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Graphical abstract 

Novel resveratrol-based flavonol derivatives: synthesis and anti-inflammatory 

activity in vitro and in vivo 

 

 

 

 

New resveratrol-based flavonol derivatives with anti-inflammatory were 

synthesized.  Among them, one compound could significantly decreased production 

of NO, IL-6 and TNF-α LPS-stimulated. Preliminary mechanism indicated that it 

could inhibit expression of TLR4, resulting in activation cell signaling pathway 

NF-ĸB and MAPK. The in vivo anti-inflammatory activity was determined by 

LPS-induced acute lung injury.  
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Abstract:  In order to discover novel anti-inflammatory agents, total thirty-seven new 

resveratrol-based flavonol derivatives were designed and synthesized. All compounds have 

been screened for their anti-inflammatory activity by evaluating their inhibition effect of 

LPS-induced NO production in RAW 264.7 macrophages. Their toxicity was also assessed 

in vitro. Structure-activity relationships (SARs) have been concluded, and finally 

2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one was found to 

be the most active scaffold with low toxicity. This compound could significantly decrease 

productions of NO, IL-6 and TNF-α with IC50 values of 1.35, 1.12 and 1.92 µM, 

respectively in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it 

could inhibit the expression of TLR4 protein, resulting in activation of the NF-ĸB cell 

signaling pathway. The in vivo anti-inflammatory activity of this compound could reduce 

pulmonary inflammation by mouse model of LPS-induced acute lung injury (ALI). We 

believe these findings would further support studies of rational design of more efficient 

acute lung injury regulatory inhibitors. 
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1. Introduction 

Pro-inflammatory cytokines play an important role in the defense of disease [1,2]. 

however, uncontrolled and excess release of pro-inflammatory mediators such as NO, 

interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-1β (IL-1β), tumor necrosis factor 

alpha (TNF-α) and IL-8 can lead to multiple types of inflammatory diseases such as acute 

lung injury (ALI) [3-6]. ALI is a critical illness caused by excessive inflammation, with the 

manifestations of acute respiratory distress, non-cardiogenic pulmonary edema and 

hypoxemia [7-9]. Many cytokines, such as IL-6, IL-1β and TNF-α have been confirmed to 

regulate the pathogenesis of ALI through a series of cell cytokine signaling pathways 

[10,11]. Despite airway management and protective ventilation strategies have been 

advanced, the mortality rate among ALI patients remains high due to lack of effective 

drugs [12,13]. Therefore, discovery of highly effective drugs and therapies inhibiting the 

production and release of pro-inflammatory cytokines for treatment of ALI is urgent. 

It has been reported that LPS works by activating its major receptor TLR4, triggering 

the innate immune systems [14,15], with subsequent activation of nuclear factor (NF-κB) 

and mitogen-activated protein kinases (MAPK) to induce the release of pro-inflammatory 

cytokines [16]. Upon stimulation with LPS, TLR4 initiates the series of signaling cascades 

that result in activation of NF-κB and MAPK to induce the release of pro-inflammatory 

cytokines such as NO and IL-6 [17]. 

Resveratrol, a natural product with stilbene moiety which plays an important 

anti-inflammatory role [18-22], is the most famous lead template for the drug design and 

discovery [23-25]. In our previous study, based on its good safety profile, diversified 

derivatives containing resveratrol were designed and synthesized. Among them, 

resveratrol-based cinnamic ester hybrids indicated good anti-inflammatory activity through 

reducing proinflammatory cytokines due to its inhibitory effect on the NF-κB signaling 

pathway. Unfortunately, the activity of these compounds in vivo is not satisfactory. We 

focused on this structure and speculated that the α, β unsaturated ketone moiety was prone 

to Michael addition reaction in vivo, which should be affect activity (Figure 1). Based on 

this, we intend to retain the resveratrol skeleton fragments while forming a rigid plane of α, 

β unsaturated ketone, and look forward to improving activity. So, as part of our continuous 
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interest in search of novel resveratrol analogs as anti-inflammatory agents with good 

bioavailability, other active unit was considered to introduce. As is known, flavonoids in 

citrus have been widely studied for their potential anti-inflammatory actions, subclasses of 

dietary flavonoids can alter both bioavailability and bioactivity [26-28]. Therefore, based 

on these two naturally and pharmaceutically active scaffolds, some new resveratrol-based 

flavonoid were synthesized (Figure 1), in-house compounds library screening showed that 

most compounds had no toxicity against tumor cell lines. Further activity tests showed that 

the toxicity of RAW 264.7 cells was also low. We then evaluated their anti-inflammatory 

activity in vitro and in vivo.  

 

Figure 1 

 

2. Results and discussion 

 

2.1 Chemistry 

The synthesis of resveratrol aldehyde derivatives (3a~3d) fragment was exhibited in 

Scheme 1. Compounds (2a~2d) were obtained by reacting pterostilbene with a brominated 

alkane in the presence of potassium carbonate (K2CO3) and tetrabutylammonium bromide 

(TBAB) in acetone under reflux condition. With the Vilsmeier reaction of compounds 

2a~2d using POCl3 and DMF afforded the key aldehyde intermediates 3a~3d.  

Resveratrol-based flavone derivatives 5a~5v were outlined in Scheme 2. Reaction of 

resveratrol aldehyde derivatives (3a~3d) with hydroxyacetophenone derivatives in ethanol 

in the presence of pyrolidine resulted to compounds 4a~4v. Then, resveratrol chalcone 

derivatives were treated with iodine (I2) in DMSO under reflux, compounds 5a~5v were 

obtained, their structures were shown in Table 1. Resveratrol flavonol derivatives (7a~7o) 

were prepared following the procedure described by Scheme 3. The synthesis method of 

compounds 6a~6o is the same as compounds 4a~4v. Then, resveratrol flavonol derivatives 

(7a~7o) were prepared from compounds 6a~6o by treatment with NaOH and 30% H2O2 in 

the presence of methanol at 40 °C. The structures of 7a~7o shown in Table 2. All 

compounds were purified by recrystallization or column chromatography and characterized 
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by 1H NMR, 13C NMR and HRMS (ESI).  

 

Schemes 1~3 

Tables 1~2 

 

2.2 Crystal structure of compounds 5r and 5u. 

The structure of compound 5r was determined by X-ray crystallography (Figure 2). 

Crystallographical data: C30H30O6, Triclinic, space group p-1; a = 9.8786 (7), b = 

11.6966(11), c = 22.6393 (17) (Å); α = 93.908 (7), β = 98.968 (6), γ = 94.751 (6) (°), V = 

2566.3 (4)  nm3, T =293 (2) K, Z = 4, Dc = 1.259 g/cm3, F(000) = 1032, Reflections 

collected/unique =17725/10093, Data/restraints/parameters = 10093/0/657, Goodness of fit 

on F2 = 1.073, Fine, R1 = 0.1167, wR(F2) = 0.1589. Compound 5u: C33H28O6, Triclinic, 

space group p-1; a = 10.1966 (13), b = 16.739 (3), c = 17.174(3) (Å); α = 65.938 (16), β = 

76.808 (14), γ = 88.373(12) (°), V = 2599.0(7)  nm3, T = 293(2) K, Z = 4, Dc = 1.33 g/cm3, 

F(000) = 1096, Reflections collected/unique = 17809/10212, Data/restraints/parameters = 

10212/0/709, Goodness of fit on F2 = 1.025, Fine, R1 = 0.1646, wR(F2) = 0.23. 

Crystallographic data (excluding structure factors) for the structures have been deposited 

into the Cambridge Crystallographic Data Center. 

 

(Figure 2) 

 

2.3 Inhibitory activities against LPS-induced NO release 

NO is an important pro-inflammatory mediator [29]. Excessive production of NO was 

found play an important role in many inflammatory diseases [30]. So NO inhibitors 

accepted that may offer potential opportunity to cure inflammatory diseases [31,32]. RAW 

264.7 cells as useful cell model in screening anti-inflammatory drugs, since their 

stimulation by LPS induces and secretion of pro-inflammatory cytokines such as NO, IL-6 

and TNF-α. In order to evaluate the anti-inflammatory activity of synthetic compounds, 

RAW 264.7 cells were pre-incubated with all compounds (10 µM) for 1 h and treated with 
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LPS (0.5 µg/mL ) for 24 h. The cell conditioned medium was collected, the NO in the 

media was detected by Griess Reagent assay. The screening results indicated that most of 

the synthetic compounds could reduce the LPS-induced NO secretion at 10 µM (Figure 3). 

Among them, compounds 5e and 5h showed moderate inhibition of NO compared to that 

of the positive control Celecoxib. It is noteworthy that compounds 7d, 7f, 7i, 7k and 7m 

exhibited stronger inhibition of NO production compared with the referece compounds 

celecoxib and resveratrol. According to this, SARs can be easily concluded that 

introduction of the hydroxyl group to flavonoid is beneficial to NO release activity. 

 

Figure 3 

 

2.4 Assessment of toxicity  

Preliminary screening results showed that some compounds had good 

anti-inflammatory activity. To confirm the need for further evaluation, we then evaluated 

the cytotoxicity of selected compounds using the MTT assay on the RAW264.7 cell. As 

showned in Figure 4, most of the compounds shown low toxicity at 20 µM. Compounds 5f, 

5o, 5u, 5v, 7b and 7n show weak cytotoxicity. Therefore, these compounds are valuable 

for further evaluation. 

 

Figure 4 

 

2.5 Inhibition of cytokine production by the active compounds 

Two important cytokines, IL-6 and TNF-α have been shown to exert regulating effects 

on the pathogenesis of ALI through a series of cytokine signaling pathways [33,34]. So, 

compounds with good NO activity were further tested for inhibition of others inflammatory 

factors as IL-6 and TNF-α. Cells were pretreated with different concentrations of 

compounds. The results indicated that most compounds had good IL-6 and TNF-α activity. 

Among them, compounds 7d, 7f and 7i were selected for further assessment of their 

concentration dependent inhibitory effects against LPS-induced NO, TNF-α, IL-6 release. 

Macrophages were pretreated with compounds 7d, 7f and 7i, in a series of concentrations 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 6

(10, 5, 2.5, 1.25 and 0.625 µM) for 1 h and with LPS (0.5 µg/ mL) for 24 h. As shown in 

Figure 5, these compounds significantly decreased NO (IC50s 1.78, 1.35 and 4.83 µM, 

respectively), IL-6 (IC50s 2.37, 1.12 and 5.06 µM, respectively) and TNF-α (IC50s 5.00, 

1.92 and 7.34 µM, respectively) secretion in a concentration-dependent manner. Based on 

above, compound 7f is the most prominent one. Thus, compound 7f was used as the title 

compound for next mechanism exploration.    

  

Figure 5 

 

2.6 Mechanism explorations of anti-inflammatory activity 

2.6.1 Suppression of LPS-induced inflammatory response  

NO, being an important signaling molecule, which is also importantly related to 

modulation expression of iNOS and COX-2 [35]. Activation of cellular pathways leads to 

high expression of iNOS and COX-2 protein. Thus, inhibitory effects of compound 7f on 

LPS-mediated expressions of iNOS and COX-2 were analyzed by Western blot. As shown 

in Figure 6, the LPS (0.5 µg/mL) stimulation for 24 h could be markedly augmented iNOS 

and COX-2 expression. However, compound 7f concentration dependently suppressed 

LPS-induced iNOS and COX-2 expression. This results once more demonstrated that 

compound 7f prevented LPS-induced inflammatory response in macrophages. 

 

Figure 6 

 

2.6.2 Inhibition of LPS-induced ERK and P38 signaling activation  

Protein TLR4 is a key protein of the LPS-activated cellular signaling pathway and has 

been reported as critical for the inflammatory response to LPS [30]. When LPS stimulate 

cell, TLR4 initiates series of signaling cascades that result in the activation cell signaling 

pathway including NF-ĸB and MAPK to induce expression pro-inflammatory proteins 

[14,31]. Recent studies found that inhibition of TLR4 expression could decrease the 

expressions of NO, IL-6, TNF-α and IL-1β. So we investigated whether compound 7f 

inhibited the expression of TLR4 by Western blot. The results confirmed that TLR4 
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expression was up-regulated in LPS-induced RAW264.7 cells, which was reversed in a 

concentration-dependent manner by pretreated with compound 7f. 

NF-ĸB and MAPKs are also known to participate in regulating the inflammatory 

process. MAPK, including ERK, p38, and JNK were quite significant in the regulation of 

inflammation [35,36]. LPS-stimulated macrophages can activate MAPKs signaling path, 

allowing the transcription factors AP-1 translocate into the nucleus and bind to target 

promoters turn on transcriptions of inflammatory genes including production of NO, 

TNF-α, IL-6 and other inflammatory mediators [30]. Therefore, we detected the effects of 

compound 7f on LPS-mediated MAPK signaling activation by Western blot. Consistent 

with previous reports of LPS time dependently activation MAPK (JNK, p38 and ERK) and 

caused a peak level of phospho-rylated MAPK (JNK2, p38 and ERK) at 15 or 30 min in 

RAW264.7 cells. Interestingly, compound 7f only concentration-dependent blocked 

LPS-induced ERK phosphorylation and p38 phosphorylation, but not JNK phosphorylation. 

Moreover, total protein levels of ERK, JNK and P38 were not affected by LPS and 

treatment of compound 7f (Figure 7). 

 

Figure 7 

 

2.6.3  Inhibition of activation of LPS-induced NF-kB signaling pathway  

NF-κB is one of the principal factors for the production proinflammatory cytokines 

associated with LPS-induced signaling pathways [36]. Among NF-κB family, the 

transcription factor P65 plays the most important role in the development of inflammation 

[37-38]. A large number of inflammation cytokines stimuli such as LPS, TNF-α and IL-1β 

can activation of IκB kinase (IKK), which in turn phosphorylates IκB. Phosphorylates IκB 

results in its ubiquitination and degradation by the proteasome, allowing the liberated 

NF-κB to translocate into the nucleus and bind to target promoters turn on transcriptions of 

inflammatory genes. Herein, we analyzed them by Western blot. The results showed 

compound 7f could be effect of IκB proteins phosphorylation and degradation (Figure 8). 

Meanwhile, it maybe inhibits NF-κB p65 translocate into the nucleus.   

 Figure 8  
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2.7 Molecular docking 

It has been reported that Tak1 is traditionally accepted as the primary LPS receptor and 

critical for the inflammatory response to LPS [14-17]. Upon stimulation with LPS, TLR4 

initiates series of signaling cascades that result in activation of TAK1 signal pathway. Tak1 

could activate NF-κB and MAPK, then induce the release of pro-inflammatory cytokines. 

In order to elucidate the mechanism by which compound 7f can induce the release of 

pro-inflammatory cytokine. Molecular docking of this compound into binding site of 

human TAK1 was performed (Discovery Studio 2018). The result shows that compound 7f 

may well bind to TAK1 and can form interaction with Val42, Val50, Cys174, Leu163. Its 

4-position carbonyl forms a stable hydrogen bond interaction with Tyr106. These results 

suggested that the anti-inflammatory activity of compound 7f might be bind to TAK1 

protein (Figure 9).  

 

Figure 9 

 

2.8 In vivo activity of compound 7f 

To evaluate the activity in vivo, compound 7f was next evaluated with the ALI rat 

model. C57/BL6 mice were treated by intraperitoneal injection with compound 7f (15 

mg/kg), and after 30 min, were challenged with 5 mg/kg LPS by intratracheal injection. 

Myeloperoxidase (MPO) is released from the cytoplasmic granules of activated phagocytes, 

and as such, measurement of MPO activity in whole lung homogenates reflects the 

accumulation of neutrophils in the lungs. As showned in Figure 10A, LPS significantly 

increased MPO activity of lung tissue compared to the control group, in which the 

administration of compound 7f effectively prevented the increase. Besides, due to LPS 

challenge significantly reduce body weight, however, compound 7f seemed to have little 

effect on the weight loss induced by LPS. Lung wet/dry weight ratio was calculated to 

assess pulmonary edema. LPS significantly increased the lung Wet/Dry ratio (W/D). 

However, compound 7f was able to reduce or prevent lung injury in ALI mice (Figure 

10B). In addition, to further research the protective effect of compound 7f against 

LPS-induced ALI. As depicted in Figure 10C, with the challenge of LPS, the survival rate 
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of ALI mice at 24 h was 60% while administration of compound 7f improved the survival 

rate of 90%. When LPS challenge was extended to 48 h, most mice dead. Compound 7f 

(20 mg/kg) could markedly increase the survival rate of ALI mice from 10% to 50% 

(Figure 10D). To assess histological changes in LPS-challenged mice following treatment 

with compound 7f, we performed hematoxylin and eosin (H&E) staining (Figure 10E). 

LPS instillation led to significant pro-inflammatory alterations, alveolar hemorrhage, 

including lung edema, inflammatory cell infiltration, and destruction of alveolar structure. 

These histopathological changes were improved with treatment of either 10 and 20 mg/kg 

of compound 7f. These studies showed that compound 7f had a protective effect on 

LPS-induced histopathological changes in a mouse model of ALI. 

In order to determine what is the toxicity profile of the most active compound 7f on 

experimental animals, mice were treated with compound 7f (20 mg/kg) solutions by 

intraperitoneal injection. The mice live normally, no differences compared to the control 

group. lung sections were subjected to hematoxylin and eosin staining. we couldn’t find 

significant pro-inflammatory alterations, alveolar hemorrhage, including lung edema, 

inflammatory cell infiltration, and destruction of alveolar structure. Lung tissues showed a 

normal structure and no histopathological change under a light microscope (Figure 11). 

 

Figures 10~11 

 

3. Conclusions 

In summary, based on finding novel compounds with activity of acute lung injury, 

thirty-nine resveratrol-based flavonol derivatives were designed and synthesized. The 

initial evaluation results showed that most compounds had good NO inhibitory activity and 

low toxicity. According to SARs, the introduction of a hydroxyl group into flavonoid is 

beneficial to anti-inflammatory activity. Specifically, the title compound 7f could inhibit 

IL-6, NO and TNF-α secretion in a dose-dependent manner. The preliminary mechanism 

indicated that this compound suppressed LPS-induced expressions of iNOS and COX-2, 

and productions of IL-6, TNF-α and NO through NF-κB/MAPK signaling pathway in a 

concentration dependent manner (Figure 12). The further study in vivo showed that the title 
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compound 7f effectively reduced LPS-induced pulmonary inflammation and acute lung 

injury in mouse model. Compared to resveratrol-based cinnamic ester hybrids (our 

previous work) and the title compounds synthesized in this resveratrol-based flavonols 

(this work), the anti-inflammatory activity of the title compound was dramatically 

enhanced at the cellular level, and the activity of acute lung injury was further confirmed 

by animal experiments in vivo. In addition, the toxicity of these compounds is lower than 

previous compounds [22]. 

 

Figure 12 

 

4. Experimental section 

 

4.1 Chemistry 

In general, all reagents used in the synthesis were obtained from Aladdin. Adamas, 

Tan soole et al. without further purifications. Reactions were monitored by analytical 

thin-layer chromatography (TLC) and visualized under UV light (λ=254 or 365 nm). 

Purification by chromatography column were carried on using silica gel (200-300 meshes).  

Fourier transform mid-infrared spectra were measured using a Nicolet 6700 spectrometer 

(Thermo Fisher Scientific Inc., Madison, WI) with SMART iTR attenuated total 

reflectance (ATR) accessory. All the 1H and 13C NMR (Nuclear Magnetic Resonance) 

spectra were recorded either with a Agilent 400 or 600 MHz spectrometer. The ESI-MS 

spectra were recorded on a Mariner System 5304 Mass spectrometer. Melting points were 

determined on a XT4MP apparatus (Taike Corp., Beijing, China), and uncorrected. 

 

4.2 Crystallographic studies 

Compounds 5r and 5u were chosen for X-ray diffraction analysis performed on a 

BRUCKER SMART APEX-CCD diffractometer equipped with a graphite monochromatic 

MoKa radiation (λ = 0.71073 A) radiation at 293(2) K. A total reflections were collected in 

the range of 0.97<θ<26.1o by using a ψ-ω scan mode with independent ones, of which 

I>2σ(I) were observed and used in the succeeding refinements. The data set were corrected 
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by SADABS program and the structure were solved by direct methods with SHELXS-97 

and refined by full-matrix least-squares method on F2 with SHELXL-97 [39]. The 

non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were added 

according to theoretical models. The structures were refined by full-matrix least-squares 

method on F2 with SHELXT-97.  

 

4.3 Synthesis of resveratrol-based flavone derivatives 5a~5v 

A solution containing of compounds 4a~4v (1 mmol, 1.0 equiv) and I2 (0.01 mmol, 

0.01 equiv) in dimethyl sulfoxide (15 mL) was stirred for 4-6 h at 130 °C. Then the 

resulting mixture was slowly added to a solution of ice-water, stirred for 2 h and filtered to 

obtain the crude product. Which was purified by column chromatography on silica gel 

(EtOAc/petroleum ether = 1:3), to afford the corresponding pure products 5a~5v (Scheme 

1). The final products provided the following data. 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5a). White solid, 

Yield: 90%, Mp: 193-197 °C. 1H NMR (600MHz, CDCl3) δ 8.27 (d, J = 7.8 Hz, 1H), 7.65 

(t, J = 7.7 Hz, 1H), 7.43 (dd, J = 14.9, 7.8 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.07-6.98 (m, 

1H), 6.92-6.83 (m, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.44 (d, J = 21.6 Hz, 2H), 3.92 (s, 3H), 

3.78 (t, J = 5.8 Hz, 6H). 13C NMR (151 MHz, CDCl3): δ 173.36 (s), 163.97 (s), 162.31 (s), 

160.96 (s), 157.47 (s), 146.85 (s), 142.56 (s), 141.89 (s), 135.75 (s), 133.61 (s), 132.11 (s), 

130.51 (s), 127.14 (s), 127.04 (s), 124.85 (s), 128.08 (s), 120.15 (s), 115.78 (s), 113.98 (s), 

103.94 (s), 100.63 (s), 57.61 (s), 57.46 (s), 56.89 (s). MS (ESI): 415.1440. MS(ESI): 

415.1440 (C26H23O5, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-7-methyl-4H-chromen-4-one (5b). White 

solid, Yield: 61%, Mp: 186-189 °C. 1H NMR (600 MHz, DMSO) δ 7.95 (d, J = 8.1 Hz, 

1H), 7.41 (s, 1H), 7.35 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 8.1 Hz,1H), 7.25 (d, J = 16.1 Hz, 

1H), 7.01 (t, J = 4.2 Hz, 1H), 6.87-6.83 (m, 3H), 6.62 (d, J =1.9 Hz, 1H), 6.23 (s, 1H), 3.88 

(s, 3H), 3.75 (s, 3H), 3.69 (d, J = 3.7 Hz, 3H), 2.42 (s,3H). 13C NMR (101 MHz, CDCl3): δ 

175.27 (s), 162.78 (s), 160.29 (s), 159.73 (s),156.29 (s), 147.14 (s), 145.65 (s), 142.22 (s), 
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139.47 (s), 131.87 (s), 130.13 (s), 128.89(s), 126.93 (s), 124.89(s), 123.64 (s), 120.73 (s), 

118.87 (s), 99.87(s), 98.79 (s), 113.18(s), 110.76 (s), 56.85 (s), 55.81 (s), 55.95 (s), 20.95 

(s). MS(ESI): 429.1697 (C27H25O5, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6-methyl-4H-chromen-4-one (5c). White 

solid, Yield: 59%, Mp: 187-192 °C. 1H NMR (600 MHz, CDCl3) δ 8.07(s, 1H), 7.46 (d, J = 

8.0 Hz, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 16.0 Hz, 1H), 

6.92-6.84 (m, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.44 (d, J = 29.6 Hz, 2H), 3.92 (s, 3H), 3.78 (d, 

J = 1.7 Hz, 6H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 168.94(s), 161.46 (s), 

158.79 (s), 156.89 (s), 154.56 (s), 143.94 (s), 136.73 (s), 135.54 (s), 134.79 (s), 134.12 (s), 

130.98 (s), 128.93 (s), 128.14 (s), 125.17 (s), 122.81 (s), 120.91 (s), 117.94 (s), 113.89 (s), 

110.95 (s), 100.96 (s), 98.80 (s), 58.03 (s), 54.73 (s), 52.43 (s), 22.98 (s). MS(ESI): 

429.1694 (C27H25O5, [M+H]+). 

 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6,7-dimethyl-4H-chromen-4-one (5d). 

White solid, Yield: 72%, Mp: 203-207 °C. IR (ATR Diamond Crystal, cm-1): v 2972, 1620, 

1596, 1461, 1332, 1302, 1159, 1177, 967, 830; 1H NMR (600 MHz, CDCl3) δ 7.98 (d, J = 

35.8 Hz, 1H), 7.28 (d, J = 8.5 Hz, 2H), 7.22 (s, 1H), 7.03 (d, J =16.0 Hz, 1H), 6.91-6.84 (m, 

2H), 6.80 (d, J = 8.5 Hz, 2H), 6.46 (s, 1H), 6.38 (s, 1H), 3.92 (s, 3H), 3.77 (s, 6H), 2.37 (d, 

J = 9.2 Hz, 5H). 13C NMR (101 MHz, CDCl3): δ 179.68 (s), 163.59 (s), 158.97 (s), 157.81 

(s), 156.16 (s), 145.27 (s), 145.00 (s), 138.98 (s), 137.50 (s), 135.64 (s), 130.29 (s), 128.97 

(s), 128.15 (s), 123.83 (s), 122.66 (s), 109.98 (s), 107.67 (s), 106.88 (s), 103.62 (s), 101.30 

(s), 99.00 (s), 57.02 (s), 56.54 (s), 56.19 (s), 21.65 (s), 20.19 (s). MS(ESI): 443.1854 

(C28H27O5, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6-methoxy-4H-chromen-4-one (5e). 

Yellow solid, Yield: 66%, Mp: 168-170 °C. 1H NMR(600 MHz, CDCl3) δ 7.64 (d, J = 2.9 

Hz, 1H), 7.39 (d, J = 9.1 Hz, 1H), 7.28 (d, J = 8.6 Hz, 2H), 7.26-7.24 (m, 1H), 7.03 (d, J = 

16.0 Hz, 1H), 6.87 (d, J = 15.9 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.44 (d, J = 22.9 Hz, 2H), 

3.92 (s, 6H), 3.78 (s, 6H). 13C NMR (101 MHz, DMSO): δ 178.09 (s), 164.72 (s), 161.29 
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(s), 159.73 (s), 156.44 (s), 149.82 (s), 146.91 (s), 141.76 (s), 140.53 (s), 131.79 (s), 129.02 

(s), 125.83 (s), 122.48 (s), 120.70 (s), 117.63 (s), 115.05 (s), 114.28 (s), 112.05 (s), 100.96 

(s), 98.92 (s), 96.80 (s), 57.86 (s), 55.09 (s), 53.51 (s), 45.05 (s). MS(ESI): 445.1650 

(C27H25O6, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6,7-dimethoxy-4H-chromen-4-one (5f). 

Yellow solid, Yield: 42%, Mp: 188-192 °C. 1H NMR (600 MHz, DMSO) δ 7.39 (s, 1H), 

7.33 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.20 (s, 1H), 7.00 (d, J = 1.8 Hz, 1H), 

6.85 (t, J = 11.6 Hz, 2H), 6.81 (d, J = 16.2 Hz, 1H), 6.61 (t, J = 3.0 Hz, 1H), 6.19 (s, 1H), 

3.88 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.75 (s, 3H), 3.70 (s, 3H). 13C NMR (101 MHz, 

DMSO): δ 178.09 (s), 164.72 (s), 161.29 (s), 159.73 (s), 156.44 (s), 149.82 (s), 146.91 (s), 

141.76 (s), 140.53 (s), 131.79 (s), 129.02(s), 125.83 (s), 122.48 (s), 120.70 (s), 117.63 (s), 

115.05 (s), 114.28 (s), 112.05 (s), 100.96 (s), 98.92 (s), 96.80 (s), 57.86 (s), 55.09 (s), 53.51 

(s), 42.05(s), 39.67 (s). MS(ESI): 475.1760 (C28H27O7, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-7-fluoro-4H-chromen-4-one (5g). Yellow 

solid, Yield: 78%, Mp: 186-191 °C. 1H NMR (600 MHz, CDCl3) δ 8.28 (dd, J = 8.5, 6.5 

Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.14 (dd, J = 20.3, 8.8 Hz, 2H), 7.03 (d, J = 16.0 Hz, 

1H), 6.89-6.78 (m, 4H), 6.49-6.39 (m, 2H), 3.93 (s, 3H), 3.79 (d, J = 1.1 Hz, 6H). 13C 

NMR (101 MHz, DMSO): δ 185.91 (s), 174.63 (s), 165.87 (s), 155.84 (s), 150.16 (s), 

147.85 (s), 145.32 (s), 139.04 (s), 137.53 (s), 129.72 (s), 127.91 (s), 125.95 (s), 123.96 (s), 

123.56 (s), 120.94 (s), 118.90 (s), 115.64 (s), 113.64 (s), 108.12 (s), 102.95 (s), 98.70 (s), 

53.88 (s), 50.52 (s), 45.65 (s). MS(ESI): 433.1449 (C26H22FO5, [M+H]+). 

 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6-fluoro-4H-chromen-4-one (5h). White 

solid, Yield: 59%, Mp: 216-220 °C. IR (ATR Diamond Crystal, cm-1): v 3002, 2936, 2836, 

1640, 1568, 1474, 1340, 1240, 1085, 843; 1H NMR (600 MHz, CDCl3) δ 7.91 (dd, J = 8.1, 

2.4 Hz, 1H), 7.45 (dd, J = 9.0, 3.9 Hz, 1H), 7.38 (dd, J = 11.4, 5.1 Hz, 1H), 7.28 (d, J = 8.5 

Hz, 2H), 7.03 (d, J = 16.0 Hz, 1H), 6.91-6.79 (m, 4H), 6.45 (d, J = 25.2 Hz, 2H), 3.93 (s, 

3H), 3.79 (d, J = 2.5 Hz, 6H). 13C NMR (101 MHz, DMSO): δ 171.91 (s), 161.93 (s), 
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159.20 (s), 158.84 (s), 157.16 (s), 151.85 (s), 146.32 (s), 140.04 (s), 138.63 (s), 130.92 (s), 

129.21 (s), 127.95 (s), 123.16 (s), 122.56 (s), 121.74 (s), 121.20 (s), 114.14 (s), 111.44 (s), 

109.12 (s), 100.95 (s), 97.78 (s), 55.88 (s), 55.52 (s), 55.05 (s). MS(ESI): 433.1441 

(C26H22FO5, [M+H]+). 

(E)-8-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5i). White 

solid, Yield: 58%, Mp: 231-234 °C. 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 7.9 Hz, 1H), 

7.66 (t, J = 7.7 Hz, 1H), 7.47-7.40 (m, 2H), 7.31-7.24 (m, 2H), 6.88 (dd, J = 14.6, 8.7 Hz, 

2H), 6.81 (d, J = 8.4 Hz, 2H), 6.47 (s, 2H), 3.93 (s, 3H), 3.78 (d, J = 4.7 Hz, 6H). 13C NMR 

(101 MHz, DMSO): δ 182.91 (s), 167.63 (s), 160.16 (s), 159.864 (s), 158.06 (s), 152.75 (s), 

148.02 (s), 141.24 (s), 139.53 (s), 131.52 (s), 128.91 (s), 128.05 (s), 122.16 (s), 121.56 (s), 

120.74 (s), 120.20 (s), 115.14 (s), 112.14 (s), 108.62 (s), 100.35 (s), 96.78 (s), 57.12 (s), 

54.82 (s), 52.05 (s). MS(ESI): 449.1147 (C26H22ClO5, [M+Na]+). 

(E)-7-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5j). White 

solid, Yield: 68%, Mp: 221-225 °C. 1H NMR(400 MHz, CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 

7.29 (d, J = 8.5 Hz, 2H), 7.25 (s, 1H), 7.04 (d, J = 16.1 Hz, 1H), 6.89 (d, J = 18.3 Hz, 2H), 

6.81 (d, J = 8.4 Hz, 2H), 6.46 (s, 2H), 3.93 (s, 3H), 3.79 (s, 6H). 13C NMR (101 MHz, 

CDCl3): δ 187.51 (s), 175.63 (s), 168.26 (s), 159.84 (s), 158.16 (s), 156.15 (s), 149.12 (s), 

145.14 (s), 140.43 (s), 133.62 (s), 129.91 (s), 128.25 (s), 122.46 (s), 120.86 (s), 119.74 (s), 

118.20 (s), 115.64 (s), 112.04 (s), 109.62 (s), 99.35 (s), 95.78 (s), 58.12 (s), 52.82 (s), 50.05 

(s). MS(ESI): 471.0970 (C26H22ClO5 , [M+Na]+). 

(E)-6-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5k). White 

solid, Yield: 71%, Mp: 227-229 °C. 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.31-7.25 

(m, 2H), 7.03 (d, J = 16.1 Hz, 1H), 6.88 (d, J = 16.8 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.45 

(d, J = 7.3 Hz, 1H), 6.39 (s, 1H), 3.92 (s, 3H), 3.78 (s, 6H). 13C NMR (101 MHz, CDCl3): δ 

179.51 (s), 170.73 (s), 168.66 (s), 160.24 (s), 158.56 (s), 154.65 (s), 148.12 (s), 146.34 (s), 

137.73 (s), 134.62 (s), 128.93 (s), 127.85 (s), 124.46 (s), 119.86 (s), 113.84 (s), 110.78 (s), 

108.64 (s), 100.04 (s), 98.62 (s), 78.35 (s), 74.78 (s), 46.88 (s), 45.82 (s), 41.65 (s). 

MS(ESI): 471.0970 (C26H21ClO5, [M+Na]+). 
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(E)-7-bromo-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5l). White 

solid, Yield: 75%, Mp: 219-220 °C. IR (ATR Diamond Crystal, cm-1): v 2988, 2900, 1647, 

1595, 1511,1418, 1333, 1080, 963, 829; 1H NMR (600 MHz, CDCl3) δ 8.13 (d, J = 8.5 Hz, 

1H), 7.64 (s, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 16.0 Hz, 

1H), 6.87-6.80 (m, 3H), 6.43 (d, J = 31.4 Hz, 2H), 3.93 (s, 3H), 3.79 (s, 6H). 13C NMR 

(101 MHz, CDCl3): δ 181.51 (s), 172.87 (s), 169.16 (s), 161.34 (s), 159.46 (s), 154.35 (s), 

150.32 (s), 147.64 (s), 134.73 (s), 130.12 (s), 128.23 (s), 126.55 (s), 124.36 (s), 118.86 (s), 

113.54 (s), 111.78 (s), 109.74 (s), 101.02 (s), 99.32 (s), 86.35 (s), 79.28 (s), 56.88 (s), 55.12 

(s), 40.25 (s). MS(ESI): 515.0465 (C26H21BrO5Na, [M+Na]+). 

(E)-6-bromo-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-4H-chromen-4-one (5m). White 

solid, Yield: 88%, Mp: 225-229 °C. 1H NMR (600 MHz, DMSO) δ 8.14 (d, J = 2.1 Hz, 

1H), 7.93 (dd, J = 8.9, 2.2 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.39 (d, J = 8.6 Hz, 2H), 7.25 

(d, J = 16.1 Hz, 1H), 7.01 (s, 1H), 6.91-6.86 (m, 1H), 6.85 (d, J = 8.6 Hz, 2H), 6.62 (s, 1H), 

6.34 (s, 1H), 3.89 (s, 3H), 3.75 (s, 3H), 3.70 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 

180.51 (s), 176.87 (s), 162.96 (s), 160.34 (s), 158.96 (s), 154.15 (s), 151.32 (s), 148.34 (s), 

136.73 (s), 131.12 (s), 129.53 (s), 126.65 (s), 125.16 (s), 119.86 (s), 113.44 (s), 110.78 (s), 

106.74 (s), 101.32 (s), 98.32 (s), 85.35 (s), 77.28  (s), 55.84 (s), 53.42 (s), 50.25 (s). 

MS(ESI): 515.0465 (C26H21BrO5Na, [M+Na]+). 

 

(E)-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-4H-chromen-4-one (5n). White solid, 

Yield: 93%, Mp: 178-180 °C. IR (ATR Diamond Crystal, cm-1): v 2981, 2901, 1636, 1600, 

1566, 1461, 1238, 1178, 1051, 755; 1H NMR (400 MHz, DMSO) δ 8.11 (d, J = 7.1 Hz, 

1H), 7.81 (t, J = 7.7 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.37 (d, J = 

8.6 Hz, 2H), 7.27 (d, J = 16.1 Hz, 1H), 7.03 (d, J = 1.5 Hz, 1H), 6.87 (dd, J = 19.3, 12.4 Hz, 

3H), 6.66 (s, 1H), 6.31 (s, 1H), 3.99 (q, J = 6.9 Hz, 2H), 3.92 (s, 3H), 3.78 (s, 3H), 1.29 (t, 

J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 181.53 (s), 174.57 (s), 163.46 (s), 161.24 

(s), 159.74 (s), 153.45 (s), 150.46(s), 149.20 (s), 137.93 (s), 130.56 (s), 128.78 (s), 125.93 
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(s), 123.59 (s), 118.05 (s), 111.97 (s), 109.64 (s), 106.89 (s), 100.98 (s), 96.83 (s), 84.96 (s), 

74.95 (s), 54.43 (s), 52.34 (s), 50.29 (s), 42.89(s). MS(ESI): 451.1516 (C27H24O5Na, 

[M+Na]+).  

 

(E)-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (5o). White 

solid, Yield: 83%, Mp: 167-169 °C. IR (ATR Diamond Crystal, cm-1): v 2971, 2901, 1639, 

1592, 1568, 1486, 1331, 1156, 1074, 1037, 829, 816; 1H NMR (600 MHz, CDCl3): δ 

8.03(d, J = 3.1 Hz, 1H), 7.86 (s, 1H), 7.55 (s, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.18 (s, 2H), 

6.80 (d, J = 16.1 Hz, 1H), 6.61 (s, 2H), 6.51 (d, J = 16.1 Hz, 1H), 6.34 (s, 1H), 6.21 (s, 1H), 

3.53 (d, J = 3.2 Hz, 6H), 3.23 (s, 3H), 3.01 (dd, 2H), 1.58 (t, J =3.2 Hz, 3H). 13C NMR 

(101 MHz, CDCl3): δ 180.24 (s), 175.23 (s), 165.85 (s), 161.97 (s), 149.74 (s), 143.45 (s), 

139.56(s), 128.97 (s), 126.43 (s), 124.56 (s), 120.78 (s), 118.93 (s), 113.59 (s), 107.05 (s), 

102.97 (s), 100.64 (s), 98.89 (s), 86.98 (s), 84.83 (s), 80.96 (s), 67.95 (s), 45.43 (s), 42.34 

(s), 40.89 (s), 40.09(s), 35.27(s). MS(ESI): 481.1622 (C28H26O6Na, [M+Na]+). 

 

(E)-6-bromo-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-4H-chromen-4-one (5p). White 

solid, Yield: 88%, Mp: 243-244 °C. IR (ATR Diamond Crystal, cm-1): v 3017, 2978, 2931, 

2882, 1633, 1568, 1428, 1237, 1085, 803; 1H NMR (400 MHz, DMSO) δ 8.17 (d, J = 2.5 

Hz, 1H), 7.96 (dd, J = 8.9, 2.5 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.40 (d, J = 8.7 Hz, 2H), 

7.27 (d, J = 16.1 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.94-6.87 (m, 1H), 6.85 (d, J = 8.7 Hz, 

2H), 6.65 (d, J = 2.0 Hz, 1H), 6.36 (s, 1H), 3.99 (q, J = 7.0 Hz, 2H), 3.91 (s, 3H), 3.78 (s, 

3H), 1.29 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 179.64 (s), 175.13 (s), 163.45 

(s), 162.97 (s), 152.85 (s), 150.45 (s), 149.43(s), 126.34 (s), 125.83 (s), 123.78 (s), 121.53 

(s), 119.53 (s), 115.73 (s), 108.25 (s), 103.52 (s), 101.47 (s), 100.89 (s), 98.25 (s), 91.33 (s), 

83.32 (s), 75.95 (s), 52.55 (s), 49.43 (s), 47.16 (s), 39.96(s). MS(ESI): 529.0621 

(C27H23BrO5Na, [M+Na]+). 

 

(E)-2-(2-(4-butoxystyryl)-4,6-dimethoxyphenyl)-4H-chromen-4-one (5q). Yellow solid, 

Yield: 89%, Mp: 167-169 °C. IR (ATR Diamond Crystal, cm-1): v 2958, 2931, 2871, 1640, 

1596, 1574, 1463, 1350, 1248, 1203, 1156, 1075, 829, 748; 1H NMR (600 MHz, DMSO) δ 
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8.08 (dd, J = 7.9, 1.2 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 

7.5 Hz, 1H), 7.34 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 16.1 Hz, 1H), 7.01 (d, J = 1.7 Hz, 1H), 

6.89- 6.84 (m, 1H), 6.83 (d, J = 8.5 Hz, 2H), 6.62 (d, J = 1.6 Hz, 1H), 6.28 (s, 1H), 3.92- 

3.89 (m, 2H), 3.89 (s, 3H), 3.75 (s, 3H), 1.65-1.59 (m, 2H), 1.40-1.33 (m, 2H), 0.87 (t, J = 

7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 181.21 (s), 172.65 (s), 159.27 (s), 149.08 (s), 

145.09 (s), 140.47 (s), 139.05 (s), 135.67 (s), 130.28 (s), 129.53 (s), 123.33 (s),120.63 (s), 

120.34 (s), 119.38 (s), 116.91 (s), 114.83 (s), 110.74 (s), 100.66 (s), 100.15 (s), 99.85 (s), 

97.30 (s), 66.49 (s), 57.01 (s), 55.17 (s), 53.54 (s), 48.57 (s),  44.78 (s). MS(ESI): 

457.2016 (C29H29O5, [M+H]+). 

 

(E)-2-(2-(4-butoxystyryl)-4,6-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (5r). Yellow 

solid, Yield: 78%, Mp: 169-171 °C. IR (ATR Diamond Crystal, cm-1): v 2959, 2900, 2869, 

1637, 1592, 1568, 1334, 1198, 1153, 1076, 1016, 849, 826; 1H NMR (600 MHz, DMSO) δ 

7.57 (dd, J = 9.1, 1.2 Hz, 1H), 7.45 (d, J = 2.9 Hz, 1H), 7.36 (ddd, J = 9.1, 3.0, 1.3 Hz, 1H), 

7.32 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 16.1 Hz, 1H), 7.00 (s, 1H), 6.85-6.80 (m, 3H), 6.62 (s, 

1H), 6.26 (s, 1H), 3.91-3.89 (m, 2H), 3.88 (d, J = 0.7 Hz, 3H), 3.86 (d, J = 1.0 Hz, 3H), 

3.75 (s, 3H), 1.65-1.59 (m, 2H), 1.36 (tt, J = 13.7, 3.7 Hz, 2H), 0.87 (td, J = 7.4, 1.3 

Hz,3H). 13C NMR (101 MHz, CDCl3): δ 186.21 (s), 171.65 (s), 162.87 (s), 160.24 (s), 

157.29 (s), 143.98 (s), 141.75 (s), 139.82 (s), 135.28 (s), 134.13 (s), 129.36(s), 128.94 (s), 

127.18 (s), 124.41 (s), 123.45 (s), 122.63 (s), 119.54 (s), 114.86 (s), 110.05 (s), 101.75 (s), 

99.90 (s), 65.49 (s), 56.51 (s), 52.57 (s), 50.12 (s),48.02 (s), 44.57 (s),14.78 (s). MS(ESI): 

487.2115 (C30H31O6 , [M+H]+ ). 

 

(E)-6-bromo-2-(2-(4-butoxystyryl)-4,6-dimethoxyphenyl)-4H-chromen-4-one (5s). Yellow 

solid, Yield: 79%, Mp: 265-267 °C. IR (ATR Diamond Crystal, cm-1): v 2959, 2900, 1652, 

1597, 1567, 1459, 1331, 1248, 1160, 1082, 963, 797; 1H NMR (600 MHz, DMSO) δ 8.14 

(d, J = 2.3 Hz, 1H), 7.93-7.90 (m, 1H), 7.60 (d, J = 8.9 Hz, 1H), 7.36 (d, J = 8.5 Hz, 2H), 

7.24 (d, J = 16.1 Hz, 1H), 6.99 (d, J = 16.5 Hz, 1H), 6.87 (t, J = 12.4 Hz, 1H), 6.83 (d, J = 

8.5 Hz, 2H), 6.62 (s, 1H), 6.34 (s, 1H), 3.90 (dd, J = 10.9, 4.3 Hz, 2H), 3.88 (s, 3H), 3.75 (s, 

3H), 1.66-1.60 (m, 2H), 1.41-1.34 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 18

CDCl3): δ 181.91 (s), 162.65 (s), 157.27 (s), 156.08 (s), 155.09 (s), 140.48 (s), 139.05 (s), 

138.67 (s), 137.28 (s), 130.53 (s), 128.63 (s), 128.94 (s), 127.08 (s), 121.91 (s), 120.86 (s), 

120.13 (s), 118.74 (s), 115.16 (s), 110.65 (s), 105.35 (s), 98.90 (s), 66.19 (s), 57.11 (s), 

55.27 (s), 53.62 (s), 52.12 (s), 15.28 (s). MS(ESI): 557.0834 (C29H27BrO5Na, [M+Na]+ ).  

 

(E)-2-(2-(4-(benzyloxy)styryl)-4,6-dimethoxyphenyl)-4H-chromen-4-one (5t). Yellow solid, 

Yield: 92%, Mp: 156-157 °C. IR (ATR Diamond Crystal, cm-1): v 2970, 2900, 1656, 1595, 

1572, 1462, 1315, 1215, 1172, 1079, 830, 776; 1H NMR (600 MHz, DMSO) δ 8.08 (d, J = 

7.9 Hz, 1H), 7.80-7.74 (m, 1H), 7.59 (t, J = 9.9 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.36 (dt, 

J = 14.2, 7.5 Hz, 6H), 7.29 (t, J = 7.2 Hz, 1H), 7.24 (d, J = 16.1 Hz, 1H), 7.01 (s, 1H), 6.92 

(d, J = 8.6 Hz, 2H), 6.88 (d, J = 16.1 Hz, 1H), 6.63 (s, 1H), 6.28 (s, 1H), 5.73 (s, 1H), 

5.08-5.01 (m, 2H), 3.89 (s, 3H), 3.75 (s, 3H). 13C NMR (101 MHz, CDCl3 ): δ 181.91 (s), 

162.65 (s), 160.27 (s), 159.48 (s), 157.09 (s), 156.48 (s), 152.05 (s), 151.67 (s), 145.28 

(s),140.05 (s), 139.67 (s), 136.28 (s), 131.53 (s), 129.33 (s), 128.04 (s), 127.98 (s), 122.91 

(s), 122.86 (s), 120.63 (s), 117.74 (s), 114.66 (s), 110.75 (s), 101.35 (s), 97.90 (s), 63.49 (s), 

56.01 (s), 55.57 (s). MS(ESI): 491.1853 (C32H27O5 , [M+H]+).  

 

(E)-2-(2-(4-(benzyloxy)styryl)-4,6-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (5u). 

Yellow solid, Yield: 76%, Mp: 231-232 °C. IR (ATR Diamond Crystal, cm-1): v 2969, 2900, 

1635, 1570, 1486, 1452, 1337, 1076, 1030, 968, 847, 697; 1H NMR (600 MHz, DMSO) δ 

7.57 (d, J = 9.1 Hz, 1H), 7.45 (d, J = 3.1 Hz, 1H), 7.38 (dd, J = 10.1, 5.2 Hz, 3H), 

7.36-7.31 (m, 4H), 7.29 (t, J = 7.0 Hz, 1H), 7.24 (d, J = 16.1 Hz, 1H), 7.00 (d, J = 2.0 Hz, 

1H), 6.92 (d, J = 8.8 Hz, 2H), 6.86-6.81 (m, 1H), 6.62 (d, J = 2.1 Hz, 1H), 6.26 (s, 1H), 

5.04 (d, J = 8.0 Hz, 2H), 3.88 (s, 3H), 3.86 (s, 3H), 3.75 (s, 3H). 13C NMR (101 MHz, 

CDCl3): δ 181.67 (s), 163.72 (s), 160.62 (s), 158.98 (s), 157.19 (s), 156.36 (s), 152.17 (s), 

150.81 (s), 145.28 (s), 140.05 (s), 138.82 (s), 136.28 (s), 131.53 (s), 129.33 (s), 128.04 (s), 

127.98 (s), 122.91 (s), 122.86 (s), 120.63 (s), 117.74 (s), 114.66 (s), 110.75 (s), 101.35 (s), 

97.90 (s), 66.52 (s), 56.91 (s), 53.61 (s), 45.91. MS(ESI): 521.1959 (C33H29O6, [M+H]+).  

 

(E)-2-(2-(4-(benzyloxy)styryl)-4,6-dimethoxyphenyl)-6-bromo-4H-chromen-4-one (5v). 
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Yellow solid, Yield: 78%, Mp: 259-260 °C. IR (ATR Diamond Crystal, cm-1): v 2988, 2900, 

1654, 1597, 1453, 1393, 1239, 1084, 974, 810; 1H NMR (600 MHz, DMSO) δ 8.14 (d, J = 

2.5 Hz, 1H), 7.93 (dd, J = 8.9, 2.5 Hz, 1H), 7.59 (t, J = 11.9 Hz, 1H), 7.41-7.37 (m, 4H), 

7.35 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.24 (d, J = 16.1 Hz, 1H), 7.00 (t, J = 6.8 

Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 16.2 Hz, 1H), 6.62 (d, J = 2.0 Hz, 1H), 6.33 

(s, 1H), 5.73 (s, 1H), 5.06 (s, 2H), 3.88 (s, 3H), 3.75 (s, 3H). 13C NMR (101 MHz, CDCl3): 

δ 182.69 (s), 164.92 (s), 161.82 (s), 157.54 (s), 157.01 (s), 156.36 (s), 152.17 (s), 150.81 

(s), 145.28 (s),140.05 (s), 138.92 (s), 136.28 (s), 131.53 (s), 129.33 (s), 128.14 (s), 127.26 

(s), 122.73 (s), 122.86 (s), 121.63 (s), 117.52 (s), 114.74 (s), 110.16 (s), 101.54 (s), 100.83 

(s), 67.62 (s), 55.73 (s), 50.96 (s). MS(ESI): 591.0778 (C32H25BrO5Na, [M+Na]+).  

4.4 Synthesis of resveratrol-based flavonol derivatives (7a~7o)  

In a 50 mL round-bottom flask, a solution of compounds 6a~6o (1 mmol, 1.0 equiv) in 

methanol was added NaOH (5 mmol, 5.0 equiv) and 30% H2O2 (5 mmol, 5.0 equiv), the 

mixture was stirred at 40 °C until the reaction was completed. The reaction was cooled 

back to room temperature and added ice-water, it was added hydrochloric acid to adjust pH 

to neutral. The suspension was then stirred and vacuum filtered to provide the residue, the 

crude product was purified by column chromatography on silica gel to obtained the desired 

compounds. 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one (7a). 

White solid, Yield: 76%, Mp: 230-232 °C. 1H NMR (600 MHz, DMSO): δ 8.85 (s, 1H), 

8.15 (d, J= 8.0 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.5 

Hz, 1H), 7.30 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.03 (s, 1H), 6.84 (d, J = 8.6 

Hz, 2H), 6.74 (d, J = 16.2 Hz, 1H), 6.61 (s, 1H), 3.89 (s, 3H), 3.72 (t, J = 20.0 Hz, 6H). 13C 

NMR (151 MHz,  DMSO): δ 175.66 (s), 164.97 (s), 162.31 (s), 161.96 (s), 158.47 (s), 

148.85 (s), 143.43 (s), 141.68 (s), 136.50 (s), 133.97 (s), 132.35 (s), 131.01 (s), 128.08 (s), 

127.54 (s), 125.75 (s), 125.28 (s), 121.55 (s), 117.30 (s), 114.78 (s), 104.04 (s), 100.93 (s), 

59.01 (s), 58.66 (s), 58.19 (s). MS (ESI): 431.1483.(C26H22O6, [M+H]+). 
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(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-7-methyl-4H-chromen-4-one 

(7b). White solid, Yield: 78%, Mp: 210-213 °C. 1H NMR (600 MHz, DMSO): δ 8.77 (s, 

1H), 8.02 (d, J = 8.2 Hz, 1H), 7.40 (s, 1H), 7.32 – 7.23 (m, 4H), 7.02 (s, 1H), 6.84 (d, J = 

8.6 Hz, 2H), 6.71 (d, J = 16.2 Hz, 1H), 6.60 (s, 1H), 3.89 (s, 3H), 3.71 (t, J = 14.1 Hz, 6H), 

2.42 (s, 3H). 13C NMR (101 MHz, DMSO): δ 172.37 (s), 161.80 (s), 159.18 (s), 158.83 (s), 

155.49 (s), 145.24 (s), 144.25 (s), 140.12 (s), 138.50 (s), 130.77 (s), 129.23 (s), 127.85 (s), 

125.93 (s), 124.72 (s), 122.64 (s), 119.93 (s), 117.87 (s), 100.88 (s), 97.79 (s), 114.18 (s), 

111.76 (s), 55.85 (s), 55.51 (s), 55.05 (s), 21.15 (s). MS(ESI): 445.1645.(C27H24O6, 

[M+H] +). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-6-methyl-4H-chromen-4-one 

(7c). White solid, Yield: 44%, Mp: 201-204 °C. 1H NMR (600 MHz, DMSO): δ 8.80 (s, 

1H), 7.93 (s, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 8.5 Hz, 

2H), 7.25 (d, J = 16.2 Hz, 1H), 7.02 (s, 1H), 6.84 (d, J = 8.3 Hz, 2H), 6.69 (d, J = 16.2 Hz, 

1H), 6.60 (s, 1H), 3.89 (s, 3H), 3.70 (d, J = 13.1 Hz, 6H), 2.44 (s, 3H). 13C NMR (101 

MHz, CDCl3): δ 172.94(s), 162.46 (s), 159.59 (s), 159.29 (s), 154.69 (s), 144.74 (s), 

139.83 (s), 139.54 (s), 134.80 (s), 134.32 (s), 131.18 (s), 129.63 (s), 128.04 (s), 124.57 (s), 

123.31 (s), 121.01 (s), 118.44 (s), 114.09 (s), 111.35 (s), 101.26 (s), 98.00 (s), 56.03 (s), 

55.73 (s), 55.43 (s), 20.98 (s). MS(ESI): 445.1642.(C27H24O6, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-6-methoxy-4H-chromen-4-one

(7d). White solid, Yield: 89%, Mp: 188-191 °C. 1H NMR (600 MHz, DMSO): δ 8.81 (s, 

1H), 7.56 (d, J = 9.1 Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.34 (dd, J = 9.1, 2.7 Hz, 1H), 7.29 

(d, J = 8.4 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.02 (s, 1H), 6.84 (d, J = 8.4 Hz, 2H), 6.69 

(d, J = 16.2 Hz, 1H), 6.60 (s, 1H), 3.88 (d, J = 8.5 Hz, 6H), 3.70 (d, J = 14.7 Hz, 6H). 13C 

NMR (101 MHz, DMSO): δ 172.09 (s), 161.82 (s), 159.19 (s), 158.83 (s), 155.84 (s), 

150.32 (s), 145.61 (s), 139.86 (s), 138.53 (s), 130.79 (s), 129.22 (s), 127.83 (s), 123.18 (s), 

122.70 (s), 122.63 (s), 120.05 (s), 114.18 (s), 111.75 (s), 103.96 (s), 100.92 (s), 97.80 (s), 

55.86 (s), 55.69 (s), 55.51 (s), 55.05 (s). MS(ESI): 461.1591.(C27H24O7, [M+H]+). 
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(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-7-fluoro-3-hydroxy-4H-chromen-4-one 

(7e). White solid, Yield: 63%, Mp: 236-239 °C. 1H NMR (600 MHz, DMSO): δ 8.94 (s, 

1H), 8.20 (dd, J = 8.9, 6.5 Hz, 1H), 7.58 (dd, J = 9.7, 2.1 Hz, 1H), 7.37-7.34 (m, 1H), 7.33 

(d, J = 8.6 Hz, 2H), 7.26 (d, J = 16.2 Hz, 1H), 7.03 (d, J = 1.6 Hz, 1H), 6.84 (d, J = 8.7 Hz, 

2H), 6.74 (d, J = 16.2 Hz, 1H), 6.60 (d, J = 1.7 Hz, 1H), 3.89 (s, 3H), 3.71 (d, J = 13.5 Hz, 

6H). 13C NMR (101 MHz, CDCl3): δ 172.46 (s), 167.96 (s), 164.28 (s), 162.62 (s), 159.67 

(s), 159.29 (s), 157.37 (s), 145.24 (s), 139.81 (s), 139.62 (s), 131.43 (s), 129.57 (s), 128.17 

(s), 123.16 (s), 118.43 (s), 114.13 (s), 110.84 (s), 105.15 (s), 104.90 (s), 101.34 (s), 97.95 

(s), 56.01 (s), 55.56 (s), 55.30 (s). MS(ESI): 449.1392.(C26H21FO6, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-6-fluoro-3-hydroxy-4H-chromen-4-one 

(7f). White solid, Yield: 68%, Mp: 190-193 °C.  1H NMR (600 MHz, DMSO): δ 8.99 (s, 

1H), 7.80 (dd, J = 22.0, 16.1 Hz, 1H), 7.72 (dd, J = 8.9, 3.7 Hz, 1H), 7.64 (t, J = 7.1 Hz, 

1H), 7.32 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 16.2 Hz, 1H), 7.01 (d, J = 26.2 Hz, 1H), 6.82 (t, 

J = 16.7 Hz, 2H), 6.72 (d, J = 16.2 Hz, 1H), 6.61 (s, 1H), 3.89 (s, 3H), 3.70 (d, J = 15.6 

Hz,6H). 13C NMR (101 MHz, DMSO): δ 171.91 (s), 161.93 (s), 159.20 (s), 158.84 (s), 

157.16 (s), 151.85 (s), 146.32 (s), 140.04 (s), 138.63 (s), 130.92 (s), 129.21 (s), 127.95 (s), 

123.16 (s), 122.56 (s), 121.74 (s), 121.20 (s), 114.14 (s), 111.44 (s), 109.12 (s), 100.95 (s), 

97.78 (s), 55.88 (s), 55.52 (s), 55.05 (s). MS(ESI): 449.1392.(C26H21FO6, [M+H]+). 

(E)-8-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one 

(7g). White solid, Yield: 55%, Mp: 208-210 °C. 1H NMR (600 MHz, DMSO): δ 9.07 (s, 

1H), 8.11 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 

8.5 Hz, 2H), 7.27 (d, J = 16.2 Hz, 1H), 7.04 (s, 1H), 6.84 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 

16.2 Hz, 1H), 6.63 (s, 1H), 3.90 (s, 3H), 3.74 (s, 3H), 3.70 (s, 3H). 13C NMR (151 MHz, 

DMSO): δ 175.28 (s), 165.16 (s), 162.33 (s), 162.18 (s), 153.80 (s), 149.10 (s), 143.72 (s), 

141.98 (s), 136.44 (s), 134.08 (s), 132.43 (s), 131.14 (s), 127.87 (s), 127.27 (s), 126.80 (s), 

125.84 (s), 125.06 (s), 117.26 (s), 114.39 (s), 104.34 (s), 101.12 (s), 59.17 (s), 58.69 (s), 

58.21 (s). MS(ESI): 465.1097.(C26H21ClO6, [M+H]+). 
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(E)-7-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one 

(7h). White solid, Yield: 48%, Mp: 209-210 °C. 1H NMR (600 MHz, DMSO): δ 8.98 (s, 

1H), 8.14 (d, J = 8.7 Hz, 1H), 7.82 (d, J = 1.5 Hz, 1H), 7.50 (dd, J = 8.6, 1.7 Hz, 1H), 7.33 

(d, J = 8.7 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.03 (d, J = 1.7 Hz, 1H), 6.84 (d, J = 8.7 Hz, 

2H), 6.73 (t, J = 12.4 Hz, 1H), 6.60 (d, J = 1.8 Hz, 1H), 3.89 (s, 3H), 3.71 (d, J = 13.0 Hz, 

6H). 13C NMR (101 MHz, CDCl3): δ 172.52 (s), 162.63 (s), 159.67 (s), 159.30 (s), 156.40 

(s), 145.31 (s), 140.07 (s), 139.63 (s), 139.52 (s), 131.48 (s), 129.54 (s), 128.08 (s), 126.88 

(s), 125.40 (s), 123.10 (s), 120.08 (s), 118.62 (s), 114.13 (s), 110.80 (s), 101.33 (s), 97.93 

(s), 56.00 (s), 55.56 (s), 55.30 (s). MS(ESI): 465.1102.(C26H21ClO6, [M+H]+). 

(E)-6-chloro-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one 

(7i). White solid, Yield: 60%, Mp: 189-192°C. 1H NMR (600 MHz, CDCl3): δ 8.27 (s, 1H), 

7.60 (d, J = 9.0 Hz, 1H), 7.45 (d, J = 8.9 Hz, 1H), 7.26 (d, J = 4.7 Hz, 3H), 7.06 (d, J = 

16.0 Hz, 1H), 6.91 (s, 1H), 6.80 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 16.1 Hz, 1H), 6.50 (s, 1H), 

3.93 (s, 3H), 3.78 (d, J = 6.5 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ 172.35 (s), 162.65 

(s), 159.68 (s), 159.27 (s), 154.65 (s), 145.45 (s), 140.02 (s), 139.63 (s), 133.60 (s), 131.45 

(s), 130.34 (s), 129.51 (s), 128.04 (s), 124.74 (s), 123.08 (s), 122.35 (s), 120.41 (s), 114.13 

(s), 110.78 (s), 101.36 (s), 97.93 (s), 56.01 (s), 55.57 (s), 55.31(s). MS(ESI): 465.1101. 

(C26H21ClO6, [M+H]+). 

(E)-7-bromo-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one 

(7j). White solid, Yield: 76%, Mp: 202-205°C. 1H NMR (600 MHz, DMSO): δ 9.03 (s, 

1H), 8.05 (d, J = 8.6 Hz, 1H), 7.94 (d, J = 1.3 Hz, 1H), 7.63 (dd, J = 8.6, 1.1 Hz, 1H), 7.33 

(d, J = 8.6 Hz, 2H), 7.25 (d, J = 16.2 Hz, 1H), 7.01 (d, J = 1.5 Hz, 1H), 6.83 (d, J = 8.6 Hz, 

2H), 6.73 (d, J = 16.2 Hz, 1H), 6.59 (d, J = 1.6 Hz, 1H), 3.88 (s, 3H), 3.70 (d, J = 11.5 Hz, 

6H). 13C NMR (101 MHz, CDCl3): δ 172.60 (s), 162.64 (s), 159.68 (s), 159.30 (s), 156.34 

(s), 145.17 (s), 140.09 (s), 139.63 (s), 131.49 (s), 129.54 (s), 128.08 (s), 127.76 (s), 126.89 

(s), 123.09 (s), 121.71 (s), 120.41 (s), 114.13 (s), 110.78 (s), 101.32 (s), 97.93 (s), 56.01 (s), 

55.56 (s), 55.31 (s). MS(ESI): 509.0590.(C26H21BrO6, [M+H]+). 
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(E)-6-bromo-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one 

(7k). White solid, Yield: 82%, Mp: 201-204 °C. 1H NMR (600 MHz, DMSO): δ 9.08 (s, 

1H), 8.22 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 8.9, 2.4 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.33 

(d, J = 8.7 Hz, 2H), 7.26 (d, J = 16.2 Hz, 1H), 7.03 (d, J = 1.7 Hz, 1H), 6.84 (d, J = 8.7 Hz, 

2H), 6.72 (d, J = 16.2 Hz, 1H), 6.60 (d, J = 1.8 Hz, 1H), 3.89 (s, 3H), 3.70 (d, J = 11.1 Hz, 

6H). 13C NMR (101 MHz, CDCl3): δ 171.92 (s), 162.65 (s), 159.68 (s), 159.28 (s), 155.08 

(s), 145.54 (s), 140.10 (s), 139.63 (s), 136.28 (s), 131.45 (s), 129.51 (s), 128.04 (s), 123.07 

(s), 122.89 (s), 120.62 (s), 117.74 (s), 114.13 (s), 110.79 (s), 101.36 (s), 97.93 (s), 56.01 (s), 

55.57 (s), 55.31 (s). MS(ESI): 511.0572.(C26H21BrO6, [M+H]+). 

(E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-6,7-dimethyl-4H-chromen-4-

one (7l). White solid, Yield: 66%, Mp: 214-217 °C. 1H NMR (600 MHz, CDCl3): δ 8.03 (s, 

1H), 7.27 (d, J = 6.3 Hz, 1H), 7.26 (s, 1H), 7.25 (s, 2H), 7.06 (d, J = 16.0 Hz, 1H), 6.91 (s, 

1H), 6.82-6.77 (m, 3H), 6.50 (d, J = 1.4 Hz, 1H), 3.92 (d, J = 8.1 Hz, 3H), 3.77 (d, J = 3.9 

Hz, 6H), 2.39 (d, J = 7.5 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ 172.88 (s), 162.39 (s), 

159.57 (s), 159.31 (s), 155.16 (s), 144.27 (s), 144.00 (s), 139.68 (s), 139.50 (s), 133.84 (s), 

131.09 (s), 129.67 (s), 128.05 (s), 124.83 (s), 123.36 (s), 119.38 (s), 118.67 (s), 114.08 (s), 

111.52 (s), 101.20 (s), 98.00 (s), 56.02 (s), 55.54 (s), 55.29 (s), 20.55 (s), 19.39 (s). 

MS(ESI): 459.1803.(C28H26O6, [M+H]+). 

(E)-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one (7m). White 

solid, Yield: 77%, Mp: 244-247 °C. 1H NMR (600 MHz, CDCl3): δ 8.31 (d, J = 7.9 Hz, 

1H), 7.66 (dd, J = 11.4, 4.2 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.26 

(s, 1H), 7.24 (s, 1H), 7.07 (d, J = 16.1 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 6.81 (d, J = 16.2 

Hz, 1H), 6.78 (d, J = 8.7 Hz, 2H), 6.51 (d, J = 2.0 Hz, 1H), 6.29 (s, 1H), 3.99 (q, J = 7.0 

Hz, 2H), 3.93 (s, 3H), 3.79 (s, 3H), 1.38 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): 

δ 173.15 (s), 162.51 (s), 159.31 (s), 159.01 (s), 156.42 (s), 145.02 (s), 139.93 (s), 139.63 

(s), 133.32 (s), 131.35 (s), 129.45 (s), 128.06 (s), 125.54 (s), 124.38 (s), 123.14 (s), 121.55 

(s), 118.69 (s), 114.64 (s), 111.22 (s), 101.30 (s), 97.96 (s), 63.47 (s), 56.02 (s), 55.55 (s), 

14.79 (s). MS(ESI): 445.1642.(C27H24O6, [M+H]+). 
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(E)-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-3-hydroxy-6-methoxy-4H-chromen-4-one 

(7n). White solid, Yield: 81%, Mp: 220-223 °C. 1H NMR (600 MHz, CDCl3): δ 7.63 (d, J 

= 3.0 Hz, 1H), 7.44-7.42 (m, 1H), 7.27 (dd, J = 9.2, 3.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 

7.05 (d, J = 16.1 Hz, 1H), 6.91 (d, J = 2.1 Hz, 1H), 6.78 (dd, J = 12.4, 3.6 Hz, 3H), 6.50 (d, 

J = 2.1 Hz, 1H), 6.28 (s, 1H), 3.99 (q, J = 7.0 Hz, 2H), 3.93 (d, J = 6.1 Hz, 6H), 3.78 (s, 

3H), 1.38 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 172.71 (s), 162.47 (s), 

159.29 (s), 159.00 (s), 156.41 (s), 151.58 (s), 144.80 (s), 139.62 (s), 139.54 (s),131.28 (s), 

129.44 , 128.03 (s), 124.15 (s), 123.14 (s), 121.94 (s), 120.16 (s), 114.63 (s), 111.27 (s), 

103.82 (s), 101.26 (s), 97.95 (s), 63.46 (s), 56.02 (s), 56.00 (s), 55.55 (s), 14.79 (s). 

MS(ESI): 475.1747. (C28H26O7, [M+H]+). 

(E)-6-bromo-2-(2-(4-ethoxystyryl)-4,6-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one 

(7o). White solid, Yield: 78%, Mp: 200-205 °C. 1H NMR (600 MHz, CDCl3): δ 8.44 (d, J 

= 2.4 Hz, 1H), 7.73 (dd, J = 9.0, 2.4 Hz, 1H), 7.39 (d, J = 8.9 Hz, 1H), 7.24 (d, J = 9.0 Hz, 

2H), 7.06 (d, J = 16.0 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 6.79 (d, J = 8.7 Hz, 2H), 6.76 (d, J 

= 16.1 Hz, 1H), 6.50 (d, J = 2.1 Hz, 1H), 6.22 (s, 1H), 4.00 (q, J = 7.0 Hz, 2H), 3.93 (s, 

3H), 3.78 (s, 3H), 1.38 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 171.91 (s), 

162.65 (s), 159.27 (s), 159.08 (s), 155.09 (s), 145.48 (s), 140.05 (s), 139.67 (s), 136.28 (s), 

131.53 (s), 129.33 (s), 128.04 (s), 127.98 (s), 122.91 (s), 122.86 (s), 120.63 (s), 117.74 (s), 

114.66 (s), 110.75 (s), 101.35 (s), 97.90 (s), 63.49 (s), 56.01 (s), 55.57 (s), 14.78 (s). 

MS(ESI): 525.0729.(C27H23BrO6, [M+H]+). 

 

4.5 Cell culture 

Mouse peritoneal macrophages were obtained from BeNa Culture Collection 

Company. RAW264.7 cells were cultured in DMEM (Hyclone, USA) supplemented with 

10% FBS (Biological Industries, Israel, 100 U/mL penicillin and100 µg/mL streptomycin 

(Beyotime) at 37 °C in a humidified atmosphere containing 5% CO2.  

 

4.6 Determination secretion of NO, TNF-α and IL-6 

RAW264.7 cells were seeded into 48-well plate with 6×104 cells per well and 
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incubated for 24 h. RAW264.7 cells were pretreated with compounds (10 µM) for 1 h, 

incubated with LPS (0.5 µg/mL) for 24 h. The supernatants were collected and examined 

for NO production using Griess reagent (Beyotime, China). The levels of TNF-α and IL-6 

in the culture medium were measured by ELISA (eBioScience, San Diego, CA). 

 

4.7 Cell viability assay (MTT) 

RAW264.7 cells were seeded into 96-well plate with 6×104 cells per well and 

maintained at 37 °C in 5% CO2 about 24 h. RAW264.7 cells were pretreated with all 

compounds (20 µM) for 1 h, incubated with LPS (0.5 µg/mL) for 24 h. After incubation at 

37 °C for 4 h, the culture media containing MTT (prepared in PBS solution, 5 mg/mL) 

were removed, and then DMSO (150 µL) was added into per well and the absorbance at 

492 nm was measured by a microplate reader (MQX200, Bio-Tek, USA). 

 

4.8 Western blotting 

RAW264.7 cells were seeded into 96-well plate with 3×105 cells per well and 

maintained at 37°C in 5% CO2 about 24 h. RAW264.7 cells were pretreated with 

compound 7f (2, 1, 0.5 µM) for 1 h, incubated with LPS (0.5 µg/mL) for 0.5 h. The cells 

were lysed in 300 µL RIPA cell lysis buffer (Contains PMSF and phosphatase inhibitors, 

Beyotime china) and incubated on ice for 30 min. proteins were run on 12% SDS-PAGE 

and then transferred to PVDF membrane (GE Healthcare, UK). The blotted membrane 

incubated with specific primary antibodies (all antibody obtain from cell signaling 

Technology, USA) overnight at 4°C. The membranes were washed in TBST (Beyotime 

Biotech, Nantong, China), incubated with a 1:5000 dilutions of HRP-conjugated secondary 

antibody (Beyotime Biotech, Nantong, China) for 1h at room temperature. 

 

4.9 In vivo experiment 

The 40 male C57BL/6 mice weighing 18~22 g were purchased from Animal 

Department of Anhui Medical University. After one-week acclimatization, mice were 

randomly divided into four groups on average, including the control group, LPS group, 

compound 7f (10 mg/kg) +LPS group and compound 7f (20 mg/kg) +LPS group.  
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30 min before a 20 mg/kg LPS tail vein injection. Control group animals were 

received only an equal volume of saline by Intraperitoneal injection. Mice were 

anesthetized and sacrificed 48 h after LPS injection. Lung tissues were harvested for 

experiment. Lung tissue were fixed in 4% paraformaldehyde solution, embedded in 

paraffin. After dehydration, sections were stained with hematoxylin and eosin (H&E) and 

immunohistochemistry according to the previously reported method. The upper lung lobe 

of the right lungs was excised, and obtain a wet weight. The lungs were then placed in an 

oven at 60 °C for exceed 48 h until the dry weight was constant. Lung wet/dry weight ratio 

was calculated to assess tissue edema. The lung tissue MPO activity was assessed using a 

kit (Jiancheng Bioengineering Institute, Nanjing, China) following the manufacturer's 

instruction. The research was approved by the Ethics Committee of Anhui Medical 

University on the care. 

 

4.10 Statistical analysis 

  Data are expressed as means±SEM and were analyzed statistically by analysis of 

variance (ANOVE). A value of p<0.05 was considered to be statistically significant. All 

experiments date were repeated at least three times. 
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Figure Captions 

 

 

Figure 1. The continuous workflow 

Figure 2. ORTEP drawing of compounds 5r and 5u 

Figure 3. Inhibition of NO production by all compounds 5a~5v and 7a~7o 

Figure 4. The cytotoxic evaluation in RAW264.7 of compounds 5a~5v and 7a~7o  

Figure 5. Inhibition of the Cytokine Production production 

Figure 6. Compound 7f inhibited LPS-induced iNOS and COX-2 expression  

Figure 7. Compound 7f inhibits LPS-induced ERK and P38 signaling 

Figure 8. Compound 7f inhibited LPS-induced activation of NF-ĸB signaling Pathway 

Figure 9. The interaction of compound 7f with TAK1 (PDB ID: 5V5N) 

Figure 10. Compound 7f protected LPS-induced acute lung injury 

Figure 11. Effects of compound 7f on histopathological changes in lung tissues 

Figure 12. Prelimilary mechanisms involved 

 

Scheme 1.  Synthesis of compounds 3a~3d 

Scheme 2.  Synthesis of compounds 5a~5v 

Chemical structures and yields of compounds 5a~5v (Table 1) 

Scheme 3.  Synthesis of compounds 7a~7o 

Chemical structures and yields of compounds 7a~7o (Table 2) 
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Figure 1.  The continuous workflow 

 

 

 

 

Compound 5r                     Compound 5u 

 

Figure 2. ORTEP drawing of compounds 5r and 5u 
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     A 

 

  B 

Figure 3. Inhibition of NO production by all compounds 5a~5v and 7a~7o a 
a RAW264.7 cells were pretreated with compounds 5a~5v and 7a~7o (10 µM) for 1 h, 

incubated with LPS (0.5 µg/mL) for 24 h, NO production was measured using 

Griess Reagent assay. (A) Effects of compounds 5a~5v on NO secretion. (B) Effects of 

compounds 7a~7o on NO secretion. Cel: positive compound celecoxib. Res: positive 

compound resveratrol. ***p<0.001, **p<0.01, *p<0.05 vs LPS group. 
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Figure 4. The cytotoxic evaluation in RAW264.7 cells a 
a The cell viability was evaluated by the MTT assay. *** p<0.001 compare with the control 

group. 
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A 

 

B 

 

C 

Figure 5.  Inhibition of the cytokine production a 
a RAW264.7 cells were pretreated with compounds 7d, 7f and 7i, at concentrations of 10, 5, 

2.5, 1.25, 0.625 µM for 1 h, incubated with LPS (0.5 µg/mL) for 24 h, NO production was 

measured using Griess Reagent assay. The levels of TNF-α and IL-6 in the culture medium 

were measured by ELISA. ***p<0.001, **p<0.01, *p<0.05 vs LPS group. 
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Figure 6. Compound 7f inhibited expression LPS-induced iNOS and COX-2 a 
aAfter pretreatment with compound 7f (0.5~2 µM) 1 h, RAW 264.7 cells were stimulated 

with LPS (0.5 µg/mL) for 24 h. iNOS, COX-2 and β-actin were detected by Western blot. 

Bay11-7082 used as the NF-ĸB inhibitor. ###p<0.001 compared with LPS unstimulated 

cells, ***p<0.001, **p<0.01, *p<0.05 compared with LPS-stimulated cells; The blots 

shown are the examples of three separate experiments. 
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Figure 7. Compound 7f inhibited LPS-induced ERK and P38 signaling a 

a Compound 7f time-dependently suppressed LPS-induced P38 and ERK activation. 

RAW264.7 cells were pre-treated with compound 7f (0.5~2 µM) for 1 h, then stimulated 

with LPS (0.5 µg/mL) for 30 min, the expression of phosphor and total proteins ERK, JNK, 

and p38 were analyzed by Western blot. TAK-242 used as the TLR4 inhibitor. The results 

were showed as means ± SD (n=3) of at least three independent experiments. ###p<0.001 

*p<0.05, **p<0.01, ***p<0.001 compare with LPS-stimulated cells. 
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Figure 8. Compound 7f inhibited LPS-induced activation of NF-ĸB signaling pathway in 

RAW 264.7 cells a  
a After pretreatment with compound 7f (0.5~2 µM) 1 h, RAW 264.7 cells were stimulated 

with LPS (0.5 µg/mL) for 30 min. P-IKB IKB, p-P65, P65 and β-actin were detected by 

Western blot. Bay11-7082 used as the NF-ĸB inhibitor. ###p<0.001 compared with LPS 

unstimulated cells, ***p<0.001, **p<0.01, *p<0.05 compared with LPS-stimulated cells; 

The blots shown are the examples of three separate experiments. 
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Figure 9. The interaction of compound 7f with TAK1 (PDB ID: 5V5N) 
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Figure 10.  Compound 7f protected LPS-induced acute lung injury a 
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a C57/BL6 mice were treated by intraperitoneal injection with compound 7f (10 mg/kg, 20 

mg/kg), and after 30 min, were challenged with 5 mg/kg LPS by intratracheal injection. (A) 

Myeloperoxidase (MPO) activity of lung tissue. (B) Body weight changes. (C) Pulmonary 

Edema: lung wet/dry ratio. (D) Survival of miance in a model. (E) Effects of compound 7f 

on histopathological changes in lung tissues by LPS (H&E staining and 

immunohistochemical of F4/80 staining 200×).  
###p<0.001 compared with control group; *p<0.05, **p<0.01, ***p<0.001 compare with 

LPS group. 

 

 

 

 

 

 

 

Figure 11.  Effects of compound 7f on histopathological changes in lung tissues 
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Figure 12. Prelimilary mechanisms involved 
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Scheme 1.  Synthesis of compounds 3a~3d 

Reagents and conditions: (A) TBAB, K2CO3, Acetone, reflux, 3-6 h; (B) DMF, POCl3, 

Acetonitrile, 0 °C, rt, 1.5 h. 
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Scheme 2.  Synthesis of compounds 5a~5v 

Reagents and conditions: (A) Pyrolidine, Ethanol, 40°C, 36 h; (B) I2, DMSO, reflux, 4-6 h. 
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Table 1. Chemical structures and yields of compounds 5a~5v  

 

Comp.  R R1 
       Yield (%) Comp.  R R1 

         Yield (%) 

5a Me       H         90 5l Me 4-Br        75 

5b Me     4-CH3     61 5m Me       5-Br        88 

5c Me     5-CH3         59 5n Et H         93 

5d Me     4,5-CH3 72 5o Et 5-OCH3     83 

5e Me     5-OCH3 66 5p Et 5-Br        88 

5f Me     4,5-OCH3 42 5q n-butyl H         89 

5g Me      4-F       78 5r n-butyl 5-OCH3     78 

5h Me      5-F 59 5s n-butyl     5-Br  79 

5i Me      3-Cl       58 5t Benzyl     H  92 

5j        Me      4-Cl 68 5u Benzyl    5- OCH3       76  

5k Me      5-Cl 71 5v Benzyl    5-Br        78  
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R=Methyl or Ethyl
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Scheme 3.  Synthesis of compounds 7a~7o  

Reagents and conditions: (a) Pyrolidine, Ethanol, 40°C, 36 h; (b) NaOH, 30% H2O2, 

Methanol, 40 °C, 48 h.  
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Table 2. Chemical structures and yields of compounds 7a~7o 

 

Comp.  R R2
        Yield (%) Comp.  R R2

          Yield (%) 

7a Me       H         76 7i Me 5-Cl        60 

7b Me     4-CH3     78 7j Me       4-Br        76 

7c Me     5-CH3         44 7k Me 5-Br        82 

7d Me     5-OCH3 89 7l Me 4,5-CH3     66 

7e Me      4-F 63 7m Et H         77 

7f Me      5-F 68 7n Et 5-OCH3     81 

7g Me      3-Cl       55 7o Et 5-Br        78 

7h Me      4-Cl 48    
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Highlights 

 

► Novel resveratrol-based flavonol compounds were synthesized. 

► Compound showed high anti-inflammatory activity against IL-6、NO and TNF-α. 

► Preliminary mechanisms of anti-inflammatory action were discovered. 

 

 


