1,3-Dipolar Cycloaddition on Baylis–Hillman Adducts: Novel Synthesis of Pyrrolidines, Spiropyrrolidines, and Spiropyrrolizidines

Manickam Bakthadoss,*a Nagappan Sivakumar, Anthonisamy Devaraj, Duddu S. Sharadab

^a Dept. of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Fax +91(44)22352494; E-mail: bhakthadoss@yahoo.com

^b Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu, India *Received 12 February 2011; revised 7 April 2011*

Abstract: A facile regio- and stereoselective synthesis of functionalized pyrrolidines, spiropyrrolidines, and spiropyrrolizidines using the Baylis–Hillman adducts derived from nitroolefins via intermolecular [3+2]-cycloaddition reaction is reported.

Key words: Baylis–Hillman reaction, intermolecular [3+2] cycloaddition, azomethine ylides, 1,3-dipolar cycloaddition, pyrrolidines, spiro compounds

The Baylis–Hillman reaction has become a useful and popular synthetic tool for obtaining diverse classes of densely functionalized molecules usually referred to as the Baylis–Hillman (BH) adducts; the reaction occurs through an atom-economical carbon–carbon bond-forming reaction which involves coupling of the α -position of an activated alkene with an electrophile under the influence of a catalyst/catalytic system.^{1,2} Due to the multifunctionality of Baylis–Hillman adducts they represent valuable starting materials for a variety of novel classes of organic compounds. Applications of Baylis–Hillman adducts in a variety of organic transformations and also in the synthesis of natural products and unnatural bioactive skeletons have been well documented over the last few years.^{3,4}

The synthesis of nitrogen- and oxygen-containing heterocycles continues to be an important and challenging area in the field of organic chemistry.^{5–8} The 1,3-dipolar cycloaddition reaction is one of the most important and useful methods for the preparation of five-membered heterocycles. Though various methods⁹ are available, the 1,3-dipolar cycloaddition of azomethine ylides to alkenes is one of the most efficient and expedient synthetic protocols for the construction of highly substituted pyrrolidine and spiropyrrolidine rings.

The synthesis of pyrrolidine-based heterocycles has been the center of attraction for the past several decades because it constitutes an important class of substances with highly pronounced biological activity.⁹ Nitropyrrolidines are effective precursors for the synthesis of cephalotaxus alkaloids and potentially useful as sources of conformationally restricted analogues of dopamine.¹⁰ The pyrrolidine and spiropyrrolidine frameworks are integral part of many natural products such as horsfiline (1),^{11a} pteropodine (2),^{11b} strychnofoline (3),^{11c} spirotryprostatin A (4),^{11d} gelsemine (5),^{11e} alstonisine (6),^{11f} etc. (Figure 1). In addition, oxindoles derivatives, in particular 3-spirooxindoles, are the central skeleton of numerous alkaloids and are elegant targets in organic synthesis due to their significant biological activity.¹² The spiropyrrolidines also possess anticancer, antimicrobial, antibiotic, and antineoplastic properties.^{13–15}

Utilizing the azomethine ylide based [3+2]-cycloaddition reaction, a variety of spiropyrrolidines have been reported in the literature.¹⁶ In the Baylis–Hillman reaction, electron-deficient olefins are utilized although nitroolefins have only been used as the activated olefinic component in a couple of reports.¹⁷

We envisaged that the novel class of β -substituted Baylis– Hillman adducts 7 derived from β -aryl nitroolefins would be a useful starting material for the construction of pyrrolidine, spiropyrrolidine, and spiropyrrolizidine compounds via an azomethine ylide based [3+2] cycload-

SYNTHESIS 2011, No. 13, pp 2136–2146 Advanced online publication: 19.05.2011 DOI: 10.1055/s-0030-1260053; Art ID: Z19011SS © Georg Thieme Verlag Stuttgart · New York

dition. It is well documented in the literature that Baylis– Hillman adducts have been utilized for the synthesis of various heterocycles.^{1–4} Even though various reports are available, the synthesis of heterocyclic spiro compounds using Baylis–Hillman adducts derived from nitroolefins was not known to date with the exception of our initial report.^{18d}

In continuation of our interest in the field of Baylis– Hillman chemistry,¹⁸ we herein report a simple and convenient route for the regio- and stereoselective synthesis of pyrrolidine, spiropyrrolidine, and spiropyrrolizidine frameworks using the Baylis–Hillman adducts derived from nitroolefins with sarcosine/proline-based dipoles generated via in situ imine formation, decarboxylation, and intermolecular [3+2] cycloaddition as shown below in the retrosynthetic strategy (Scheme 1).

Scheme 1

(*E*)-2-Nitro-3-phenylprop-2-en-1-ol (**7a**), a Baylis– Hillman adduct derived from nitrostyrene, was used as a starting material for the [3+2]-cycloaddition reaction with dipoles generated from sarcosine (*N*-methylglycine) with paraformaldehyde. Best results were obtained when **7a** was treated with paraformaldehyde and sarcosine without a catalyst with acetonitrile as the solvent for eight hours at reflux temperature, which successfully provided the desired pyrrolidine compound **8a** in very good yield (76%) after the usual workup followed by column chromatography. Compound **8a** was characterized by IR, ¹H and ¹³C NMR, mass spectrometry, and elemental analyses (Scheme 2).

 $[\]begin{array}{l} R = Ph, 2\text{-naphthyl}, 4\text{-MeC}_{6}H_{4}, 4\text{-EtC}_{6}H_{4}, \ 2\text{-MeOC}_{6}H_{4}, \\ 4\text{-MeOC}_{6}H_{4}, \ 3\text{,}4\text{-(MeO)}_{2}C_{6}H_{3}, 2\text{-thienyl} \end{array}$

Scheme 2

Encouraged by this result, we prepared a variety of (*E*)-3aryl-2-nitroprop-2-en-1-ols **7b**,**d**,**e**,**g**–**i**,**o** as starting materials for the preparation of various pyrrolidine compounds. Treatment of these Baylis–Hillman adducts with paraformaldehyde and sarcosine in acetonitrile for eight hours at reflux temperature led to the desired pyrrolidine compounds **8b**,**e**,**g**–**i**,**o** in 69–80% yields (Scheme 2). The results are summarized in Table 1.

 Table 1
 Synthesis of Pyrrolidine Compounds from Baylis–Hillman

 Adducts
 8a,b,d,e,g–i,o

BH adduct	R	Product ^{a,b}	Yield ^c (%)	
7a	Ph	8a	76	
7b	2-naphthyl	8b	74	
7d	$4-MeC_6H_4$	$\mathbf{8d}^{d}$	80	
7e	$4-EtC_6H_4$	8e	70	
7g	$2-MeOC_6H_4$	8g	75	
7h	4-MeOC ₆ H ₄	8h	73	
7i	3,4-(MeO) ₂ C ₆ H ₃	8i	69	
70	2-thienyl	80	75	

^a Reaction conditions: Baylis–Hillman alcohol **7a,b,d,e,g–i,o** (2 mmol), sarcosine (3 equiv), paraformaldehyde (6 equiv), MeCN (8 mL), reflux, 8 h.

^b All products gave satisfactory IR, ¹H (300 MHz) and ¹³C NMR (75 MHz), MS, and elemental analyses.

^c Yields of the pure products **8a,b,e,g–i,o** obtained after column chromatography (silica gel, 20% EtOAc–hexanes).

^d Structure was further confirmed by single-crystal X-ray analysis.

The ¹H NMR spectrum of compound **8a** showed a singlet for NCH₃ proton at $\delta = 2.49$ ppm and the hydroxy proton showed a broad singlet at $\delta = 2.85$ ppm. The two H_b protons of pyrrolidine ring appeared as triplets at $\delta = 2.93$ and 3.27 ppm. The two H_a protons of pyrrolidine ring appeared as doublets at $\delta = 3.65$ and 3.70 ppm. The benzylic proton (H_c) was observed as a triplet at $\delta = 4.20$ ppm. The *CH*₂OH protons appeared as doublets at $\delta = 2.99$ and 3.55 ppm. The aromatic protons appeared in the region $\delta =$ 7.31–7.35 ppm.

The X-ray crystal structure analysis of compound **8d** showed that the relative stereochemistry (Figure 2) of the phenyl group and CH_2OH group in the vicinal positions is *cis*. Similarly the NO₂ group and benzylic proton also have a *cis* orientation.

To check the generality of the reaction we treated the nitro alcohols, i.e. (*E*)-3-aryl-2-nitroprop-2-en-1-ols **7a,c–f,h– n**, as starting materials for [3+2]-cycloaddition reactions with dipoles generated from sarcosine and isatin. Treatment of **7a,c–f,h–n** with isatin and sarcosine without a catalyst with acetonitrile as the solvent for five hours at reflux temperature provided the desired 3-spiropyrrolidine compounds **9a,c–f,h–n** in very good yields (60–82%) after usual workup followed by column chromatography (Table 2).

Synthesis 2011, No. 13, 2136-2146 © Thieme Stuttgart · New York

Figure 2 ORTEP diagram of 8d

Table 2Synthesis of 3-Spiropyrrolidine Compounds from theBaylis-Hillman Adducts9a,c-f,h-n

BH adduct	R Product ^{a,b}		Yield ^c (%)	
7a	Н	9a ^d	82	
7c	2-Me	9b	75	
7d	4-Me	9c	76	
7e	4-Et	9e	77	
7f	4- <i>i</i> -Pr	9f	60	
7h	4-OMe	9h	61	
7i	3,4-(OMe) ₂	9i	62	
7j	3,4-OCH ₂ O	9j	60	
7k	4-F	9k	64	
71	2-Cl	91	80	
7m	3-Cl	9m	64	
7n	4-Cl	9n	70	

^a Reaction conditions: Baylis–Hillman alcohol **7a,c–f,h–n** (2 mmol), sarcosine (2 mmol), isatin (2 mmol), MeCN (8 mL), reflux, 5 h.
 ^b All products gave satisfactory IR, ¹H (300 MHz) and ¹³C NMR (75

MHz), MS, and elemental analyses.

^c Yields of the pure products **9a,c-f,h-n** obtained after column chromatography (silica gel, 20% EtOAc-hexanes).

^d Structure was further confirmed by single-crystal X-ray analysis.

It is important to mention here that the high regio- and stereoselectivity obtained in each case was clearly evidenced by ¹H NMR data and X-ray crystal analysis.¹⁹ The ¹H NMR spectrum of compound **9a** showed a singlet for the NCH₃ protons at $\delta = 2.18$ ppm and a triplet for the benzylic proton at $\delta = 4.97$ ppm. The NCH₂ protons of the pyrrolidine ring appeared as two triplets at $\delta = 3.53$ and 4.04 ppm. The CH₂OH protons appeared as a multiplet in the region $\delta = 3.78-3.99$ ppm. The NH proton of the oxindole ring appeared at $\delta = 7.74$ ppm and the aromatic protons appeared in the region $\delta = 6.82-7.57$ ppm.

Had the other regioisomer been formed, the benzylic proton should have been appeared as singlet which we did not observe in any of the cases (9a,c-f,h-n). Comparison of the ¹H NMR spectra of the crude and recrystallized products showed them to be identical which confirm the stereoselective nature of the reaction. Furthermore the structure 9a was confirmed by X-ray crystallographic analysis.

The X-ray crystal structure analysis of compound **9a** showed that the relative stereochemistry (Figure 3) of the phenyl group and CH₂OH group in the vicinal positions is *cis*. Similarly the NO₂ group and benzylic proton also have a *cis* orientation.

Figure 3 ORTEP diagram of 9a

To probe further the generality of the reaction, we subjected various Baylis–Hillman adducts **7a,c–e,l,n** with the dipole generated from isatin and proline. Treatment of **7a,c– e,l,n** with isatin and proline without a catalyst with acetonitrile as the solvent for two hours at reflux temperature, provided the desired 3-spiropyrrolizidine compounds **10a,c–e,l,n** in good yields (52–65%) along with the minor regioisomers **11a,c–e,l,n** in 20–37% yields (Scheme 3). Compounds **10a,c–e,l,n** and **11a,c–e,l,n** were characterized by IR, ¹H and ¹³C NMR, mass spectrometry, and elemental analyses (Scheme 4). The results are summarized in Table 3.

The NMR data and X-ray crystal structure analysis¹⁹ showed that the proline and isatin based [3+2]-cycloaddition reaction with the Baylis–Hillman adducts yielded regioisomeric compounds which were separated by column chromatography. The ¹H NMR spectrum of compound

Scheme 4

Table 3Synthesis of 3-Spiropyrrolizidine Compounds from theBaylis–Hillman Adducts 10a,c–e,l,n and 11a,c–e,l,n

BH ad- duct	R	Product ^{a,b}	Yield ^c (%)	Product ^{a,b}	Yield ^c (%)	Yield (%) (10 + 11)
7a	Н	10a	52	11a ^d	33	85
7c	2-Me	10c	65	11c	25	90
7d	4-Me	10d	59	11d	35	94
7e	4-Et	10e ^d	52	11e	37	89
71	2-Cl	101	60	111	20	80
7n	4-Cl	10n	62	11n	31	93

^a Reaction conditions: Baylis–Hillman alcohol **7a,c–e,l,n** (2 mmol), proline (2 mmol), isatin (2 mmol), MeCN (8 mL), reflux, 2 h.

 $^{\rm b}$ All products gave satisfactory IR, $^{\rm l}H$ (300 MHz) and $^{\rm l3}C$ NMR (75 MHz), MS, and elemental analyses.

^c Yields of the pure products **10a,c–e,l,n** and **11a,c–e,l,n** obtained after column chromatography [silica gel, 30% EtOAc–hexanes (**10a,c–e,l,n**), 40% EtOAc–hexanes (**11a,c–e,l,n**)].

^d Structure was further confirmed by single-crystal X-ray analysis.

10a showed a doublet for the H_a proton at $\delta = 4.29$ ppm. The H_b proton and one of the CH₂OH protons appeared as a multiplet in the region $\delta = 4.39-4.53$ ppm. The other CH₂OH proton appeared as a doublet of doublets at $\delta =$ 4.95 ppm. The pyrrolidine ring protons appeared as multiplets in the region $\delta = 1.51-2.74$ ppm, and the aromatic protons appeared in the region $\delta = 6.87-7.81$ ppm.

The ¹H NMR spectrum of compound **11a** showed a singlet for the H_a proton (benzylic proton) at $\delta = 5.29$ ppm and the H_b proton appeared as a doublet of doublets at $\delta = 4.78$ ppm. The pyrrolidine ring protons appeared as multiplets in the region $\delta = 1.41-3.37$ ppm. The CH₂OH protons appeared as two doublet of doublets at $\delta = 4.15$ and 4.49 ppm. The aromatic protons appeared in the region of $\delta = 6.72-7.52$ ppm. The X-ray crystal structure of the compound **10e** showed that the relative stereochemistry (Figure 4) of the aryl and CH₂OH groups to be *cis*. Similarly the NO₂ group and benzylic proton also have a *cis*

orientation. The benzylic proton (H_a) and pyrrolidizine proton (H_b) at the ring junction are in a *trans* orientation as shown in Scheme 4.

Figure 4 ORTEP diagram of 10e

The X-ray crystal structure analysis of compound **11a** showed that the relative stereochemistry (Figure 5) of the phenyl group and CH_2OH group in the vicinal positions is *cis*. Similarly the NO₂ group and benzylic proton also have a *cis* orientation.

Figure 5 ORTEP diagram of 11a

In conclusion, we have successfully developed a simple and novel protocol for the facile synthesis of pyrrolidines and functionalized spiropyrrolidines with high regio- and stereoselectivity. We have also demonstrated that this method is useful for making novel spiropyrrolizidine

frameworks using Baylis-Hillman adducts derived from nitroolefins.

All reagents were purchased from commercial sources and used without further purification. Solvents were distilled prior to use. Column chromatography was performed on silica gel. IR spectra were recorded on an FTIR-8300 Shimadzu spectrophotometer. ¹H (300 MHz) and ¹³C NMR (75 MHz) were recorded on Bruker spectrometer using CDCl₃ as solvent and TMS as an internal standard. Mass spectra were recorded on a Jeol-JMS-DX 303 HF mass spectrometer. Elemental analyses were recorded on a Perkin-Elmer 240C-CHN analyzer. Melting points are uncorrected. TLC was performed using glass plates coated with silica gel (ACME, 254F); spots were visualized using I₂ vapor and a UV lamp.

(*E*)-2-Nitro-3-phenylprop-2-en-1-ol (7a); Typical Procedure for the Synthesis of Baylis–Hillman Adducts According to the Literature Procedure^{17b}

To a stirred soln of nitrostyrene (1.50 g, 10 mmol) in THF (20 mL) at r.t. was added imidazole (0.68 g, 1 equiv) followed by anthranilic acid (0.14 g, 10 mol%). 38% Aq formaldehyde (20 mL, excess) was then added and the mixture was stirred at r.t. for a period of 24 h. After completion of the reaction (TLC analysis), the mixture was acidified with 5 M HCl (20 mL) and the aqueous layer was extracted with EtOAc (3×25 mL). The combined organic layers were washed with brine (50 mL), dried (anhyd Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 0–25% EtOAc–hexanes) to afford pure **7a** as a yellow oil; yield: 0.90 g (50%).

IR (KBr): 3423, 1653, 1522, 1326, 1023, 695 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.61 (s, 1 H), 4.71 (d, *J* = 4.2 Hz, 2 H), 7.48–7.58 (m, 5 H), 8.22 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.62, 129.14, 130.19, 130.96, 131.31, 137.67, 149.44.

MS: $m/z = 179 (M^+)$.

Anal. Calcd for $C_9H_9NO_3$: C, 60.33; H, 5.06; N, 7.82. Found: C, 60.37; H, 5.08; N, 7.80.

(*E*)-**3-(Naphthalen-2-yl)-2-nitroprop-2-en-1-ol (7b)** Yield: 1.60 g (70%); mp 80–82 °C.

IR (KBr): 3425, 1652, 1517, 1339, 1218, 704 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.47 (s, 1 H), 4.67 (s, 2 H), 7.53–8.00 (m, 7 H), 8.81 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.88, 123.94, 125.50, 126.82, 127.47, 128.29, 128.47, 128.92, 131.38, 131.52, 133.40, 135.72, 150.58.

MS: m/z = 229 (M⁺).

Anal. Calcd for $C_{13}H_{11}NO_3$: C, 68.11; H, 4.84; N, 6.11. Found: C, 68.13; H, 4.87; N, 6.18.

(E)-2-Nitro-3-(2-tolyl)prop-2-en-1-ol (7c)

Yellow oil; yield: 0.96 g (52%).

IR (KBr): 3445, 1653, 1528, 1338, 1023, 695 cm⁻¹.

 ^1H NMR (300 MHz, CDCl_3): δ = 2.38 (s, 3 H), 2.68 (s, 1 H), 4.62 (s, 2 H), 7.26–7.46 (m, 4 H), 8.33 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 19.99, 56.54, 126.48, 129.45, 130.55, 130.59, 130.76, 136.32, 138.19, 149.80.

MS: m/z = 193 (M⁺).

Anal. Calcd for $C_{10}H_{11}NO_3$: C, 62.17; H, 5.74; N, 7.25. Found: C, 62.23; H, 5.71; N, 7.30.

(*E*)-2-Nitro-3-(4-tolyl)prop-2-en-1-ol (7d) Yield: 0.80 g (42%); mp 49–52 °C.

IR (KBr): 3436, 1648, 1521, 1460, 1021, 702 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.42 (s, 3 H), 2.57 (t, *J* = 7.2 Hz, 1 H), 4.71 (d, *J* = 7.2 Hz, 2 H), 7.26–7.48 (m, 4 H), 8.20 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 21.55, 56.76, 128.44, 129.92, 130.38, 137.92, 141.83, 148.67.

MS: m/z = 193 (M⁺).

Anal. Calcd for $C_{10}H_{11}NO_3$: C, 62.17; H, 5.74; N, 7.25. Found: C, 62.22; H, 5.78; N, 7.19.

(E)-3-(4-Ethylphenyl)-2-nitroprop-2-en-1-ol (7e)

Yellow oil; yield: 0.95 g (46%).

IR (KBr): 3233, 1643, 1590, 1321, 1093, 723 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.27 (t, *J* = 7.5 Hz, 3 H), 2.72 (q, *J* = 7.5 Hz, 2 H), 2.78 (s, 1 H), 4.74 (s, 2 H), 7.26–7.82 (m, 4 H), 8.20 (s, 1 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 15.17, 28.83, 56.53, 128.70, 130.05, 130.55, 137.92, 147.98, 148.75.

MS: $m/z = 207 (M^+)$.

Anal. Calcd for $C_{11}H_{13}NO_3$: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.82; H, 6.36; N, 6.67.

(*E*)-3-(4-Isopropylphenyl)-2-nitroprop-2-en-1-ol (7f) Yellow oil; yield: 1.15 g (52%).

IR (KBr): 3300, 1651, 1590, 1310, 1093, 715 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.28 (d, *J* = 6.9 Hz, 6 H), 2.68 (s, 1 H), 2.96 (sept, *J* = 6.9 Hz, 1 H), 4.72 (s, 2 H), 7.26–7.52 (m, 4 H), 8.20 (s, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 23.68, 34.16, 56.77, 127.32, 128.79, 130.52, 137.87, 148.74, 152.60.

MS: m/z = 221 (M⁺).

Anal. Calcd for $C_{12}H_{15}NO_3$: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.19; H, 6.87; N, 6.25.

(*E*)-**3-(2-Methoxyphenyl)-2-nitroprop-2-en-1-ol (7g)** Yellow oil; yield: 1.05 g (52%).

IR (KBr): 3430, 1643, 1512, 1305, 1025, 705 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.92 (t, *J* = 6.6 Hz, 1 H), 3.89 (s, 3 H), 4.66 (d, *J* = 6.6 Hz, 2 H), 6.94–7.55 (m, 4 H), 8.43 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.67, 56.72, 110.85, 120.44, 120.95, 130.70, 132.81, 133.90, 148.96, 158.38.

MS: m/z = 209 (M⁺).

Anal. Calcd for $C_{10}H_{11}NO_4$: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.39; H, 5.24; N, 6.76.

(E)-3-(4-Methoxyphenyl)-2-nitroprop-2-en-1-ol (7h)

Yield: 1.17 g (56%); mp 75–77 °C.

IR (KBr): 3427, 1643, 1512, 1460, 1025, 715 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.25 (s, 1 H), 3.85 (s, 3 H), 4.72 (s, 2 H), 6.96–7.58 (m, 4 H), 8.15 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.49, 56.69, 114.72, 123.67, 132.62, 137.98, 147.37, 162.12.

MS: m/z = 209 (M⁺).

Anal. Calcd for C₁₀H₁₁NO₄: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.46; H, 5.33; N, 6.64.

(*E*)-**3-(3,4-Dimethoxyphenyl)-2-nitroprop-2-en-1-ol (7i)** Yield: 1.05 g (44%); mp 100–102 °C.

IR (KBr): 3430, 1660, 1528, 1478, 1022, 720 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.05 (s, 1 H), 3.92 (s, 3 H), 3.94 (s, 3 H), 4.75 (s, 2 H), 6.94–7.25 (m, 3 H), 8.17 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 55.96, 56.01, 56.79, 111.31, 112.95, 123.95, 124.88, 130.30, 147.55, 149.24, 151.77.

MS: m/z = 239 (M⁺).

Anal. Calcd for $C_{11}H_{13}NO_5$: C, 55.23; H, 5.48; N, 5.86. Found: C, 55.27; H, 5.51; N, 5.81.

(*E*)-**3-[3,4-(Methylenedioxy)phenyl]-2-nitroprop-2-en-1-ol (7j)** Yield: 1.12 g (50%); mp 96–98 °C.

IR (KBr): 3420, 2949, 1643, 1512, 1305, 1025, 705 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.54 (t, *J* = 6.9 Hz, 1 H), 4.71 (d, *J* = 7.2 Hz, 2 H), 6.07 (s, 2 H), 6.90–7.15 (m, 3 H), 8.13 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.74, 63.15, 101.94, 109.04, 109.80, 125.16, 126.56, 128.54, 137.92, 147.85.

MS: m/z = 223 (M⁺).

Anal. Calcd for $C_{10}H_9NO_5$: C, 53.82; H, 4.06; N, 6.28. Found: C, 53.87; H, 4.09; N, 6.30.

(E)-3-(4-Fluorophenyl)-2-nitroprop-2-en-1-ol (7k)

Yield: 0.59 g (30%); mp 54–56 °C.

IR (KBr): 3458, 1653, 1560, 1394, 1053, 755 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.64 (s, 1 H), 4.68 (s, 2 H), 7.15–7.62 (m, 4 H), 8.18 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.48, 116.32, 116.61, 127.43, 127.45, 132.48, 132.59, 136.69, 149.17, 162.58, 165.94.

MS: $m/z = 197 (M^+)$.

Anal. Calcd for C₉H₈FNO₃: C, 54.83; H, 4.09; N, 7.10. Found: C, 54.88; H, 4.12; N, 7.07.

(E)-3-(2-Chlorophenyl)-2-nitroprop-2-en-1-ol (7l)

Yellow oil; yield: 1.17 g (55%).

IR (KBr): 3448, 1643, 1528, 1368, 1033, 715 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.40 (s, 1 H), 4.67 (s, 2 H), 7.27–7.85 (m, 4 H), 8.11 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.30, 128.17, 129.82, 129.87, 130.42, 130.88, 134.49, 135.52, 136.10.

MS: m/z = 213 (M⁺), 215 (M⁺ + 2).

Anal. Calcd for $C_9H_8CINO_3$: C, 50.60; H, 3.77; N, 6.56. Found: C, 50.65; H, 3.70; N, 6.58.

(E)-3-(3-Chlorophenyl)-2-nitroprop-2-en-1-ol (7m)

Yellow oil; yield: 0.85 g (43%).

IR (KBr): 3442, 1647, 1530, 1363, 1036, 720 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.40 (s, 1 H), 4.62 (s, 2 H), 7.35–8.01 (m, 4 H), 8.36 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.60, 126.70, 127.40, 130.01, 130.94, 131.44, 131.95, 132.37, 133.44.

MS: m/z = 213 (M⁺), 215 (M⁺ + 2).

Anal. Calcd for $C_9H_8CINO_3$: C, 50.60; H, 3.77; N, 6.56. Found: C, 50.67; H, 3.72; N, 6.62.

(*E*)-3-(4-Chlorophenyl)-2-nitroprop-2-en-1-ol (7n) Yellow oil; yield: 0.64 g (30%).

IR (KBr): 3432, 1649, 1536, 1360, 1039, 715 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.60 (s, 1 H), 4.67 (s, 2 H), 7.42–7.54 (m, 4 H), 8.16 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.51, 128.85, 129.03, 131.49, 136.44, 137.37, 149.65.

MS: m/z = 213 (M⁺), 215 (M⁺ + 2).

Anal. Calcd for $C_9H_8CINO_3$: C, 50.60; H, 3.77; N, 6.56. Found: C, 50.63; H, 3.75; N, 6.58.

(E)-2-Nitro-3-(thiophen-2-yl)prop-2-en-1-ol (70)

Yield: 1.11 g (60%); mp 104–106 °C.

IR (KBr): 3335, 1643, 1518, 1338, 1023, 715 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.74 (t, *J* = 6.9 Hz, 1 H), 4.91 (d, *J* = 6.9 Hz, 2 H), 7.18–7.72 (m, 3 H), 8.31 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 56.72, 128.65, 130.39, 133.50, 133.55, 136.27, 146.18.

MS: $m/z = 185 (M^+)$.

Anal. Calcd for C₇H₇NO₃S: C, 45.40; H, 3.81; N, 7.56. Found: C, 45.45; H, 3.76; N, 7.59.

(1-Methyl-3-nitro-4-phenylpyrrolidin-3-yl)methanol (8a); Typical Procedure

A mixture of (*E*)-2-nitro-3-phenylprop-2-en-1-ol (**7a**, 0.36 g, 2 mmol), paraformaldehyde (0.36 g, 12 mmol), and sarcosine (0.53 g, 6 mmol) in MeCN (8 mL) was refluxed for 8 h. After completion of the reaction (TLC), the mixture was concentrated and the resulting crude mass was diluted with H₂O (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL) and dried (anhyd Na₂SO₄). The organic layer was concentrated and purified by column chromatography (silica gel, Acme 100–200 mesh, EtOAc–hexanes, 3:7) to provide **8a** as a colorless solid; yield: 0.36 g (76%); mp 104–106 °C.

IR (KBr): 3373, 3073, 1525, 1349 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.49 (s, 3 H), 2.85 (br s, 1 H), 2.93 (t, *J* = 8.7 Hz, 1 H), 2.99 (d, *J* = 11.4 Hz, 1 H), 3.27 (t, *J* = 8.4 Hz, 1 H), 3.55 (d, *J* = 12.3 Hz, 1 H), 3.65 (d, *J* = 11.4 Hz, 1 H), 3.70 (d, *J* = 12.6 Hz, 1 H), 4.20 (t, *J* = 7.4 Hz, 1 H), 7.31–7.35 (m, 5 H).

¹³C NMR (75 MHz, CDCl₃): δ = 41.75, 51.57, 60.67, 62.71, 65.51, 98.98, 128.15, 128.28, 128.80, 128.88.

MS: $m/z = 237 (M^+ + 1)$.

Anal. Calcd for $C_{12}H_{16}N_2O_3$: C, 61.00; H, 6.83; N, 11.86. Found: C, 60.97; H, 6.91; N, 11.88.

[1-Methyl-4-(naphthalen-2-yl)-3-nitropyrrolidin-3-yl]methanol (8b)

Yield: 0.42 g (74%); mp 115–117 °C.

IR (KBr): 3364, 3065, 1530, 1356 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.45 (s, 3 H), 2.56 (s, 1 H), 3.05 (t, *J* = 6.6 Hz, 1 H), 3.11 (d, *J* = 11.1 Hz, 1 H), 3.24 (t, *J* = 9.3 Hz, 1 H), 3.40 (d, *J* = 12.9 Hz, 1 H), 3.49 (d, *J* = 13.2 Hz, 2 H), 4.97 (t, *J* = 6.9 Hz, 1 H), 7.35–7.93 (m, 7 H).

 13 C NMR (75 MHz, CDCl₃): δ = 41.75, 46.46, 62.54, 63.90, 64.79, 99.91, 122.96, 125.20, 125.92, 126.08, 127.07, 128.66, 129.04, 132.48, 133.01, 133.83.

MS: $m/z = 287 (M^+ + 1)$.

Anal. Calcd for $C_{16}H_{18}N_2O_3$: C, 67.12; H, 6.34; N, 9.78. Found: C, 67.14; H, 6.35; N, 9.76.

IR (KBr): 3374, 3069, 1532, 1351 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.02$ (s, 1 H), 2.34 (s, 3 H), 2.44 (s, 3 H), 2.80 (d, J = 9.00 Hz, 1 H), 2.86 (d, J = 10.8 Hz, 1 H), 3.20 (t, J = 9 Hz, 1 H), 3.51 (d, J = 12.3 Hz, 1 H), 3.62 (d, J = 11.4 Hz, 1 H), 3.68 (d, J = 12.6 Hz, 1 H), 4.11 (t, J = 7.2 Hz, 1 H), 7.15 (d, J = 7.2 Hz, 2 H), 7.24 (d, J = 11.1 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 21.05, 41.74, 51.34, 61.17, 63.21, 65.69, 99.29, 128.74, 129.48, 132.74, 137.84.

MS: $m/z = 251 (M^+ + 1)$.

Anal. Calcd for $C_{13}H_{18}N_2O_3$: C, 62.38; H, 7.25; N, 11.19. Found: C, 62.40; H, 7.24; N, 11.22.

[4-(4-Ethylphenyl)-1-methyl-3-nitropyrrolidin-3-yl]methanol (8e)

Yield: 0.37 g (70%); mp 110–112 °C.

IR (KBr): 3366, 3063, 1529, 1343 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.15 (t, *J* = 8.7 Hz, 3 H), 2.38 (s, 3 H), 2.57 (q, *J* = 9.6 Hz, 2 H), 2.66 (s, 1 H), 2.73 (d, *J* = 7.5 Hz, 1 H), 2.80 (d, *J* = 8.4 Hz, 1 H), 3.14 (t, *J* = 12.30 Hz, 1 H), 3.43 (d, *J* = 12.3 Hz, 1 H), 3.60 (d, *J* = 13.2 Hz, 2 H), 4.03 (t, *J* = 11.1 Hz, 1 H), 7.09 (d, *J* = 7.8 Hz, 2 H), 7.18 (d, *J* = 7.5 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 15.45, 28.44, 41.78, 51.77, 60.93, 62.82, 65.80, 99.27, 128.16, 128.91, 132.49, 144.10.

MS: $m/z = 265 (M^+ + 1)$.

Anal. Calcd for $C_{14}H_{20}N_2O_3$: C, 63.62; H, 7.63; N, 10.60. Found: C, 63.65; H, 7.62; N, 10.59.

[4-(2-Methoxyphenyl)-1-methyl-3-nitropyrrolidin-3-yl]methanol (8g)

Yield: 0.40 g (75%); mp 121–123 °C.

IR (KBr): 3364, 3065, 1527, 1344 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.05 (s, 1 H), 2.51 (s, 3 H), 2.93 (t, *J* = 9.3 Hz, 1 H), 3.04 (d, *J* = 11.4 Hz, 1 H), 3.25 (d, *J* = 13.2 Hz, 1 H), 3.33 (t, *J* = 8.4 Hz, 1 H), 3.43 (d, *J* = 11.1 Hz, 2 H), 3.72 (s, 3 H), 4.57 (t, *J* = 7.8 Hz, 1 H), 6.83–7.31 (m, 4 H).

¹³C NMR (75 MHz, CDCl₃): δ = 41.90, 46.82, 54.93, 59.30, 63.98, 64.48, 97.31, 110.24, 120.74, 123.80, 127.65, 129.07, 157.46.

MS: $m/z = 267 (M^+ + 1)$.

Anal. Calcd for $C_{13}H_{18}N_2O_4$: C, 58.63; H, 6.81; N, 10.52. Found: C, 58.60; H, 6.83; N, 10.55.

[4-(4-Methoxyphenyl)-1-methyl-3-nitropyrrolidin-3-yl]methanol (8h)

Yield: 0.39 g (73%); mp 129-131 °C.

IR (KBr): 3367, 3064, 1531, 1343 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.15 (s, 1 H), 2.45 (s, 3 H), 2.80 (t, *J* = 9.00 Hz, 1 H), 2.86 (d, *J* = 11.4 Hz, 1 H), 3.20 (t, *J* = 8.4 Hz, 1 H), 3.51 (d, *J* = 12.6 Hz, 1 H), 3.63 (d, *J* = 11.4 Hz, 1 H), 3.69 (d, *J* = 12.3 Hz, 1 H), 3.81 (s, 3 H), 4.10 (t, *J* = 8.1 Hz, 1 H), 6.88 (d, *J* = 8.4 Hz, 2 H), 7.27 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 41.77, 51.10, 55.33, 61.31, 63.17, 65.77, 99.30, 114.16, 127.72, 129.95, 159.30.

MS: $m/z = 267 (M^+ + 1)$.

Anal. Calcd for $C_{13}H_{18}N_2O_4$: C, 58.63; H, 6.81; N, 10.52. Found: C, 58.65; H, 6.80; N, 10.54.

[4-(3,4-Dimethoxyphenyl)-1-methyl-3-nitropyrrolidin-3yl]methanol (8i)

Yield: 0.41 g (69%); mp 130–132 °C.

IR (KBr): 3363, 3060, 1529, 1338 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.49$ (s, 3 H), 2.89 (t, J = 9.3 Hz, 1 H), 2.96 (d, J = 11.7 Hz, 1 H), 3.26 (t, J = 8.4 Hz, 1 H), 3.55 (d, J = 12.3 Hz, 1 H), 3.72 (d, J = 12.6 Hz, 2 H), 3.88 (s, 6 H), 3.95 (s, 1 H), 4.10 (t, J = 8.1 Hz, 1 H), 6.81–6.88 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 41.74, 51.33, 55.90, 56.01, 60.76, 62.66, 65.52, 99.04, 111.18, 112.29, 120.73, 127.65, 148.87, 149.06.

MS: $m/z = 297 (M^+ + 1)$.

Anal. Calcd for $C_{14}H_{20}N_2O_5{:}$ C, 56.75; H, 6.80; N, 9.45. Found: C, 56.77; H, 6.78; N, 9.47.

[1-Methyl-3-nitro-4-(thiophen-2-yl)pyrrolidin-3-yl]methanol (80)

Yield: 0.36 g (75%); mp 92–94 °C.

IR (KBr): 3362, 3076, 1530, 1352 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.45 (s, 3 H), 2.49 (s, 1 H), 2.71 (t, *J* = 9.3 Hz, 1 H), 2.79 (d, *J* = 11.7 Hz, 1 H), 3.36 (t, *J* = 7.5 Hz, 1 H), 3.64 (d, *J* = 12.6 Hz, 1 H), 3.77 (d, *J* = 12 Hz, 1 H), 3.86 (d, *J* = 12.3 Hz, 1 H), 4.48 (t, *J* = 8.7 Hz, 1 H), 7.00–7.29 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 41.48, 47.11, 62.24, 62.64, 65.65, 99.03, 125.55, 127.17, 127.29, 137.97.

MS: $m/z = 243 (M^+ + 1)$.

Anal. Calcd for $C_{10}H_{14}N_2O_3S;\,C,\,49.57;\,H,\,5.82;\,N,\,11.56.$ Found: C, 49.60; H, 5.85; N, 11.58.

3'-(Hydroxymethyl)-1'-methyl-3'-nitro-4'-phenylspiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9a); Typical Procedure

A mixture of (*E*)-2-nitro-3-phenylprop-2-en-1-ol (**7a**, 0.36 g, 2 mmol), isatin (0.29 g, 2 mmol), and sarcosine (0.18 g, 2 mmol) in MeCN (8 mL) was refluxed for 5 h. After completion of the reaction (TLC), the mixture was concentrated and the resulting crude mass was diluted with H₂O (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (2×10 mL) and dried (anhyd Na₂SO₄). The organic layer was concentrated and the residue purified by column chromatography (silica gel, Acme 100–200 mesh, EtOAc–hexanes, 2:8) to afford **9a** as a colorless solid; yield: 0.58 g (82%); mp 160–162 °C.

IR (KBr): 3484, 3227, 1717, 1544, 1337 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.18 (s, 3 H), 2.87 (dd, *J* = 2.7, 11.7 Hz, 1 H), 3.53 (t, *J* = 9.0 Hz, 1 H), 3.78–3.99 (m, 2 H), 4.04 (t, *J* = 9.6 Hz, 1 H), 4.97 (t, *J* = 9.0 Hz, 1 H), 6.82–7.57 (m, 9 H), 7.74 (s, 1 H).

 13 C NMR (75 MHz, CDCl₃): δ = 34.77, 49.40, 56.78, 64.17, 77.23, 105.05, 110.15, 123.38, 124.46, 125.20, 128.18, 128.78, 129.99, 130.48, 134.75, 141.55, 176.06.

MS: $m/z = 354 (M^+ + 1)$.

Anal. Calcd for $C_{19}H_{19}N_3O_4$: C, 64.58; H, 5.42; N, 11.89. Found: C, 64.56; H, 5.39; N, 11.94.

3'-(Hydroxymethyl)-1'-methyl-3'-nitro-4'-(2-tolyl)spiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9c)

Yield: 0.55 g (75%); mp 98–100 °C.

IR (KBr): 3429, 3176, 1716, 1541, 1346 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.19 (s, 3 H), 2.14 (s, 3 H), 2.52 (dd, *J* = 3.3, 11.7 Hz, 1 H), 3.52 (t, *J* = 9 Hz, 1 H), 3.62 (dd, *J* = 3.6, 13.8 Hz, 1 H), 3.94 (t, *J* = 12 Hz, 1 H), 4.13 (t, *J* = 9.6 Hz, 1 H), 5.14 (t, *J* = 9.6 Hz, 1 Hz), 6.79–7.89 (m, 9 H).

 13 C NMR (75 MHz, CDCl₃): δ = 20.37, 34.50, 45.40, 56.95, 63.68, 77.28, 105.62, 110.05, 123.50, 124.24, 125.15, 126.56, 127.90, 129.27, 130.49, 130.67, 133.39, 137.68, 142.00, 175.89.

MS: $m/z = 367 (M^+ + 1)$.

Anal. Calcd for $C_{20}H_{21}N_3O_4{:}$ C, 65.38; H, 5.76; N, 11.44. Found: C, 65.40; H, 5.70; N, 11.42.

3'-(Hydroxymethyl)-1'-methyl-3'-nitro-4'-(4-tolyl)spiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9d)

Yield: 0.56 g (76%); mp 122–124 °C.

IR (KBr): 3564, 3151, 1710, 1550, 1331 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.17 (s, 3 H), 2.35 (s, 3 H), 2.81 (dd, *J* = 3.6, 11.7 Hz, 1 H), 3.50 (t, *J* = 9 Hz, 1 H), 3.78 (dd, *J* = 3.3, 13.5 Hz, 1 H), 3.91–4.03 (m, 2 H), 4.93 (t, *J* = 9.3 Hz, 1 H), 6.81–7.45 (m, 8 H), 7.67 (s, 1 H).

 13 C NMR (75 MHz, CDCl₃): δ = 21.08, 34.78, 49.07, 56.86, 64.17, 77.23, 105.07, 110.09, 123.38, 124.47, 125.24, 129.49, 129.83, 130.44, 131.59, 137.98, 141.50, 175.98.

MS: $m/z = 367 (M^+ + 1)$.

Anal. Calcd for $C_{20}H_{21}N_3O_4$: C, 65.38; H, 5.76; N, 11.44. Found: C, 65.43; H, 5.74; N, 11.49.

4'-(4-Ethylphenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1H)-one (9e) Yield: 0.59 g (77%); mp 134–136 °C.

IR (KBr): 3489, 3217, 1746, 1532, 1347 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.23 (t, *J* = 7.5 Hz, 3 H), 2.17 (s, 3 H), 2.64 (q, *J* = 7.5 Hz, 2 H), 2.82 (dd, *J* = 3.0, 11.4 Hz, 1 H), 3.50 (t, *J* = 9 Hz, 1 H), 3.79 (dd, *J* = 3.3, 13.5 Hz, 1 H), 3.91–4.04 (m, 2 H), 4.94 (t, *J* = 9.3 Hz, 1 H), 6.81–7.48 (m, 8 H), 7.69 (s, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 15.44, 28.47, 34.78, 49.14, 56.81, 64.17, 77.64, 105.04, 110.24, 123.34, 124.43, 125.25, 128.28, 129.89, 130.44, 131.83, 141.71, 144.31, 176.29.

MS: $m/z = 381 (M^+ + 1)$.

Anal. Calcd for $C_{21}H_{23}N_3O_4$: C, 66.13; H, 6.08; N, 11.02. Found, 66.17; H, 6.10; N, 11.07.

3'-(Hydroxymethyl)-4'-(4-isopropylphenyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9f)

Yield: 0.47 g (60%); mp 127–129 °C.

IR (KBr): 3435, 3213, 1711, 1541, 1330 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (d, J = 6.9 Hz, 6 H), 2.17 (s, 3 H), 2.80 (dd, J = 3, 11.7 Hz, 1 H), 2.88 (sept, J = 6.9 Hz, 1 H), 3.50 (t, J = 9 Hz, 1 H), 3.79 (dd, J = 3.3, 13.2 Hz, 1 H), 3.90–4.04 (m, 2 H), 4.94 (t, J = 9.3 Hz, 1 H), 6.81–7.49 (m, 8 H), 7.58 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 23.90, 33.76, 34.79, 49.06, 56.84, 64.23, 77.21, 105.07, 110.01, 123.39, 124.52, 125.24, 126.83, 129.89, 130.42, 131.90, 141.41, 148.94, 175.90.

MS: $m/z = 395 (M^+ + 1)$.

Anal. Calcd for $C_{22}H_{25}N_3O_4$: C, 66.82; H, 6.37; N, 10.63. Found: C, 66.80; H, 6.33; N, 10.65.

3'-(Hydroxymethyl)-4'-(4-methoxyphenyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9h) Yield: 0.47 g (61%); mp 143–145 °C.

IR (KBr): 3199, 3176, 1731, 1538, 1328 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.16 (s, 3 H), 2.91 (d, *J* = 2.7 Hz, 1 H), 3.51 (t, *J* = 9 Hz, 1 H), 3.81 (s, 3 H), 3.81–4.00 (m, 3 H), 4.91 (t, *J* = 9 Hz, 1 H), 6.81–7.50 (m, 8 H), 7.85 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.79, 48.77, 55.29, 57.06, 64.17, 77.24, 104.97, 110.15, 114.14, 123.37, 124.45, 125.20, 126.52, 130.45, 131.09, 141.53, 159.39, 179.08.

MS: $m/z = 383 (M^+ + 1)$.

Anal. Calcd for $C_{20}H_{21}N_3O_5$: C, 62.65; H, 5.52; N, 10.96. Found: C, 62.68; H, 5.50; N, 10.96.

4'-(3,4-Dimethoxyphenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H***)-one (9i) Yield: 0.51 g (62%); mp 112–114 °C.**

IR (KBr): 3446, 3085, 1717, 1545, 1347 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.17 (s, 3 H), 2.84 (d, *J* = 9 Hz, 1 H), 3.49 (t, *J* = 6.9 Hz, 1 H), 3.56 (d, *J* = 9.3 Hz, 1 H), 3.83 (d, *J* = 10.8 Hz, 1 H), 3.89 (s, 3 H), 3.92 (s, 3 H), 3.97 (t, *J* = 5.4 Hz, 1 H), 4.88 (t, *J* = 9.3 Hz, 1 H), 6.81–7.33 (m, 7 H), 7.67 (s, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 34.77, 49.15, 55.89, 55.98, 57.37, 64.04, 76.66, 105.06, 110.06, 111.13, 112.97, 122.49, 123.42, 124.48, 125.16, 127.08, 130.45, 141.37, 148.87, 149.08, 175.85.

MS: $m/z = 414 (M^+ + 1)$.

Anal. Calcd for $C_{21}H_{23}N_3O_6{:}$ C, 61.01; H, 5.61; N, 10.16. Found: C, 61.05; H, 5.62; N, 10.24.

3'-(Hydroxymethyl)-1'-methyl-4'-[3,4-(methylenedioxy)phenyl]-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H***)-one (9j) Yield: 0.48 g (60%); mp 117–119 °C.**

IR (KBr): 3515, 3305, 1721, 1543, 1356 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.16 (s, 3 H), 2.90 (dd, *J* = 3.3, 11.4 Hz, 1 H), 3.50 (t, *J* = 9 Hz, 1 H), 3.83 (dd, *J* = 3.3, 13.5 Hz, 1 H), 3.89–4.02 (m, 2 H), 4.88 (t, *J* = 9.3 Hz, 1 H), 5.97 (s, 2 H), 6.77–7.32 (m, 7 H), 7.74 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.73, 49.17, 57.09, 64.03, 76.51, 101.24, 105.05, 108.35, 110.05, 110.12, 123.42, 123.56, 124.47, 125.15, 128.23, 130.47, 141.36, 147.43, 148.04, 175.80.

MS: $m/z = 398 (M^+ + 1)$.

Anal. Calcd for $C_{20}H_{19}N_3O_6$: C, 60.45; H, 4.82; N, 10.57. Found: C, 60.40; H, 4.88; N, 10.54.

4'-(4-Fluorophenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H***)-one (9k) Yield: 0.47 g (64%); mp 154–156 °C.**

IR (KBr): 3203, 3145, 1749, 1509, 1327 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.17$ (s, 3 H), 3.07 (dd, J = 3.3, 10.8 Hz, 1 H), 3.53 (t, J = 9.3 Hz, 1 H), 3.81 (dd, J = 3.9, 13.5 Hz, 1 H), 3.86 (d, J = 11.4 Hz, 1 H), 3.96 (t, J = 9.3 Hz, 1 H), 4.94 (t, J = 9.3 Hz, 1 H), 6.82–7.59 (m, 8 H), 7.81 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.79, 48.64, 57.19, 64.14, 76.71, 104.60, 110.25, 115.49, 115.78, 123.44, 124.46, 125.01, 130.50, 130.55, 131.72, 131.83, 141.47, 176.14.

MS: $m/z = 372 (M^+ + 1)$.

Anal. Calcd for $C_{19}H_{18}FN_{3}O_{4}$: C, 61.45; H, 4.89; N, 11.32. Found: C, 61.47; H, 4.87; N, 11.38.

4'-(2-Chlorophenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9l) Yield: $0.62 \ge (80\%)$; mp 116–118 °C.

IR (KBr): 3421, 3157, 1712, 1546, 1337 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.89 (s, 3 H), 2.76 (dd, *J* = 6.3, 9.0 Hz, 1 H), 3.54 (t, *J* = 9 Hz, 1 H), 3.72 (t, *J* = 6 Hz, 2 H), 4.14 (t, *J* = 9.6 Hz, 1 H), 5.30 (t, *J* = 9 Hz, 1 H), 6.77–7.93 (m, 9 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.42, 45.86, 55.61, 63.51, 76.51, 104.38, 109.99, 123.55, 124.26, 124.93, 127.33, 129.23, 129.60, 130.47, 130.62, 132.96, 135.65, 142.02, 175.72.

MS: $m/z = 389 (M^+ + 2)$.

Anal. Calcd for C₁₉H₁₈ClN₃O₄: C, 58.84; H, 4.68; N, 10.84. Found: C, 58.83; H, 4.70; N, 10.86.

4'-(3-Chlorophenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1H)-one (9m) Yield: 0.50 g (64%); mp 122–124 °C.

IR (KBr): 3216, 3097, 1714, 1540, 1330 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.17$ (s, 3 H), 3.10 (dd, J = 3.3, 10.8 Hz, 1 H), 3.52 (t, J = 9.3 Hz, 1 H), 3.82 (dd, J = 3.0, 12.9 Hz, 1 H), 3.89 (d, J = 10.8 Hz, 1 H), 3.98 (t, J = 9.3 Hz, 1 H), 4.92 (t, J = 9.3 Hz, 1 H), 6.83–7.59 (m, 8 H), 8.08 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.75, 48.98, 56.83, 64.05, 76.69, 104.60, 110.38, 123.44, 124.39, 124.94, 128.34, 128.40, 129.93, 130.18, 130.61, 134.64, 136.97, 141.56, 176.25.

MS: $m/z = 389 (M^+ + 2)$.

Anal. Calcd for $C_{19}H_{18}CIN_3O_4$: C, 58.84; H, 4.68; N, 10.84. Found: C, 58.80; H, 4.65; N, 10.82.

4'-(4-Chlorophenyl)-3'-(hydroxymethyl)-1'-methyl-3'-nitrospiro[indole-3,2'-pyrrolidin]-2(1*H*)-one (9n)

Yield: 0.54 g (70%); mp 143–145 °C.

IR (KBr): 3421, 3156, 1712, 1546, 1337 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 2.19$ (s, 3 H), 2.68 (dd, J = 5.7, 9.6 Hz, 1 H), 3.55 (t, J = 9 Hz, 1 H), 3.72 (t, J = 5.7 Hz, 2 H), 4.14 (t, J = 9.3 Hz, 1 H), 5.30 (t, J = 9.3 Hz, 1 H), 6.78–7.93 (m, 9 H).

¹³C NMR (75 MHz, CDCl₃): δ = 34.41, 45.82, 55.64, 63.54, 76.42, 104.51, 109.80, 123.58, 124.33, 127.35, 129.20, 129.57, 130.47, 130.64, 132.95, 141.76, 175.27.

MS: $m/z = 389 (M^+ + 2)$.

Anal. Calcd for $C_{19}H_{18}CIN_3O_4$: C, 58.84; H, 4.68; N, 10.84. Found: C, 58.83; H, 4.64; N, 10.83.

2'-(Hydroxymethyl)-2'-nitro-1'-phenyl-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)-one (10a) and 1'-(Hydroxymethyl)-1'-nitro-2'-phenyl-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)-one (11a); Typical Procedure

A mixture of (*E*)-2-nitro-3-phenylprop-2-en-1-ol (**7a**, 0.36 g, 2 mmol), isatin (0.29 g, 2 mmol), and L-proline (0.23 g, 2 mmol) in MeCN (8 mL) was refluxed for 2 h. After completion of the reaction (TLC), the mixture was concentrated and the resulting crude mass was diluted with H_2O (20 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (3 × 10 mL) and dried (anhyd Na₂SO₄). The organic layer was concentrated and purified by column chromatography (silica gel, Acme 100–200 mesh, EtOAc–hexanes, 3:7 to give **10a** followed by 4:6 to give **11a**) to provide **10a** (0.39 g, 52%) as a colorless solid and **11a** (0.25 g, 33%) as a colorless solid.

Compound 10a

Mp 148–150 °C.

IR (KBr): 3463, 3197, 1709, 1540, 1336 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.51–1.55 (m, 1 H), 1.92–2.08 (m, 3 H), 2.50–2.56 (m, 1 H), 2.69–2.74 (m, 1 H), 3.88 (t, *J* = 12.3 Hz, 1 H), 4.29 (d, *J* = 10.2 Hz, 1 H), 4.39–4.53 (m, 2 H), 4.95 (dd, *J* = 3.6, 12.0 Hz, 1 H), 6.87–7.81 (m, 10 H).

¹³C NMR (75 MHz, CDCl₃): δ = 27.88, 32.74, 47.89, 56.59, 64.51, 69.88, 78.03, 105.54, 111.22, 122.96, 124.98, 125.52, 127.99, 128.56, 130.70, 130.88, 134.19, 140.86, 179.78.

MS: $m/z = 380 (M^+ + 1)$.

Anal. Calcd for $C_{21}H_{21}N_3O_4$: C, 66.48; H, 5.58; N, 11.08. Found: C, 66.41; H, 5.46; N, 11.14.

Synthesis 2011, No. 13, 2136-2146 © Thieme Stuttgart · New York

Compound 11a Mp 170–172 °C.

Mp 170–172 C.

IR (KBr): 3467, 3185, 1709, 1535, 1345 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.41-1.47$ (m, 1 H), 1.86–2.00 (m, 2 H), 2.17–2.22 (m, 2 H), 2.64 (td, J = 2.1, 5.4 Hz, 1 H), 3.22–3.27 (m, 1 H), 4.15 (dd, J = 4.2, 13.2 Hz, 1 H), 4.49 (dd, J = 10.5, 13.2 Hz, 1 H), 4.78 (dd, J = 5.4, 8.1 Hz, 1 H), 5.29 (s, 1 H), 6.72–7.52 (m, 10 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 25.04, 27.69, 48.50, 59.23, 65.28, 69.60, 73.67, 104.73, 110.22, 122.73, 125.31, 126.25, 128.33, 128.96, 129.43, 130.01, 131.79, 141.40, 178.87.

MS: $m/z = 380 (M^+ + 1)$.

Anal. Calcd for $C_{21}H_{21}N_3O_4$: C, 66.48; H, 5.58; N, 11.08. Found: C, 66.42; H, 5.49; N, 11.16.

2'-(Hydroxymethyl)-2'-nitro-1'-(2-tolyl)-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H***)-one (10c) Yield: 0.51 g (65%); mp 160–162 °C.**

IR (KBr): 3255, 3075, 1712, 1543, 1333 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.52–1.59 (m, 1 H), 1.83–2.09 (m, 3 H), 2.58 (s, 3 H), 2.63–2.77 (m, 2 H), 4.15 (t, *J* = 12.0 Hz, 1 H), 4.31–4.89 (m, 2 H), 4.65 (d, *J* = 10.2 Hz, 1 H), 4.77 (s, 1 H), 6.90–8.02 (m, 8 H), 8.34 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = 20.60, 27.31, 31.76, 47.88, 51.82, 64.74, 70.91, 77.79, 106.56, 111.19, 123.08, 125.11, 125.26, 126.46, 127.48, 129.52, 130.64, 130.96, 133.18, 138.38, 141.26, 179.36.$

MS: $m/z = 394 (M^+ + 1)$.

Anal. Calcd for C₂₂H₂₃N₃O₄: C, 67.16; H, 5.89; N, 10.68. Found: C, 67.20; H, 5.91; N, 10.65.

1'-(Hydroxymethyl)-1'-nitro-2'-(2-tolyl)-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)-one (11c) Yield: 0.20 g (25%); mp 168–170 °C.

IR (KBr): 3457, 3185, 1709, 1535, 1345 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.36-1.49$ (m, 1 H), 1.86–2.18 (m, 3 H), 2.20 (s, 3 H), 2.21–2.25 (m, 1 H), 2.68 (dt, J = 2.7, 3.0 Hz, 1 H), 3.33 (q, J = 8.1 Hz, 1 H), 4.03 (d, J = 13 Hz, 1 H), 4.51 (t, J = 10.5 Hz, 1 H), 4.82 (q, J = 5.7 Hz, 1 H), 5.71 (s, 1 H), 6.69 (d, J = 7.5 Hz, 1 H), 7.02–7.63 (m, 8 H).

¹³C NMR (75 MHz, $CDCl_3$): $\delta = 20.37, 25.03, 27.13, 47.40, 54.99, 65.11, 70.60, 74.42, 103.79, 110.10, 122.57, 125.16, 126.44, 126.62, 128.09, 128.66, 129.95, 130.43, 131.27, 138.18, 141.19, 178.79.$

MS: $m/z = 394 (M^+ + 1)$.

Anal. Calcd for C₂₂H₂₃N₃O₄: C, 67.16; H, 5.89; N, 10.68. Found: C, 67.20; H, 5.92; N, 10.72.

2'-(Hydroxymethyl)-2'-nitro-1'-(4-tolyl)-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H***)-one (10d) Yield: 0.46 g (59%); mp 193–195 °C.**

IR (KBr): 3461, 3173, 1714, 1535, 1343 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.51-1.61$ (m, 1 H), 1.92–2.11 (m, 3 H), 2.36 (s, 3 H), 2.48–2.56 (m, 1 H), 2.70–2.76 (m, 1 H), 3.90 (t, J = 12.0 Hz, 1 H), 4.27 (d, J = 10.2 Hz, 1 H), 4.40–4.55 (m, 2 H), 4.92 (dd, J = 3.6, 12.0 Hz, 1 H), 6.90 (d, J = 7.5 Hz, 1 H), 7.07–7.81 (m, 7 H), 8.29 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = 21.11, 27.88, 32.71, 47.97, 56.23, 64.51, 69.82, 78.11, 105.50, 111.33, 122.97, 125.03, 125.54, 129.33, 130.73, 131.09, 132.67, 137.76, 140.95, 180.08.$

MS: $m/z = 394 (M^+ + 1)$.

Anal. Calcd for $C_{22}H_{23}N_3O_4{:}$ C, 67.16; H, 5.89; N, 10.68. Found: C, 67.20; H, 5.86; N, 10.65.

1'-(Hydroxymethyl)-1'-nitro-2'-(4-tolyl)-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H***)-one (11d) Yield: 0.27 g (35%); mp 178–180 °C.**

IR (KBr): 3453, 3182, 1709, 1532, 1342 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.42-1.57$ (m, 1 H), 1.86–1.99 (m, 2 H), 2.19 (s, 3 H), 2.27–2.42 (m, 2 H), 2.68 (dt, J = 1.8, 2.1 Hz, 1 H), 3.27 (dd, J = 8.1, 16.2 Hz, 1 H), 4.15 (d, J = 13.2 Hz, 1 H), 4.50 (d, J = 11.7 Hz, 1 H), 4.79 (dd, J = 5.4, 8.4 Hz, 1 H), 5.25 (s, 1 H), 6.75–7.51 (m, 8 H), 8.40 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 20.91, 25.01, 27.66, 48.47, 58.92, 65.32, 69.56, 73.70, 104.69, 110.21, 122.71, 125.30, 126.36, 128.58, 129.30, 129.69, 129.95, 138.13, 141.42, 179.00.

MS: $m/z = 394 (M^+ + 1)$.

Anal. Calcd for C₂₂H₂₃N₃O₄: C, 67.16; H, 5.89; N, 10.68. Found: C, 67.20; H, 5.87; N, 10.71.

1'-(4-Ethylphenyl)-2'-(hydroxymethyl)-2'-nitro-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H***)-one (10e) Yield: 0.42 g (52%); mp 153–155 °C.**

IR (KBr): 3462, 2963, 1723, 1508, 1346 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.25 (t, *J* = 7.5 Hz, 3 H), 1.43–1.55 (m, 1 H), 1.92–2.12 (m, 3 H), 2.47–2.76 (m, 4 H), 3.89 (t, *J* = 12.0 Hz, 1 H), 4.25 (d, *J* = 11.3 Hz, 1 H), 4.38–4.54 (m, 2 H), 4.89 (dd, *J* = 3.9, 12.3 Hz, 1 H), 6.86–7.68 (m, 8 H), 7.71 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 15.35, 27.88, 28.47, 32.75, 47.90, 56.24, 64.50, 69.81, 78.02, 105.54, 111.16, 122.95, 125.04, 125.57, 128.05, 130.67, 130.76, 131.27, 140.82, 143.98, 179.82.

MS: $m/z = 408 (M^+ + 1)$.

Anal. Calcd for $C_{23}H_{25}N_3O_4$: C, 67.80; H, 6.18; N, 10.31. Found: C, 67.78; H, 6.20; N, 10.29.

2'-(4-Ethylphenyl)-1'-(hydroxymethyl)-1'-nitro-1',2',5',6',7',7a'hexahydrospiro[indole-3,3'-pyrrolizin]-2(1H)-one (11e) Yield: 0.30 g (37%); mp 163–165 °C.

IR (KBr): 3461, 3165, 1732, 1537, 1342 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.13$ (t, J = 7.5 Hz, 3 H), 1.39–1.50 (m, 2 H), 1.93–2.00 (m, 1 H), 2.17–2.26 (m, 2 H), 2.51 (q, J = 7.5 Hz, 2 H), 2.66 (dt, J = 2.4, 2.4 Hz, 1 H), 3.26 (q, J = 8.4 Hz, 1 H), 4.27 (d, J = 12.9 Hz, 1 H), 4.48 (dd, J = 9.9, 11.7 Hz, 1 H), 4.77 (dd, J = 5.4, 8.1 Hz, 1 H), 5.27 (s, 1 H), 6.75 (d, J = 7.5 Hz, 1 H), 6.97–7.52 (m, 7 H), 7.73 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 25.03, 27.60, 28.22, 29.68, 48.25, 59.01, 65.63, 69.55, 73.48, 104.06, 109.98, 122.71, 125.36, 126.44, 128.44, 128.83, 129.38, 129.88, 141.26, 144.31, 178.48.

MS: $m/z = 408 (M^+ + 1)$.

Anal. Calcd for $C_{23}H_{25}N_3O_4$: C, 67.80; H, 6.18; N, 10.31. Found: C, 67.86; H, 6.15; N, 10.33.

1'-(2-Chlorophenyl)-2'-(hydroxymethyl)-2'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)one (10l)

Yield: 0.50 g (60%); mp 178–180 °C.

IR (KBr): 3253, 3182, 1710, 1543, 1335 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.69–2.06 (m, 4 H), 2.70–2.74 (m, 2 H), 4.04 (t, *J* = 12.3 Hz, 1 H), 4.30–4.47 (m, 3 H), 5.04 (d, *J* = 10.2 Hz, 1 H), 6.89–8.09 (m, 8 H), 8.50 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 27.07, 31.29, 47.91, 52.20, 64.74, 70.12, 77.48, 106.03, 11.08, 123.23, 125.18, 127.26, 128.84,

129.83, 130.00, 130.60, 130.93, 132.73, 136.32, 141.32, 179.09.

MS: $m/z = 414 (M^+ + 1), 415 (M^+ + 2).$

Anal. Calcd for $C_{21}H_{20}ClN_3O_4{:}$ C, 60.95; H, 4.87; N, 10.15. Found: C, 60.92; H, 4.90; N, 10.12.

2'-(2-Chlorophenyl)-1'-(hydroxymethyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)one (11l)

Yield: 0.16 g (20%); mp 165-167 °C·

IR (KBr): 3461, 3175, 1759, 1538, 1342 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.43–1.52 (m, 1 H), 1.86–2.33 (m, 4 H), 2.69 (t, *J* = 7.8 Hz, 1 H), 3.47 (dd, *J* = 8.1, 16.8 Hz, 1 H), 4.04 (d, *J* = 13.2 Hz, 1 H), 4.46 (d, *J* = 12.0 Hz, 1 H), 4.91 (dd, *J* = 4.8, 8.4 Hz, 1 H), 6.01 (s, 1 H), 6.75 (d, *J* = 7.8 Hz, 1 H), 7.03–7.66 (m, 7 H), 8.01 (s, 1 H).

 $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ = 24.88, 27.24, 48.23, 54.57, 65.00, 70.77, 74.67, 77.20, 103.52, 109.96, 122.77, 125.80, 125.91, 127.04, 129.35, 129.92, 130.10, 130.19, 135.99, 141.07, 178.41.

MS: $m/z = 414 (M^+ + 1), 415 (M^+ + 2).$

Anal. Calcd for C₂₁H₂₀ClN₃O₄: C, 60.95; H, 4.87; N, 10.15. Found: C, 60.98; H, 4.83; N, 10.13.

1'-(4-Chlorophenyl)-2'-(hydroxymethyl)-2'-nitro-

1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)one (10n)

Yield: 0.51 g (62%); mp 160–162 °C.

IR (KBr): 3244, 2960, 1711, 1543, 1337 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.68-2.05$ (m, 4 H), 2.70–2.74 (m, 2 H), 4.04 (t, J = 12.3 Hz, 1 H), 4.29–4.46 (m, 3 H), 5.04 (d, J = 10.2 Hz, 1 H), 6.88–8.08 (m, 8 H), 8.17 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 27.08, 31.29, 47.88, 52.17, 64.75, 70.13, 106.04, 110.98, 123.25, 125.22, 127.25, 128.82, 129.99, 130.58, 130.93, 132.72, 136.32, 141.19, 178.93.

MS: $m/z = 414 (M^+ + 1), 415 (M^+ + 2).$

Anal. Calcd for $C_{21}H_{20}ClN_3O_4$: C, 60.95; H, 4.87; N, 10.15. Found: C, 60.90; H, 4.83; N, 10.17.

2'-(4-Chlorophenyl)-1'-(hydroxymethyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1*H*)one (11n)

Yield: 0.26 g (31%); mp 168-170 °C.

IR (KBr): 3473, 3162, 1723, 1572, 1342 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.45–1.49 (m, 1 H), 1.84–2.29 (m, 3 H), 2.52 (s, 1 H), 2.69 (dt, *J* = 1.8, 2.1 Hz, 1 H), 3.45 (dd, *J* = 3.3, 12.9 Hz, 1 H), 4.03 (d, *J* = 13.2 Hz, 1 H), 4.46 (d, *J* = 5.4 Hz, 1 H), 4.90 (dd, *J* = 4.8, 8.4 Hz, 1 H), 6.01 (s, 1 H), 6.74 (d, *J* = 7.5 Hz, 1 H), 7.03–7.65 (m, 7 H), 8.05 (s, 1 H).

¹³C NMR (75 MHz, $CDCl_3$): $\delta = 24.87, 27.25, 48.26, 54.55, 64.99, 70.76, 74.69, 103.53, 109.98, 122.77, 125.79, 125.91, 127.04, 129.35, 129.91, 130.18, 130.98, 141.10, 178.44.$

MS: $m/z = 414 (M^+ + 1), 415 (M^+ + 2).$

Anal. Calcd for $C_{21}H_{20}ClN_3O_4{:}$ C, 60.95; H, 4.87; N, 10.15. Found: C, 60.93; H, 4.89; N, 10.14.

Acknowledgment

We thank CSIR and UGC (New Delhi) for the financial support. We also thank DST-FIST for the NMR facility. N.S. thanks CSIR for his SRF and A.D. thanks UGC for his fellowship. D.S.S. thanks DST for her research grant.

References

- Basavaiah, D.; Reddy, B. S.; Badsara, B. S. Chem. Rev. 2010, 110, 5447.
- (2) (a) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1. (b) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511.
 (c) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581. (d) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem. Int. Ed. 2007, 46, 4614. (e) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
 (f) Ciganek, E. Org. React. 1997, 51, 201. (g) Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, 27, 5095. (h) Prasad, B. A. S.; Knochel, P. Tetrahedron 1997, 53, 16711. (i) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. (j) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.
- (3) (a) Ma, G. N.; Jiang, J. J.; Shi, M.; Wei, Y. Chem. Commun. 2009, 5496. (b) Amarante, G. W.; Milagre, H. M.; Vaz, S. B. G.; Ferreira, B. R. V.; Eberlin, M. N.; Coelho, F. J. Org. Chem. 2009, 74, 3031. (c) Trofimov, A.; Gevorgyan, V. Org. Lett. 2009, 11, 253. (d) Deb, I.; Shanbhag, P.; Mobin, S. M.; Namboothiri, I. N. N. Eur. J. Org. Chem. 2009, 4091. (e) Krafft, M. E.; Haxell, T. F. N.; Seibert, K. A.; Abboud, K. A. J. Am. Chem. Soc. 2006, 128, 4174. (f) Turki, T.; Villieras, J.; Amri, H. Tetrahedron Lett. 2005, 46, 3071. (g) Back, T. G.; Rankic, D. A.; Sorbetti, J. M.; Wulff, J. E. Org. Lett. 2005, 7, 2377. (h) Nair, V.; Abhilash, K. G. Synthesis 2005, 1967. (i) Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758. (j) Basavaiah, D.; Sreenivasalu, B.; Rao, A. J. J. Org. Chem. 2003, 68, 5983. (k) Basavaiah, D.; Bakthadoss, M.; Jayapal Reddy, G. Synthesis 2001, 919. (1) Li, G.; Gao, J.; Wei, H. X.; Enright, M. Org. Lett. 2000, 2, 617. (m) Yang, K. S.; Chen, K. Org. Lett. 2000, 2, 729. (n) Basavaiah, D.; Gowriswari, V. V. L.; Bharathi, T. K. Tetrahedron Lett. 1987, 28, 4591. (o) Amri, H.; Villieras, J. Tetrahedron Lett. 1986, 27, 4307.
- (4) (a) Gendrineau, T.; Demoulin, N.; Navarre, L.; Genet, J.-P.; Darses, S. Chem. Eur. J. 2009, 15, 4710. (b) Yadav, L. D. S.; Awasthi, C. Tetrahedron Lett. 2009, 50, 3801.
 (c) Singh, V.; Batra, S. Eur. J. Org. Chem. 2008, 5446.
 (d) Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y. J. Org. Lett. 2007, 9, 2525. (e) Lee, S. I.; Hwang, G. S.; Shin, S. C.; Lee, T. G.; Jo, R. H.; Ryu, D. H. Org. Lett. 2007, 9, 5087.
 (f) Gowrisankar, S.; Lee, K. Y.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6141. (g) Kabalka, G. W.; Venkataiah, B.; Dong, G. J. Org. Chem. 2004, 69, 5807.
 (h) Basavaiah, D.; Reddy, R. M. Tetrahedron Lett. 2001, 42, 3025. (i) Basavaiah, D.; Sarma, P. K. S. J. Chem. Soc., Chem. Commun. 1992, 955. (j) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990, 2612.
- (5) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
- (6) Basavaiah, D.; Roy, S. Org. Lett. 2008, 10, 1819.
- (7) Savitha, G.; Niveditha, S. K.; Muralidharan, D.; Perumal, P. T. *Tetrahedron Lett.* 2007, *48*, 2943.
- (8) (a) Muthusamy, S.; Gunanathan, C.; Babu, S. A. *Tetrahedron Lett.* 2001, *42*, 523. (b) Shanmugam, P.; Viswambharan, B.; Madhavan, S. *Org. Lett.* 2007, *9*, 4095.
- (9) (a) Lown, J. W. In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1; Padwa, A., Ed.; Wiley: New York, 1984, 2.
 (b) Najera, C.; Sansano, J. M. Angew. Chem. Int. Ed. 2005, 44, 6272. (c) Gothelf, K. V. In Cycloaddition Reactions in Organic Synthesis; Kobayashi, S.; Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, 2002, 211. (d) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
- (10) (a) Cordell, G. A. *The Alkaloids: Chemistry and Biology*; Academic Press: San Diego, **1998**. (b) Cui, C.-B.; Kakeya, H.; Osada, H. *Tetrahedron* **1996**, *52*, 12651. (c) Xue, J.; Zhang, Y.; Wang, X.-I.; Fun, H. K.; Xu, J. H. Org. Lett.

Synthesis 2011, No. 13, 2136–2146 © Thieme Stuttgart · New York

2000, *2*, 2583. (d) Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. **1998**, *63*, 4481.

- (11) (a) Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. J. Org. Chem. 1991, 56, 6527. (b) Wong, W. H.; Lim, P. B.; Chuah, C. H. Phytochemistry 1996, 41, 313.
 (c) Dideberg, O.; Lamotte-Brasseur, J.; Dupont, L.; Campsteyn, H.; Vermeire, M.; Angenot, L. Acta Crystallogr., Sect. B 1977, 33, 1796. (d) Cui, C. B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. J. Antibiot. 1996, 49, 527. (e) Bindra, J. S. The Alkaloids, Vol. 14; Manske, R. H. F., Ed.; Academic Press: New York, 1973, 84. (f) Lin, H.; Danishefky, S. Angew. Chem. Int. Ed. 2003, 42, 36.
- (12) (a) Fejes, I.; Toke, L.; Blasko, G.; Nyerges, M.; Pak, C. S. *Tetrahedron* 2000, *56*, 8545. (b) Nyerges, M.; Bitter, I.; Kadas, I.; Toth, G.; Toke, L. *Tetrahedron* 1995, *51*, 11489. (c) Rang, H. P.; Dale, M. M. *Pharmacology*; Churchill Livingstone: Edinburgh, 1991. (d) Song, C.; Leonard, B. E. *Fundamentals of Psychoneuroimmunology*; John Wiley: Chichester, 2000. (e) Albert, A. *Selective Toxicity*; Chapman and Hall: London, 1985.
- (13) (a) De Amici, M.; De Michelli, C.; Sani, V. M. Tetrahedron 1990, 46, 1975. (b) Early, W. G.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3785. (c) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410. (d) Ban, Y.; Taga, N.; Oishi, T. Chem. Pharm. Bull. 1976, 24, 736. (e) Van Tamlen, E. E.; Yardley, J. P.; Miyano, M.; Hinshaw, W. B. Jr. J. Am. Chem. Soc. 1969, 91, 7333. (f) Howe, R. K.; Shelton, B. R. J. Org. Chem. 1990, 55, 4603. (g) Cohan, V. L.; Kleinman, E. E. WO 9,524,398, 1995; Chem. Abstr. 1995, 122, 20667j. (h) Ban, Y.; Seto, M.; Oishi, T. Chem. Pharm. Bull. 1975, 23, 2605. (i) Ban, Y.; Taga, N.; Oishi, T. Tetrahedron Lett. 1974, 15, 187. (j) Caroll, W. A.; Grieco, P. A. J. Am. Chem. Soc. 1993, 115, 1164.
- (14) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. J. Med. Chem. 2006, 49, 3432.
- (15) (a) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org. Lett. 2000, 2, 2639. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (c) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
- (16) (a) Daly, J. W.; Spande, T. W. F.; Whittaker, N.; Highet, R. J.; Feigl, D.; Nishimori, T.; Tokuyama, T.; Myers, C. W. J. Nat. Prod. 1986, 49, 265. (b) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org. Lett. 2000, 2, 2639. (c) Liddell, J. R. Nat. Prod. Rep. 1996, 13, 187. (d) Liddell, J. R. Nat. Prod. Rep. 1997, 14, 653. (e) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209. (f) Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327. (g) Dounary, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261; and references therein.
- (17) (a) Baylis, A. B.; Hillman, M. E. D. DE 2,155,113, 1972; *Chem. Abstr.* 1972, 77, 34174q. (b) Rastogi, N.; Namboothiri, I. N. N.; Cojocaru, M. *Tetrahedron Lett.* 2004, 45, 4745.
- (18) (a) Bakthadoss, M.; Sivakumar, G.; Kannan, D. Org. Lett.
 2009, 11, 4466. (b) Bakthadoss, M.; Murugan, G. Eur. J. Org. Chem. 2010, 5825. (c) Bakthadoss, M.; Sivakumar, N.; Devaraj, A. Synthesis 2011, 611. (d) Bakthadoss, M.; Sivakumar, N. Synlett 2009, 1014. (e) Bakthadoss, M.; Sivakumar, N.; Sivakumar, G.; Murugan, G. Tetrahedron Lett. 2008, 49, 820. (f) Bakthadoss, M.; Murugan, G. Synth. Commun. 2008, 38, 3406. (g) Bakthadoss, M.; Murugan, G. Synth. Commun. 2009, 39, 1290.
- (19) The X-ray crystal structure data of 8d, 9a, 10d, and 11a have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 812105 (8d), 676397 (9a), 676668 (10d), and 812104 (11a).