrimidine-containing drugs 
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Two protocols for synthesis of series of low-molecular-weight di- and tri-substituted 
pyrimidines bearing a functional group at the 4th position, which rely on a base-mediated 
condensation of amidines or guanidines with β-alkoxyvinyl α-keto esters, have been developed. 
This approach allowed for multigram preparation of novel pyrimidine-4-carboxylates in 21–90% 
yield. The synthetic utility of these compounds was demonstrated by some standard functional 
group transformations providing promising building blocks for organic synthesis and drug 
discovery. 

2019 Elsevier Ltd. All rights reserved.
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Scheme 1 Synthesis of pyrimidine-4-carboxylates by 
reactions of 1,3-dicarbonyl compounds and NCN 
binucleophiles  

A general approach to pyrimidine derivatives relies on the 
principal two-component condensation of NCN binucleophiles 
with CCC bis-electrophiles. 1,3-Dicarbonyl compounds are 
commonly used for that; however, this variation of the method 
have found limited application for the preparation of pyrimidine-
4-carboxylates. Most reported examples referred to reactions of 
oxaloacetic acid esters with amidines, thiuronium salts or 
guanidine (Scheme 1, A).22–27 In another work, benzoyl- or (2-
thienoyl)pyruvate were first transformed into mixtures of the 
corresponding β-chlorovinylketones, which then reacted with 1-
(β-d-ribofuranosyl)formamidine to give the corresponding 
pyrimidine derivatives in 32–36% overall yields (B).28 

β-Alkoxyvinyl carbonyl compounds are renown synthetic 
equivalents of 1,3-dicarbonyl compounds which were widely 
used for the synthesis of numerous heterocyclic systems, 
including pyrimidines, and often led to better yields and purity of 
the target products.29,30 Utility of these bis-electrophiles was 
demonstrated mainly by the preparation of substituted 
pyrimidines bearing alkyl, haloalkyl or aryl moiety at the C-4 
position.31–62 It should be noted that the related methods were 
reported in the patent literature.63–67 Some published papers 
described synthesis of pyrimidine-5-carboxylates.29,55,56,68 In the 
case of pyrimidine-4-carboxylates, only a few isolated examples 
were published, in particular, reactions of β-alkoxyvinyl α-
ketoesters with only two specific substrates: 2-methylisothiourea 
or 2-benzylisothiourea (Scheme 2, C).69 In turn, the reaction of 
amidines or guanidine (D)70–73 led to the corresponding 
pyrimidines in generally poor yields (up to 36%). Therefore, no 
optimized protocols were developed. 
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Scheme 2 Synthesis of pyrimidine-4-carboxylates by 
reactions of β-alkoxyvinyl carbonyl compounds and NCN 
binucleophiles 

Furthermore, aryl-substituted binucleophiles were used 
predominantly - they are generally more convenient to handle 
and often have distinct reactivity as compared to their aliphatic 

counterparts. This is an example of recent finding by Churcher 
and co-authors,74 who outlined that in many publications, the 
scope of the synthetic methods have been shown only for the 
most “convenient” substrates. Further application of such results 
by medicinal and industrial chemists often requires additional 
optimization of the protocols. 

In this work, we have aimed at thorough and comprehensive 
studying of the lowest-molecular-weight β-alkoxyvinyl carbonyl 
compounds 1–3 as bis-electrophiles in the reactions with classical 
NCN binucleophiles, i.e. amidines (4–10) S-methylthiuronium 
salt (11), and guanidines (12–15) (Figure 2). These bis-
electrophiles were scarcely studied in the pyrimidine synthesis to 
date; in fact, most of the resulting pyrimidine-4-carboxylates 
obtained in this work were not described in the literature so far. 
In addition to that, application of the resulting products for 
preparation of multipurpose building blocks relevant for drug 
discovery was envisaged. As a result of this, carboxylic acids (8 
examples), alcohols (7 examples), aldehydes (3 examples), 
chlorides (4 examples) and amines (4 examples) were obtained 
on multigram scale; 43 out of 51 pyrimidines prepared were 
novel compounds. Nearly all compounds are functionalized low-
molecular-weight building blocks highly compatible with 
stringent compound quality criteria which are still important to 
drug discovery.75 

 
Figure 2 Substrates studied in this work 

2. Results/Discussion 

The compounds 1–3 were prepared according to the known 
literature method.76 Typical procedure for the reaction of 1–3 
with binucleophiles 4–15 included heating of the starting 
materials at 70 °C in the presence of K2CO3 in MeCN for 2 h 
(method A). The reaction proceeded smoothly only in the case of 
3, which appeared to be the most reactive bis-electrophile in the 
series studied, providing the target pyrimidines 16{3,4–10} and 
16{ 3,13–15} in 67–90% yield (Table 1, Entries 16–26). Reaction 
of 3 with trifluoroacetamidine (7) did not require a base, 
providing 2-(trifluoromethyl)pyrimidine 16{3,7}, which was 
used in the next step without isolation and purification (Entry 
19). 

It should be noted that the reaction of 3 and guanidines 13–15 
was accompanied with trans-esterification of the CO2Et moiety 
with MeOH formed, so that the corresponding pyrimidines 
bearing the dialkylamino moiety 16{ 3,13–15} contained up to 
33% of the corresponding methyl ester 17{ 3,13–15}. Since 
formation of this side product was not a problem for further 
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17{ 3,13–15} were used in the next steps without additional 
purification (Table 1, Entries 24–26).  

In the case of guanidine 12, the reaction with 3 using method 
A appeared to be too slow; therefore, alternative reaction 
conditions were developed, i.e. heating of the starting compounds 
in the presence of Et3N in 1,4-dioxane at 100 °C for 48 h (method 
B), which gave the target product 16{ 3,12} in 82% yield (Table 
1, Entry 23). 

It was found that the method B was superior to the method A 
in the case of the less reactive 1,3-bis-electrophile 1 and amidines 
5, 8 or 10 (A: 39–57% yield; B: 65–80% yield; Table 1, Entries 
2, 4 and 5). Lower yields and purity of the target products in the 
case of method A could be related to partial hydrolysis of the 
starting amidine with H2O formed in the reaction; moreover, 

ammonia which was also released reacted with 1 to give the 
corresponding enaminone, thus complicating isolation of the 
target product. Therefore, the method B was used for less 
reactive NCN binucleophiles in the reaction with 1 (75–85% 
yield, Entries 6–8), as well as for all experiments with the 
compound 2 (71–86% yield, Entries 9–15), which appeared to be 
the least reactive among the 1,3-bis-electrophiles studied, 
possibly due to the steric hindrance around the ketone moiety.  

Unfortunately, the method B was unfruitful in all experiments 
with formamidine acetate (4) (Entries 1, 9 and 16); meanwhile, 
the method A was applied for the preparation of the 
corresponding pyrimidines 16{ 1,4} and 16{ 3,4} more or less 
successfully (21% and 72% yield, respectively). 

 

Table 1. Synthesis of substituted ethyl pyrimidine-4-carboxylates 16{ 1–3,4–15} 

 
# β-Alkoxyvinyl α-ketoester NCN binucleophile Product R3 Yield, % Method 

1 

 

4 16{1,4}  H 21 (A), 0 (B)a A/B 

2 5 16{1,5}  Me 39 (A), 65 (B)a A/B 

3 6 16{1,6}  CH2Cl 69 A 

4 8 16{1,8}  cyclopropyl 53 (A), 73 (B)a A/B 

5 10 16{1,10}  p-ClC6H4 57 (A), 80 (B)a A/B 

6 11 16{1,11}  SMe 75 B 

7 12 16{1,12}  NH2 76 B 

8 14 16{1,14}  pyrrolidin-1-yl 85 B 

9  

 

 

4 16{2,4}  H 0 A/B 

10 5 16{2,5}  Me 71 B 

11 8 16{2,8}  cyclopropyl 76 B 

12 10 16{2,10} p-ClC6H4 83 B 

13 11 16{2,11}  SMe 75 B 

14 12 16{2,12}  NH2 77 B 

15 14 16{2,14}  pyrrolidin-1-yl 85 B 

16 

 

4 16{3,4}  H 72 A 

17 5 16{3,5}  Me 78 A 

18 6 16{3,6}  CH2Cl 67 A 

19 7 16{3,7}  CF3 N/Ad Ac 

20 8 16{3,8}  cyclopropyl 74 A 

21 9 16{3,9}  Ph 81 A 

22 10 16{3,10}  p-ClC6H4 83 A 

23 12 16{3,12}  NH2 82 B 

24 13 16{3,13}+17{3,13}  NMe2 90 (16:17 = 2.5:1)b A 

25 14 16{3,14}+17{3,14}  pyrrolidin-1-yl 90 (16:17 = 2:1)b A 

26 15 16{3,15}+17{3,15}  piperidin-1-yl 89 (16:17 = 2:1)b A 

aBoth methods A and B were evaluated 

b16:17 ratio by 1H NMR – the product was obtained as a mixture of 16 and 17 at the given ratio and was used in the next step without additional purification 

cThe reaction was performed without K2CO3 

dThe compound was used in the next step without isolation 
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The least reactive β-alkoxyvinyl α-ketoester 2 gave no target 
product 16{ 2,4} under either reaction conditions. In the case of 
chloromethyl-substituted amidine 6 (Entries 3 and 18), the 
method B could not be used due to alkylation of Et3N with 6; 
nevertheless, the corresponding products 16{ 1,6} and 16{ 3,6} 
could be obtained using the method A. 

It is important to outline that 20 of 24 synthesized pyrimidine 
ester derivatives 16{ 1–3,4–15} are novel compounds which were 
not described in the literature to date. 

To demonstrate utility of the target esters 16, their 
transformations into building blocks 18–22 was performed via 
standard carboxylate group modifications. (Figure 3, see the 
Supporting Information for more details). 

 
Figure 3. Pyrimidine-derived building blocks 18–22 

3. Conclusion 

The reaction of β-alkoxyvinyl α-keto esters 1–3 with amidines 
4–10, S-methylthiuronium salt 11, and guanidines 12–15 in the 
presence of K2CO3 in MeCN (method A, 21–90% yield) or upon 
treatment with Et3N in 1,4-dioxane (method B, 65–85% yield) is 
an efficient approach to the preparation of 4-
carboxylalkylpyrimidines 16. The method A was fruitful for the 
most reactive substrates (i.e. 1,3-bis-electrophile 3 and amidines), 
whereas in most other cases, the method B was more expedient. 
Utility of these key intermediates was confirmed by some typical 
functional group transformations; 43 out of 51 products were 
novel compounds. Most of these functionalized pyrimidine 
derivatives are low-molecular-weight and hydrophilic; they were 
prepared on multigram scale and are therefore promising building 
blocks for organic synthesis, drug discovery and agrochemistry, 
which are readily available to scientific community and can 
significantly expand the currently accessible lead-like chemical 
space (Figure S1). 

4. Experimental section 

The solvents were purified according to the standard 
procedures.77 The compounds 1–3,76 4,78 5,79 6,80 7,81 8,82 9 
and 10,33 11,83 13,83 14 and 1584 were prepared according to 
the literature methods. All other reagents and starting 
materials were obtained from commercial sources. Melting 
points were measured on MPA100 OptiMelt automated 
melting point system. Analytical TLC was performed using 
Polychrom SI F254 plates. Column chromatography was 
performed using silica gel (230–400 mesh) as the stationary 
phase. 1H and 13C NMR spectra were recorded on a Bruker 
170 Avance 500 spectrometer (at 500 MHz for 1H NMR, 126 
MHz for 13C NMR and 470 MHz for 19F NMR) and Varian 
Unity Plus 400 spectrometer (at 400 MHz for 1H NMR, 101 
MHz for 13C NMR and 376 MHz for 19F NMR). NMR 

chemical shifts are reported in ppm (δ scale) downfield from 
TMS as an internal standard and are referenced using residual 
NMR solvent peaks at 7.26 and 77.16 ppm for 1H and 13C in 
CDCl3, 2.50 and 39.52 ppm for 1H and 13C in DMSO-d6. 
Coupling constants (J) are shown in Hz. Spectra are reported 
as follows: chemical shift (δ, ppm), multiplicity, integration, 
coupling constants (Hz). Elemental analyses were performed 
at the Laboratory of Organic Analysis, Department of 
Chemistry, National Taras Shevchenko University of Kyiv. 
Mass spectra were recorded on an Agilent 1100 LCMSD SL 
instrument (chemical ionization (CI)) and Agilent 5890 Series 
II 5972 GCMS instrument (electron impact ionization (EI)). 
Elemental analysis was performed using Elementar Vario 
MICRO Cube CHNS/O/Cl analyzer. Instant JChem v. 
17.2.27.0 was used for the calculation of physico-chemical 
parameters, Chemaxon, Hungary, www.chemaxon.com 
 
4.1. General procedure for the preparation of esters 16 (Method 
A).  

K2CO3 (27.6 g. 0.180 mol) was added to a stirred solution of 
the corresponding β-alkoxyvinyl α-ketoester 1–3 (0.100 mol) in 
MeCN (300 mL) and the resulting mixture was heated to 70 °C. 
Then, the corresponding NCN binucleophile 4–15 (0.130 mol, or 
0.180 mol in the case of 4) was added in portions. The reaction 
mixture was refluxed for 2 h, then cooled to rt and evaporated in 
vacuo. The residue was diluted with H2O (200 mL) and extracted 
with t-BuOMe (2×100 mL) (in the case of 16{1,8}, 16{1,10} and 
16{ 3,9–10}) or CH2Cl2 (2×100 mL) (in other cases). The organic 
phase was separated, washed with H2O (50 mL), dried over 
Na2SO4, filtered through silica gel and evaporated in vacuo. 

The products 16{3,13–15} contained the corresponding 
methyl esters 17{ 3,13–15} formed by trans-esterification upon 
the reaction with ethyl 4-methoxy-2-oxopent-3-enoate (3). 

Ethy l  pyr imidine-4 -carboxyla te  16{1 ,4} .8 5 
Yielg 3.19 g (21 %); yellow crystals; mp = 39–41 °C 

(hexanes) (lit.85 35–36 °C). 1H NMR (500 MHz, CDCl3) δ 9.36 
(d, J = 1.4 Hz, 1H), 8.94 (d, J = 5.0 Hz, 1H), 7.97 (dd, J = 5.0, 
1.4 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). 
13C NMR (126 MHz, CDCl3) δ 163.5, 158.8, 158.7, 154.5, 120.5, 
62.3, 13.7. LC/MS (CI): m/z = 153 [M+H]+. Anal. calcd. for 
C7H8N2O2: C, 55.26; H, 5.30; N, 18.41. Found: C, 55.37; H, 5.25; 
N, 18.78. 

Ethy l  2- (chloromethyl )pyr imid ine-4-carboxyla te  
16{1 ,6} .  

The compound was purified by distillation in vacuo. Yield 
13.8 g (69%); brownish liquid; bp = 102–104 °C / 1 mmHg. 1H 
NMR (500 MHz, CDCl3) δ 8.97 (d, J = 4.9 Hz, 1H), 7.87 (d, J = 
4.9 Hz, 1H), 4.80 (s, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 
7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 166.1, 163.2, 159.5, 
155.3, 119.1, 62.4, 46.2, 13.7. GC/MS (EI): m/z = 156/158 
[M-OEt+H]+, 173/175 [M-H2C=CH(CH3)+H]+

, 201/203 [M+H]+. 
Anal. calcd. for C8H9ClN2O2: C, 47.90; H, 4.52; N, 13.96; Cl, 
17.67. Found: C, 47.55; H, 4.75; N, 14.01; Cl, 17.71. 

Ethy l  6-methy lpyr imid ine-4-carboxyla te  16{3 ,4} .  
Yield 12.0 g (72%); colorless crystals, mp = 32–34 °C 

(hexanes) (bp = 86–88 °C / 1 mmHg). 1H NMR (500 MHz, 
CDCl3) δ 9.22 (s, 1H), 7.85 (s, 1H), 4.46 (q, J = 7.2 Hz, 2H), 2.62 
(s, 3H), 1.42 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 
169.6, 164.3, 158.8, 154.6, 120.5, 62.6, 24.3, 14.1. LC/MS (CI): 
m/z = 139 [M-H2C=CH(CH3)+H]+, 167 [M+H]+. Anal. calcd. for 
C8H10N2O2: C, 57.82; H, 6.07; N, 16.86. Found: C, 57.51; H, 
6.43; N, 16.86. 
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16{3 ,5} .  

Yield 14.1 g (78%); colorless crystals, mp = 44–47 °C 
(hexanes) (bp = 94–96 °C / 1 mmHg). 1H NMR (500 MHz, 
CDCl3) δ 7.66 (s, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.79 (s, 3H), 2.59 
(s, 3H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 
169.4, 168.7, 164.6, 155.0, 117.4, 62.5, 26.1, 24.3, 14.2. LC/MS 
(CI): m/z = 181[M+H]+. Anal. calcd. for C9H12N2O2: C, 59.99; H, 
6.71; N, 15.55. Found: C, 59.91; H, 6.78; N, 15.34. 

Ethy l  2- (chloromethyl )-6 -methy lpyr imid ine-4-
carboxy la te  16{3 ,6} .  

The compound was purified by distillation in vacuo. Yield 
14.4 g (67%); yellow powder; mp = 36–38 °C; bp = 117–119 °C 
/ 1 mmHg. 1H NMR (500 MHz, CDCl3) δ 7.77 (s, 1H), 4.78 (s, 
2H), 4.48 (q, J = 7.2 Hz, 2H), 2.65 (s, 3H), 1.42 (t, J = 7.2 Hz, 
3H). 13C NMR (126 MHz, CDCl3) δ 170.7, 166.2, 164.0, 155.5, 
119.2, 62.7, 46.8, 24.4, 14.2. GC/MS (EI): m/z = 155/157 
[M-OEt]+, 186/188 [M-H2C=CH(CH3)]

+
, 214/216 [M]+. Anal. 

calcd. for C9H11ClN2O2: C, 50.36; H, 5.17; N, 13.05; Cl, 16.52. 
Found: C, 50.25; H, 5.31; N, 12.73; Cl, 16.72. 

Ethy l  2-cyclopropyl -6-methylpyr imidine-4 -
carboxy la te  16{3 ,8} .  

Yield 15.3 g (74%); yellowish liquid. 1H NMR (400 MHz, 
CDCl3) δ 7.53 (s, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 2.30 
(tt, J = 8.2, 2.7 Hz, 1H), 1.39 (t, J = 7.1 Hz, 3H), 1.16 – 1.13 (m, 
2H), 1.05 – 1.02 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 172.6, 
169.1, 164.8, 154.5, 116.9, 62.2, 24.3, 18.3, 14.2, 11.0. LC/MS 
(CI): m/z = 207 [M+H]+. Anal. calcd. for C11H14N2O2: C, 64.06; 
H, 6.84; N, 13.58. Found: C, 64.05; H, 6.92; N, 13.77. 

Ethy l  6-methy l-2 -phenylpyr imidine-4 -carboxyla te  
16{3 ,9} .  

Yield 19.6 g (81%); yellowish solid; mp = 95–97 °C 
(hexanes). 1H NMR (500 MHz, CDCl3) δ 8.54 (s, 2H), 7.72 (s, 
1H), 7.52 – 7.47 (m, 3H), 4.51 (q, J = 6.7 Hz, 2H), 2.69 (s, 3H), 
1.48 (t, J = 6.7 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 169.6, 
165.0, 164.8, 155.4, 137.1, 130.9, 128.5, 128.5, 118.0, 62.3, 24.6, 
14.2. LC/MS (CI): m/z = 213 [M-Et]-, 243 [M+H]+. Anal. calcd. 
for C14H14N2O2: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.47; H, 
5.97; N, 11.35. 

Ethy l  2- (4 -ch loropheny l) -6-methylpyr imidine-4 -
carboxy la te  16{3 ,10} .  

Yield 23.0 g (83%); colorless powder; mp = 107–109 
(hexanes). °C. 1H NMR (500 MHz, CDCl3) δ 8.49 (d, J = 8.5 Hz, 
2H), 7.73 (s, 1H), 7.47 (d, J = 8.5 Hz, 2H), 4.51 (q, J = 7.0 Hz, 
2H), 2.68 (s, 3H), 1.48 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, 
CDCl3) δ 169.7, 164.7, 164.0, 155.4, 137.2, 135.6, 129.9, 128.7, 
118.1, 62.4, 24.6, 14.2. LC/MS (CI): m/z = 277/279 [M+H]+. 
Anal. calcd. for C14H13ClN2O2: C,s 60.77; H, 4.74; N, 10.12; Cl, 
12.81. Found: C, 60.55; H, 4.66; N, 10.01; Cl, 13.11. 

Ethy l  2- (d imethylamino)-6-methy lpyr imid ine-4-
carboxy la te  16{3 ,13} .  

The compound was obtained as a mixture with methyl 2-
(dimethylamino)-6-methylpyrimidine-4-carboxylate 17{ 3,13} 
(16:17 = 2.5:1). Yield 18.8 g (90%); yellowish liquid. 1H NMR 
(500 MHz, CDCl3) δ 6.84 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.11 
(s, 6H), 2.29 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (126 
MHz, CDCl3) δ 168.9, 164.9, 162.1, 154.6, 107.3, 52.2, 36.3, 
23.9, 13.7. LC/MS (CI): m/z = 210 [M+H]+. 

Methy l  2 -(d imethy lamino)-6 -methyl -pyr imid ine-4-
carboxy la te  17{3 ,13}  (spectra l  data ) .  

1H NMR (500 MHz, CDCl3) δ 6.86 (s, 1H), 3.82 (s, 3H), 3.11 
(s, 6H), 2.29 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 169.0, 

165.4, 162.1, 154.9, 107.4, 61.2 36.4, 23.9. LC/MS (CI): m/z = 
195 [M+H]+. 

Ethy l  6-methy l-2 - (pyrrol id in-1-yl )pyr imidine-4 -
carboxy la te  16{3 ,14} .  

The compound was obtained as a mixture with methyl 6-
methyl-2-(pyrrolidin-1-yl)pyrimidine-4-carboxylate 17{ 3,14} 
(16:17 = 2:1). Yield 21.2 (90%); yellowish oil. 1H NMR (400 
MHz, CDCl3) δ 6.92 (s, 1H), 4.35 (q, J = 6.9 Hz, 2H), 3.62 – 3.54 
(m, 4H), 2.36 (s, 3H), 1.95 – 1.91 (m, 4H), 1.35 (t, J = 6.9 Hz, 
3H). 13C NMR (126 MHz, CDCl3) δ 168.4, 165.5, 160.9, 155.2, 
107.9, 52.8, 46.6, 25.4, 24.4, 14.2. LC/MS (CI): m/z = 236 
[M+H] +. 

Methy l  6 -methy l-2 - (pyrro l id in -1-yl )pyr imid ine-4-
carboxy la te  17{3 ,14}  (spectra l  data ) .  

1H NMR (400 MHz, CDCl3) δ 6.94 (s, 1H), 3.89 (s, 3H), 3.62 
– 3.54 (m, 4H), 2.36 (s, 3H), 1.99 – 1.93 (m, 4H). 13C NMR (126 
MHz, CDCl3) δ 169.6, 166.1, 161.2, 155.6, 108.0, 61.8, 46.7, 
25.5, 24.5. LC/MS (CI): m/z = 222 [M+H]+. 

Ethy l  6-methy l-2 - (p iper id in-1 -yl )pyr imidine-4 -
carboxy la te  16{3 ,15} .  

The compound was obtained as a mixture with methyl 6-
methyl-2-(piperidin-1-yl)pyrimidine-4-carboxylate 17{ 3,15} 
(16:17 = 2:1). Yield 22.2 g (89%); yellowish oil. 1H NMR (500 
MHz, CDCl3) δ 6.94 (s, 1H), 4.40 (q, J = 7.0 Hz, 2H), 3.85 (s, 
4H), 2.39 (s, 3H), 1.68 – 1.60 (m, 6H), 1.41 (t, J = 7.0 Hz, 
3H).13C NMR (126 MHz, CDCl3) δ 169.6, 165.5, 162.1, 155.6, 
108.0, 61.8, 44.6, 25.8, 24.8, 24.5,14.2. LC/MS (CI): m/z = 250 
[M+H] +. 

Methy l  6 -methy l-2 - (p iper id in-1 -y l )pyr imidine-4 -
carboxy la te  17{3 ,15}  (spectra l  data ) .  

1H NMR (500 MHz, CDCl3) δ 6.96 (s, 1H), 3.94 (s, 3H), 3.87 
– 3.86 (m, 4H), 2.39 (s, 3H), 1.68 – 1.60 (m, 6H). 13C NMR (126 
MHz, CDCl3) δ 169.6, 165.5, 162.1, 155.6, 108.1, 61.8, 44.7, 
25.8, 24.8, 24.5. LC/MS (CI): m/z = 236 [M+H]+. 

4.2. General procedure for the preparation of esters 16 (Method 
B). 

Et3N (27.9 mL, 20.2 g, 0.200 mol) was added to a stirred 
mixture of β-alkoxyvinyl ester 1–3 (0.100 mol) and the 
corresponding amidine/guanidine 4–15 (0.120 mol) in 1,4-
dioxane (200 mL). The resulting mixture was stirred at 100 °C 
for 48 h, then cooled to rt and evaporated in vacuo. The residue 
was diluted with H2O (150 mL) and extracted with t-BuOMe 
(2×100 mL). The combined organic extracts were washed with 
water (50 mL), dried over Na2SO4, filtered through silica gel and 
evaporated in vacuo. 

Ethy l  2-methy lpyr imid ine-4-carboxyla te  16{1 ,5} .  
Yield 10.8 g (65%; Method A – 39%); brownish liquid. 1H 

NMR (400 MHz, CDCl3) δ 8.81 (d, J = 4.9 Hz, 1H), 7.74 (d, J = 
4.9 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 2.80 (s, 3H), 1.38 (t, J = 
7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 169.1, 164.3, 159.0, 
155.2, 117.7, 62.6, 26.2, 14.2. LC/MS (CI): m/z = 139 
[M-H 2C=CH(CH3)+H]+

, 167 [M+H]+. Anal. calcd. for 
C8H10N2O2: C, 57.82; H, 6.07; N, 16.86. Found: C, 57.94; H, 
5.68; N, 17.19. 

Ethy l  2-cyclopropylpyr imidine-4-carboxyla te  
16{1 ,8} .  

Yield 14.0 g (73%; Method A – 53%); yellowish liquid. 1H 
NMR (400 MHz, CDCl3) δ 8.71 (d, J = 4.9 Hz, 1H), 7.63 (d, J = 
4.9 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 2.38 – 2.30 (m, 1H), 1.38 
(t, J = 7.2 Hz, 3H), 1.16 – 1.12 (m, 2H), 1.08 – 1.04 (m, 2H). 13C 
NMR (126 MHz, CDCl3) δ 173.1, 164.4, 158.9, 154.8, 117.2, 
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62.4, 18.4, 14.1, 11.4. LC/MS (CI): m/z = 193 [M+H]+. Anal. 
calcd. for C10H12N2O2: C, 62.49; H, 6.29; N, 14.57. Found: C, 
62.22; H, 6.54; N, 14.96.  

Ethy l  2- (4 -ch loropheny l)pyr imidine-4 -carboxyla te  
16{1 ,10} .  

Yield 21.0 g (80%; Method A – 57%); colorless crystals; mp 
= 90–93 °C (hexanes). 1H NMR (500 MHz, CDCl3) δ 8.99 (d, J = 
4.9 Hz, 1H), 8.46 (d, J = 8.7 Hz, 2H), 7.83 (d, J = 4.9 Hz, 1H), 
7.46 (d, J = 8.7 Hz, 2H), 4.50 (q, J = 7.1 Hz, 2H), 1.47 (t, J = 7.1 
Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 163.9, 158.9, 155.2, 
137.1, 134.9, 129.8, 129.5, 128.5, 118.1, 62.1, 13.8. LC/MS (CI): 
m/z = 263/265 [M+H]+. Anal. calcd. for C13H11ClN2O2: C, 59.44; 
H, 4.22; N, 10.66; Cl, 13.49. Found: C, 59.56; H, 4.30; N, 10.86; 
Cl, 13.23. 

Ethy l  2- (methyl th io)pyr imidine-4 -carboxyla te  
{1 ,11} .8 6 

Yield 14.9 g (75%); yellowish liquid. 1H NMR (500 MHz, 
CDCl3) δ 8.59 (d, J = 4.9 Hz, 1H), 7.45 (d, J = 4.9 Hz, 1H), 4.30 
(q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). 13C 
NMR (126 MHz, CDCl3) δ 173.3, 163.3, 158.6, 154.7, 115.0, 
62.0, 13.7, 13.6. LC/MS (CI): m/z = 199 [M+H]+. Anal. calcd. for 
C8H10N2O2S: C, 48.47; H, 5.08; N, 14.13; S, 16.17. Found: C, 
48.85; H, 4.75; N, 14.35; S, 16.54. 

Ethy l  2- (pyrrol id in-1 -y l )pyr imidine-4 -carboxyla te  
16{1 ,14} .  

Yield 18.8 g (85%); yellowish crystals; mp = 54–57 °C 
(hexanes). 1H NMR (500 MHz, CDCl3) δ 8.45 (d, J = 4.7 Hz, 
1H), 7.03 (d, J = 4.7 Hz, 1H), 4.38 (q, J = 7.2 Hz, 2H), 3.65 – 
3.55 (m, 4H), 1.99 – 1.93 (m, 4H), 1.37 (t, J = 7.2 Hz, 3H). 13C 
NMR (126 MHz, CDCl3) δ 164.7, 160.2, 159.1, 155.5, 107.6, 
61.5, 46.3, 25.0, 13.7. LC/MS (CI): m/z = 222 [M+H]+. Anal. 
calcd. for C11H15N3O2: C, 59.71; H, 6.83; N, 18.99. Found: C, 
59.76; H, 6.97; N, 19.18. 

Ethy l  2 ,5 -d imethylpyr imidine-4 -carboxy la te  
16{2 ,5} .  

Yield 13.0 g (71%); yellow liquid. 1H NMR (500 MHz, 
CDCl3) δ 8.45 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.58 (s, 3H), 2.28 
(s, 3H), 1.26 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 
165.4, 164.7, 160.1, 153.9, 126.3, 61.7, 25.0, 15.5, 13.6. LC/MS 
(CI): m/z = 181[M+H]+. Anal. calcd. for C9H12N2O2: C, 59.99; H, 
6.71; N, 15.55. Found: C, 60.17; H, 6.38; N, 15.45. 

Ethy l  2-cyclopropyl -5-methylpyr imidine-4 -
carboxy la te  16{2 ,8} .  

Yield 15.7 g (76%); yellowish liquid. 1H NMR (500 MHz, 
CDCl3) δ 8.50 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 2.39 (s, 3H), 2.28 
(tt, J = 8.3, 3.9 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H), 1.12 – 1.09 (m, 
2H), 1.07 – 1.03 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 170.0, 
165.4, 160.4, 154.3, 126.0, 62.0, 17.8, 15.8, 14.1, 10.8. LC/MS 
(CI): m/z = 135 [M-CO2-H2C=CH(CH3)+H]+, 179 
[M-H 2C=CH(CH3)+H]+

,
 207 [M+H]+. Anal. calcd. for 

C11H14N2O2: C, 64.06; H, 6.84; N, 13.58. Found: C, 63.95; H, 
6.68; N, 13.96. 

Ethy l  2- (4 -ch loropheny l) -5-methylpyr imidine-4 -
carboxy la te  16{2 ,10} .   

Yield 23.0 g (83%); brownish liquid. 1H NMR (400 MHz, 
CDCl3) δ 8.71 (s, 1H), 8.37 (d, J = 8.4 Hz, 2H), 7.46 – 7.38 (m, 
2H), 4.47 (q, J = 7.1 Hz, 2H), 2.48 (s, 3H), 1.44 (t, J = 7.2 Hz, 
3H). 13C NMR (101 MHz, CDCl3) δ 165.3, 161.7, 160.8, 155.1, 
137.0, 135.4, 129.5, 128.8, 127.7, 62.2, 16.1, 14.2. LC/MS (CI): 
m/z = 277/279 [M+H]+. Anal. calcd. for C14H13ClN2O2: C, 60.77; 
H, 4.74; N, 10.12; Cl, 12.81. Found: C, 61.08; H, 4.50; N, 10.09; 
Cl, 13.04. 

Ethy l  2- (methyl th io) -5 -methy lpyr imidine-4-
carboxy la te  16{2 ,11} .  

Yield 14.9 g (75%); brownish liquid. 1H NMR (500 MHz, 
CDCl3) δ 8.38 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.46 (s, 3H), 2.28 
(s, 3H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 
169.8, 164.4, 160.1, 154.5, 124.0, 61.6, 15.1, 13.7, 13.6. LC/MS 
(CI): m/z = 213 [M+H]+. Anal. calcd. for C9H12N2O2S: C, 50.93; 
H, 5.70; N, 13.20; S, 15.10. Found: C, 50.55; H, 6.07; N, 13.51; 
S, 15.17. 

Ethy l  5-methy l-2 - (pyrrol id in-1-yl )pyr imidine-4 -
carboxy la te  16{2 ,14} .  

Yield 20.0 g (85%); yellowish crystals; mp = 40–41 (hexanes) 
°C. 1H NMR (500 MHz, CDCl3) δ 8.21 (s, 1H), 4.37 (q, J = 7.1 
Hz, 2H), 3.53 (s, 4H), 2.19 (s, 3H), 1.93 (s, 4H), 1.36 (t, J = 7.1 
Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 165.7, 160.5, 158.8, 
155.3, 114.8, 61.2, 46.2, 25.1, 14.5, 13.7. LC/MS (CI): m/z = 236 
[M+H] +. Anal. calcd. for C12H17N3O2: C, 61.26; H, 7.28; N, 
17.86. Found: C, 61.56; H, 7.20; N, 17.89. 

Ethy l  2-aminopyrimidine-4-carboxyla te  16{1 ,12} .7 3 
After evaporation in vacuo of the reaction mixture, the residue 

was diluted with H2O (100 mL) and t-BuOMe (30 mL). The 
precipitate formed was filtered, washed with H2O (2×10 mL) and 
dried in vacuo. Yield 12.7 g (76%); beige powder; mp = 239–242 
°C (EtOH). 1H NMR (500 MHz, DMSO-d6) δ 8.46 (dd, J = 4.9, 
2.2 Hz, 1H), 7.05 (s, 2H), 7.04 (dd, J = 4.4, 1.5 Hz, 1H), 4.30 (q, 
J = 6.9 Hz, 2H), 1.29 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, 
DMSO-d6) δ 164.9, 164.4, 161.0, 156.1, 109.4, 61.9, 14.5. 
LC/MS (CI): m/z= 122 [M-OEt]+, 168 [M+H]+. Anal. calcd. for 
C7H9N3O2: C, 50.29; H, 5.43; N, 25.14. Found: C, 50.05; H, 5.15; 
N, 25.10. 

Ethy l  2-amino-5-methylpyr imidine-4 -carboxyla te  
16{2 ,12} .  

After evaporation in vacuo of the reaction mixture, the residue 
was diluted with H2O (100 mL) and t-BuOMe (30 mL). The 
precipitate formed was filtered, washed with H2O (2×10 mL) and 
dried in vacuo. Yield 13.8 g (75%); yellowish powder; mp = 
195–199 °C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 8.27 (s, 
1H), 6.67 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 2.14 (s, 3H), 1.30 (t, J 
= 7.1 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.8, 162.5, 
161.9, 155.9, 116.38, 61.7, 14.7, 14.5. LC/MS (CI): m/z= 182 
[M+H] +. Anal. calcd. for C8H11N3O2: C, 53.03; H, 6.12; N, 23.19. 
Found: C, 52.96; H, 6.44; N, 23.48. 

Ethy l  2-amino-6-methylpyr imidine-4 -carboxyla te  
16{3 ,12} .8 7 

After evaporation in vacuo of the reaction mixture, the residue 
was diluted with H2O (100 mL) and t-BuOMe (30 mL). The 
precipitate formed was filtered, washed with H2O (2×10 mL) and 
dried in vacuo. Yield 14.9 g (82%); brownish powder; mp = 145–
147 °C (EtOH) (lit.87 151 °C). 1H NMR (500 MHz, DMSO-d6) δ 
6.96 (s, 1H), 6.90 (s, 2H), 4.29 (q, J = 7.0 Hz, 2H), 2.31 (s, 3H), 
1.29 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 
170.3, 165.1, 164.3, 156.0, 109.0, 61.8, 24.1, 14.5. LC/MS (CI): 
m/z= 182 [M+H]+. Anal. calcd. for C8H11N3O2: C, 53.03; H, 6.12; 
N, 23.19. Found: C, 53.06; H, 6.43; N, 23.46. 
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