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produce, and easy to fabricate into thin films. Conventionally, CO has been detected mostly 

by conductive polymer-based materials [4-6], metal-oxide derivatives [7-9], and carbon nano-

tubes based materials [10-12], which used large instrumentation that requires high 

temperature and inert environment. Alternatively, single molecules can be employed as an 

active layer for sensing the mechanisms for selected gases. The advantages of using single 

molecules are that they can act at room temperature in the ambient atmosphere, and they are 

easy to synthesise, fabricate, tune, and modify, thus, it is suitable for the analyte to be detected 

[13]. 

 

Due to the high level of interest in developing single molecules as CO gas sensors, we are 

introducing several novel systems of acetylide-thiourea derivatives, N-(4-

phenylethynylaniline)-N’-(1-naphthoyl)thiourea (PAT), N-(4[4-

aminophenyl]ethynlbenzonitrile)-N’-(1-naphthoyl)thiourea (EBT), and N-([4-

aminophenyl]ethynl toluene)-N’-(1-naphthanoyl)thiourea (ETT), in the form of thin-films 

entrapped in a PVC matrix, as new materials for the detection of CO gas. For EBT, the 

synthesis and the ability of the compound to detect CO have been reported by our group in 

previous occasion [14]. In this contribution, the comparisons in respect of performance 

between the other members of the system have been discussed in thorough. To date, there is 

an obvious loop of reports on the detection of CO based on chemical sensors using acetylide-

thiourea derivatives. These acetylide-thiourea derivatives consist of both electron 

withdrawing and donating systems, that comprise the presence of a number of functional 

moieties such as conjugated double and triple bonds and a reactive carbonyl (C=O) group, 

which are believed to contribute an ideal interaction with CO. In this study, all of the 

synthesised materials were immobilised onto solid supports for application in optical sensing. 

The substrates were typically entrapped physically by absorption or chemically bonded to the 

solid support [15,16]. Poly(vinyl chloride) (PVC) was used for the preparation of membrane 

thin films due to its relatively low cost and ability to be plasticised [17]. 

 

For several decades, due to their capacity for electron transport that arises because they have 

rigid π-conjugated systems, thiourea, acetylide and their resonance structures have been 

widely studied individually in numerous applications [18,19], especially in molecular 

electronics [20,21]. Investigation on these practical gas sensors can be performed by direct 

spectroscopic measurements of the changes in the optical properties of materials in thin films 

exposed to the selected analyte (CO gas). In addition, this study also involves a combination 
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of molecular modelling by Gaussian 09 software for density functional theory (DFT) 

calculations in terms of the stabilisation energy (kJ/mol) between the synthesised compounds 

and CO with the synthesise, characterisation, and investigation of their potential to act as 

single-molecule CO gas sensors, analysed by examining the differences in the spectral 

features of UV-visible spectrophotometer before and after exposure to CO. The newly 

developed optical sensors proposed, had shown significant absorbance signal changes upon 

exposure to CO gas with concentrations of 10, 20, and 30 ppm. Based on this study, a material 

that was highly sensitive to a low CO concentration and provided a rapid method for the 

detection of CO gas was developed with both experimental and theoretical results that were 

satisfactory. Figure 1 depicts all molecular structures of interest synthesised in this study. 

 

 

 

Figure 1: The molecular structure of acetylide-thiourea derivatives (PAT, EBT, and ETT) 
 

 
2.0 Results and discussion 
 
2.1. Spectroscopic and characterisation studies 

The infrared (IR) spectra of the synthesised materials (PAT, EBT, ETT) showed six 

absorption bands of interest, namely, ν(N-H), ν(C-H), ν(C=O), ν(C-N), ν(C≡C), and ν(C-O), 

ranging from weak to strong intensities. The band in the range of 3169-3220 cm-1 represented 

the asymmetric and symmetric stretching vibrations of ν(N-H) in the secondary thioamide 

moiety. The assignments of NH above 3000 cm-1 had been examined due to the existence of 

intramolecular hydrogen bonding [22-24]. The stretching frequencies observed in the range of 

1405-1441 cm-1 corresponded to ν(C-N) and were assigned by comparison with the spectra of 

other thiourea derivatives at 1400-1000 cm-1 [25]. Moreover, the ν(C≡C) stretching vibration 

in these compounds (PAT and ETT) occurred at 2214-2218 cm-1 as a medium-intensity peak. 

However, for EBT, there was an overlapping band with strong intensity observed between the 
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C≡C and C≡N moieties at 2214 cm-1. In fact, the strong absorption band for ν(C=O) in PAT, 

EBT, and ETT was distinguished at 1667-1672 cm-1 because of the resonance effect with the 

fused-aromatic and phenyl rings, as well as the existence of intramolecular hydrogen bonding 

with N-H. This result agrees with those of previously reported studies [26,27]. The most 

crucial changes were observed for the presence of the C=S stretching frequency at 741-760 

cm-1. The frequencies for ν(C=S) were found at low frequency due to the decreased double-

bond character and the lower nucleophilic character of the sulphur atom in the C=S moiety of 

the synthesised materials [28,29].  

The electronic-transition spectra of PAT, EBT and ETT were recorded in an acetonitrile 

solution obtained in a 1 cm path length quartz cell with concentration of 1 x 10-5 M, and they 

exhibited two principal bands that are believed to arise from the C=O, C=S, and phenyl 

moieties. The primary bands observed at λmax 217-301 nm (ε=44760-74080 M-1 cm-1) were 

assigned to the π→π* transition of the aromatic moiety, which shifted strongly to lower 

wavelength with molar absorptivity, influenced by the inductive interaction between the fused 

aromatic (naphthoyl) and carbonyl group [30,31]. The existence of overlapping C=O and C=S 

bands can be observed at λmax within the range of 305.00-321.50 nm. For EBT, the presence 

of the electron-withdrawing group C≡N also induced a pronounced bathochromic shift of the 

n→π* and π→π* transitions with a broad band at λmax 343 nm as an effect of the conjugation. 

The broad absorption band observed in the region at λmax 305-321.50 nm was due to the π-

conjugation of the synthesised materials with phenyl rings (π→π* and n→π*) and the orbital 

overlap between the C=O and C=S moieties. 

For the 1H NMR spectra, the unresolved resonance of the fused-aromatic protons can be 

clearly observed as multiplet resonances between δH 7.38-7.87, ppm due to the overlapping 

proton signals of the fused-aromatic system. Additionally, the aromatic protons of the benzoyl 

moiety can be clearly seen in the range δH 7.21-8.43 ppm as a pseudo-doublet system that was 

influenced by the para-substituted benzoyl moiety. For ETT, there was a methyl (-CH3) 

resonance at a chemical shift of δH 2.41 ppm on the aryl ring that was assigned as singlet 

resonance due to the effect from the neighbouring proton. There were two singlet resonances 

for amide (N-H) protons that can be observed in two different environments within the range 

of δH 9.09-9.15 ppm and δH 12.77-12.83 ppm, respectively, due to the presence of two 

consecutive amide (N-H) groups resulted from the intramolecular hydrogen bonding of N-H 

in the trans- and cis-conformation [32,33]. Indeed, the amide resonance of N-H (C=S) was 
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observed at a higher chemical shift than the amide proton of N-H (C=O) due to the 

deshielding effect and intramolecular hydrogen bonding [34,35]. 

The 13C NMR spectra for all of the synthesised derivatives showed resonances of acetylide 

carbons, C≡C, which were located at δC 88.2-88.8 ppm and 90.4-93.2 ppm. For EBT, the 

resonance of the carbon in the cyano C≡N moiety was located in the downfield region at δC 

138.2 ppm due to the nitrogen atom attached to the cyano carbon. Additionally, the aromatic 

carbon resonances can be observed at δC 111.5- 138.5 ppm and are attributed to the phenyl 

rings of the synthesised materials. Two resonances that were observed at δC 169.2 ppm and 

177.7-177.8 ppm corresponded to the C=O and C=S carbons. Both the C=O and C=S 

resonances were slightly deshielded to a higher chemical shift due to the intramolecular 

hydrogen bonding formed in the compound and the electronegativity contributed by the 

oxygen and sulphur atoms [36,37]. 

2.2 Thermal-stability analysis for the synthesised materials 

The thermal stability of the material is the crucial factor to be investigated for fabrication for 

gas sensor applications. The thermal properties of the synthesised compounds were 

investigated by thermogravimetric analysis (TGA) at the heating rate of 283K/min under 

nitrogen atmosphere (Figure 2). The observed thermogram had revealed that no weight loss 

occurred below 373K, which showed that there were no trace of water molecules or solvents 

present in the synthesised compounds. It was observed that the onset temperature at which 

PAT, EBT, and ETT started to degrade was 473K-520K, with maximum degradation. 

Indeed, the range of decomposition of EBT is larger, with EBT starting to degrade at 520K 

(onset) with a large range of decomposition to 821K (offset) because EBT had a higher 

molecular weight than PAT and ETT and also because of the abundance of C≡N with highly 

conjugated bonds in the compound. Therefore, the synthesised thiourea derivatives exhibited 

stability at high temperature and should provide great potential for various fabrication 

methods at high temperature.  
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Figure 2: The thermogram of the synthesised compounds 

2.3 Studies on the sensing of CO via UV-Vis spectroscopy 

The PAT, EBT, and ETT sensors were investigated for three different carbon monoxide 

(CO) concentrations, which were 10, 20, and 30 ppm (each gas sample was purchased 

commercially from Gas Sensor Sdn. Bhd., Kuala Lumpur, Malaysia). The absorption spectra 

of the optical carbon monoxide gas sensor in the presence of increasing concentrations of CO 

with thin films were investigated in advance to determine the sensitivity of the film substrate 

for the detection of CO. Results from all of the absorption spectra revealed that significant 

changes occurred in the electronic transitions of the synthesised compounds (PAT, EBT, and 

ETT), which were studied as thin films, before and after exposure to various concentrations 

of CO (10, 20, and 30 ppm). From the spectra, it can be seen that absorption of PAT, EBT, 

and ETT with CO gas produced similar trends in the absorption spectra. There were two 

shifted bands that resulted from the electronic-transition changes of the HUMO and LUMO 

after the synthesised compounds had interacted with CO. However, obvious and most changes 

of absorbance can be observed within 1st band of wavelength range at λmax = 256-258 nm. 

Therefore, λmax=256 nm (PAT), λmax=258 nm (EBT) and λmax= 257 nm (ETT) were 

monitored to evaluate the response of the sensor to CO gas concentrations. The results 

revealed that, upon exposure to an increased CO concentration, the maximal absorbance of 

the film substrate decreased to a lower absorbance, showing that an interaction of the 

acetylide-thiourea film substrate with CO occurred.  
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2.4 Theoretical evaluation: Insight from density functional theory (DFT) calculations 

The targeted acetylide-thiourea molecules, also known as free-sensor molecules, and the 

possible sensor-analyte complex with the CO molecule were optimised to the minimal 

potential energy using the Gaussian 09 quantum mechanical software package at the 

theoretical level of DFT (B3LYP)/6-31G (d,p). From the computational modelling studies, it 

was discovered that the various substituents of thiourea affect the stabilisation energy and the 

interaction distance of the sensor-analyte complexes. 

Theoretically, to predict the possible interaction between PAT, EBT, and ETT with CO, the 

Mulliken charge values were measured. The Mulliken charges on the selected atoms of PAT, 

EBT, and ETT, as well as the possible interaction distances, are listed in Table 1. The 

analysis shows that all of the charges on the oxygen atom of the (C=O amide) were two times 

higher than those of the sulphur atom of (C=S) in the thiourea moiety. The values of the 

Mulliken charges of oxygen in the (C=O amide) were observed to be in the range of -0.533 to 

-0.537, compared to only approximately -0.247 to -0.256 for a sulphur atom. Due to the 

highly negative values of the charges on the oxygen atoms, we believe that the interactions 

that were formed between the acetylide-thiourea derivatives of PAT, EBT, and ETT with CO 

are able to interact at the oxygen atom of the (C=O amide). The presence of various 

substituents on the thiourea derivatives also affected the stabilisation energy of the 

interactions. The total electronic energies of the compounds and their stabilisation energies, 

along with the values for the individual thiourea and CO molecules are listed in Table 2. 

 

Table 1: Mulliken effective charges on selected oxygen and sulfur of PAT, EBT, and ETT 

and the interaction distance between CO and C=O 

Compound Mulliken charges 
 

Calculated distance between 
CO and C=O, (Ǻ) 

O (C=O) 
 

S (C=S) 

PAT 
 

-0.533 -0.255 3.14 

EBT 
 

-0.536 -0.247 3.14 

ETT 
 

-0.537 -0.256 3.14 

Note: Mulliken charge of C (C=O) = +0.174 
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The results show that, of the three complexes, PAT was the most sensitive material to CO, 

with the value -6.56 kJ/mol, followed by ETT (-6.54 kJ/mol) and EBT (-6.30 kJ/mol). All of 

the complexes were stabilised by van der Waals bonds (non-bonding interaction), which were 

caused by the quantum mechanical fluctuating in the electron density of the interacting atoms. 

The binding that occurred was realised by the electrostatic interaction between the delocalised 

conducting electrons and the positive ions localised within the compounds. The expected 

results obtained were in accordance with PAT>ETT>EBT at an equimolar concentration of 

the free-sensor molecule and CO. In summary, from these theoretical evaluations, the 

interaction of PAT, EBT, and ETT with CO is possible with significant interaction distance 

and stabilisation energy of the complexes (PAT/ EBT /ETT + CO). 

Table 2: SCF energy of sensor-analyte complexes, CO, and acetylide-thiourea (PAT, EBT, 

and ETT) during their interaction and stabilisation with CO 

Compound SCF energy, 
a.u. (complex) 

SCF energy, a.u. 
(CO) 

SCF energy, a.u. 
(acetylide-
thiourea) 

Stabilization 
energy, (kJ/mol) 

PAT 
 

-1697.8665 -113.3095 -1584.5545 -6.56 [1] 

EBT 
 

-1790.1083 -113.3095 -1676.7964 -6.30 [3] 

ETT -1737.1874 -113.3095 -1623.8754 -6.54 [2] 
 

 

3. Conclusion 

These new acetylide-thiourea materials (PAT, EBT, and ETT) that were highly sensitive for 

the determination of carbon monoxide (CO) had been successfully synthesised and 

characterised prior to forming active film substrates entrapped in a PVC matrix for the 

detection of CO gas. The response of the film substrates to CO at room temperature was 

observed using the difference in the spectral features prior to and upon interaction with CO. 

The PAT and EBT film substrates exhibited good sensitivity to low CO concentrations of 10 

and 20 ppm and possessed low sensitivity to a high CO concentration of 30 ppm. Although 

ETT exhibited good sensitivity to a high CO concentration of 30 ppm, it gave low responses 

with lower CO concentrations of 10 and 20 ppm. The differences in the sensor performances 

of these newly synthesised derivatives were influenced by the materials’ molecular system 

behaviour. In fact, the theoretical analysis proved that PAT, EBT, and ETT exhibited ideal 

interaction energies (-6.30 kJ/mol to -6.56 kJ/mol) for sensing CO. In conclusion, a novel 
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approach involving a single-molecular acetylide-thiourea system (PAT, EBT, and ETT) 

exhibited promising ability and potential for carbon monoxide sensing. 

 
4. Experimental 
 
4.1 Reagents 

All reagents, including solvents, chemicals and materials, were commercially purchased from 

various standard suppliers and used as received without further purification. Most of the 

chemicals used, namely, ammonium thiocyanate, 1-naphthoyl chloride, 4-ethynylbenzonitrile, 

palladium chloride (PdCl2), triphenylphosphine, polyvinyl chloride, sodium tetraphenyl 

borate, triphenyl phosphate, and sodium sulphate, were purchased from Merck, Sigma-

Aldrich, Acrós Organics, and R & M Chemical. The catalyst, Pd(PPh3)2Cl2 was prepared by 

literature method [41]. All solvents used in this study, such as acetone, chloroform, 

dichloromethane, diethyl ether, ethyl acetate, hexane, methanol, acetonitrile, and 

triethylamine, were purchased from Merck, Sigma-Aldrich, and R&M Chemical. For the gas-

sensing studies, carbon monoxide (CO) gas with concentrations of 10, 20, and 30 ppm was 

purchased from Gas Sensor Sdn. Bhd., UKM-MTDC Technology Centre, Bangi, Selangor, 

Malaysia. 

4.2 Characterisation 

CHNS microanalysis was performed using a FLASHEA 1112 CHNS analyser for 

determination of the percentage of CHNS elements present in the synthesised compounds. IR 

spectra were recorded using a Perkin Elmer 100 FTIR spectrophotometer within the spectral 

range 4000 to 450 cm-1. Additionally, the UV-Vis spectra of the synthesised compounds were 

recorded using a Shidmazu 1601 series UV-Vis spectrophotometer in 1 cm path length quartz 

cell with acetonitrile as solvent and sample concentration of 1 x 10-5 M. Thermogravimetric 

analysis was performed using a Perkin-Elmer TGA analyser from 273-1073K at a heating rate 

of 283K/min in the presence of a constant nitrogen flow. NMR spectra were recorded on 

Bruker Avance III 400 (1H 400.11 MHz, 13C 100.61 MHz) using deuterated chloroform 

(CDCl3) at room temperature acting as the solvent and an internal standard within the ranges 

δH 0-15 ppm for 1H NMR and δC 0-200 ppm for 13C NMR. Finally, the ab initio quantum 

mechanical software package of Gaussian 09 was used to calculate the stabilisation energy 

and the intermolecular distance of the interaction between the synthesised compounds and 

carbon monoxide at a minimum potential at the theoretical level of DFT B3LYP/6-31G (d,p). 
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4.3 Sonogashira cross-coupling reaction: Preparation of the precursors (PHE, AEB, AET) 

4.3.1 Synthesis of 4-phenylethynylaniline (PHE) 

The experimental details with regard to the synthesise of the precursors (PHE, AEB, and 

AET) had already been reported in the previous literature [42,43,14]. However, several 

modifications in the synthetic work-up were made, improved and discussed in this report. The 

synthesis of PHE proceeded via Pd(PPh3)2Cl2/CuI (5 mmol%)-catalysed coupling of 4-

iodoaniline (1 g, 4.56 mmol) with two molar equivalents of phenylacetylene (1 g, 9.13 mmol). 

The reaction was refluxed using water as the solvent and triethylamine as a base under 

ambient atmosphere for ca. 24 hours, forming two layers of solution. The organic phase was 

collected, dried over sodium sulphate, and evaporated to dryness. The crude product obtained 

was then purified via column chromatography, eluted with a mixture of hexane and 

dichloromethane (7:3). Evaporation of the solvents afforded the product PHE as a brown 

solid (70% yield). 1H NMR (400.11 MHz, CDCl3): δ 3.83 (s br, 2H, NH2); 6.67 (pseudo-d, 

JHH=9 Hz, 2H, C6H4); 7.52 (pseudo-d, JHH= 9Hz, 2H, C6H4); 7.29-7.39 (m, 5H, C6H5);
13C 

NMR (100.61 MHz, CDCl3): δ 87.3, 90.1 (2 x s, 2 x C�C); 112.6, 114.7, 123.9, 127.6, 

128.2, 131.3, 132.9, 146.6 (8 x s, Ar); Elemental analysis for C15H10N2: [Found (Calcd.): C = 

86.51 (87.01); H = 5.53 (5.74); N = 7.24 (7.25). 

4.3.2 Synthesis of 4[(4-aminophenyl)ethynylbenzonitrile](AEB) 

The yellow solid of the compound AEB (0.7 g, 70%) was prepared from 4-iodoaniline (1 g, 

4.56 mmol), 4-ethynylbenzonitrile (1.16 g, 9.13 mmol), and the palladium catalyst 

Pd(PPh3)2Cl2, using copper iodide (5 mmol%) as a co-catalyst in the same manner as for 

PHE. 1H NMR (400.11 MHz, CDCl3): δ 3.94 (s br, 2H, NH2); 6.67 (pseudo-d, JHH=9 Hz, 2H, 

C6H4); 7.38 (pseudo-d, JHH= 8Hz, 2H, C6H4); 7.58 (pseudo-d, JHH=8 Hz, 2H, C6H4); 7.61 

(pseudo-d, JHH=9 Hz, 2H, C6H4);
13C NMR (100.61 MHz, CDCl3): δ 86.1, 95.1 (2 x s, 2 x 

C�C); 147.4 (s, C�N); 110.6, 111.3, 114.7, 118.7, 129.0, 131.7, 131.9, 133.3 (8 x s, Ar); 
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Elemental analysis for C15H10N2: [Found (Calcd.): C = 82.22 (82.55); H = 4.54 (4.62); N = 

12.55 (12.84). 

4.3.3 Synthesis of 4[(4-aminophenyl)ethynyltoulene](AET) 

 

The pale-brown solid of the compound AET (0.85 g, 89%) was prepared from 4-iodoaniline 

(1 g, 4.56 mmol), 4-ethynyltoluene (1.06 g, 9.13 mmol), and the palladium catalyst 

Pd(PPh3)2Cl2, using copper iodide (5 mmol%) as a co-catalyst in the same manner as for 

PHE. 1H NMR (400.11 MHz, CDCl3): δ 2.39 (s, 3H, CH3); 3.83 (s br, 2H, NH2); 6.66 

(pseudo-d, JHH=8 Hz, 2H, C6H4); 7.17 (pseudo-d, JHH= 8Hz, 2H, C6H4); 7.35 (pseudo-d, 

JHH=9 Hz, 2H, C6H4); 7.36 (pseudo-d, JHH=9 Hz, 2H, C6H4);
13C NMR (100.61 MHz, CDCl3): 

δ 87.4, 89.3 (2 x s, 2 x C�C); 21.4 (s, CH3); 112.8, 114.7, 120.8, 129.0, 131.2, 132.9, 137.7, 

146.5 (8 x s, Ar); Elemental analysis for C15H10N2: [Found (Calcd.): C = 86.19 (86.92); H = 

6.13 (6.32); N = 6.73 (6.76). 

 

4.4 Synthesis of N-(4-phenylethynylaniline)-N’-(1-naphthoyl)thiourea (PAT) 

The general synthetic pathway to produce PAT is as shown in Scheme 1. The intermediate 1-

naphthoyl thiocyanate was produced by the reaction between 1-naphthoyl chloride and an 

equimolar amount of ammonium thiocyanate in acetone. The reaction progress was monitored 

by TLC (hexane:CH2Cl2:3:2). Treatment of the latter with an equimolar amount of PHE in 

acetone produced N-(4-phenylethynylaniline)-N’-(1-naphthoyl)thiourea (PAT) as the targeted 

product. The product was then recrystallised from acetonitrile, yielding the yellow crystalline 

solid of PAT (70% yield) in a needle-like shape. 1H NMR (400.11 MHz, CDCl3): δ 7.38-7.39 

(m, 3H, C6H5); 7.56-7.77 (m, 7H, naphthoyl); 7.88 (pseudo-d, JHH=7 Hz, 2H, C6H4); 8.09 

(pseudo-d, JHH=8 Hz, 2H, C6H4); 8.11 (pseudo-d, JHH=8 Hz, 1H, C6H4); 8.43 (pseudo-d, 

JHH=8 Hz, 1H, C6H4); 9.10, 12.78 (2 x s, 1H, NH); 13C NMR (100.61 MHz, CDCl3): δ 88.8, 

90.0 (2 x s, 2 x C≡C); 121.6, 123.1, 123.4, 124.5, 126.4, 127.1, 128.3, 130.6, 131.6, 132.2, 

133.3, 133.8, 137.4 (18 x s, Ar); 169.2 (s, C=O); 177.8 (s, C=S); Elemental analysis for 
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C27H17N3S: [Found (Calcd.): C = 77.13 (76.82); H = 4.30 (4.46); N = 7.17 (6.89); S = 8.13 

(7.89). 

4.5 Synthesis of N-(4[4-aminophenyl]ethynylbenzonitrile)-N’-(1-naphthoyl)thiourea (EBT) 
 

Yielding pale-yellow single crystals (64% yield) in a rectangular-like shape, EBT was 

prepared from 1-naphthoyl chloride (2 g, 10.49 mmol), ammonium thiocyanate (0.79 g, 10.49 

mmol), and 4[(4-aminophenyl)ethynylbenzonitrile] (2.29 g,10.49 mmol) in same manner as 

reported by Daud et al., 2014 [14]. 1H NMR (400.11 MHz, CDCl3): δ 7.56-7.71 (m, 7H, 

naphthoyl); 7.86 (pseudo-d, JHH=7 Hz, 2H, C6H4); 7.91 (pseudo-d, JHH=8 Hz, 2H, C6H4); 7.96 

(pseudo-d, JHH=7 Hz, 2H, C6H4); 8.43 (pseudo-d, JHH=8 Hz, 2H, C6H4); 9.15, 12.83 (2 x s, 

1H, NH); 13C NMR (100.61 MHz, CDCl3): δ 88.3, 93.2 (2 x s, 2 x C≡C); 138.2 (s, C≡N); 

111.5, 118.5, 120.4, 123.5, 124.5, 124.5, 126.4, 126.4, 127.1, 128.0, 128.3, 128.8, 129.8, 

130.5, 132.4 (18 x s, Ar); 169.2 (s, C=O); 177.8 (s, C=S); Elemental analysis for C27H17N3S: 

[Found (Calcd.): C = 75.74 (75.15); H = 3.76 (3.97); N = 9.97 (9.74); S = 7.23 (7.62). 

 
4.6 Synthesis of N-([4-aminophenyl]ethynyltoluene)-N’-(1-naphthoyl)thiourea (ETT) 

 
Yielding pale-yellow single crystals (72% yield) in a needle-like shape, ETT was prepared 

from 1-naphthanoyl chloride (2 g, 10.49 mmol), ammonium thiocyanate (0.79 g, 10.49 

mmol), and 4(4-aminophenyl)ethynyltoluene, (2.17 g, 10.49 mmol) in the same manner as for 

PAT. 1H NMR (400.11 MHz, CDCl3): δ 2.41 (s, 3H, CH3); 7.21 (pseudo-d, JHH= 8 Hz, 2H, 

C6H4); 7.56 (pseudo-d, JHH=7 Hz, 2H, C6H4); 7.63-7.87 (m, 7H, naphthoyl); 7.98 (pseudo-d, 

JHH=8 Hz, 1H, C6H4); 8.11 (pseudo-d, JHH=8 Hz, 1H, C6H4); 8.43 (pseudo-d, JHH=8 Hz, 2H, 

C6H4); 9.09, 12.77 (2 x s, 1H, NH); 13C NMR (100.61 MHz, CDCl3): δ 21.5 (s, CH3); 88.2, 

90.2 (2 x s, 2 x C≡C); 120.0, 121.8, 123.4, 124.5, 124.6, 126.4, 127.1, 128.2, 128.8, 129.1, 

129.8, 130.6, 131.5, 132.1, 133.2, 133.8, 137.2, 138.5 (18 x s, Ar); 169.2 (s, C=O); 177.7 (s,  
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Highlights: 
 

1. Novel derivatives of acetylide-thiourea have been synthesised and characterised. 
2. They are used as a single molecular sensor towards three concentration of CO gas. 
3. Thin films formations were deposited via dip-coating technique. 
4. These derivatives exhibit ideal interaction towards CO gas. 
5. Synthesised molecules exhibit van der Waals (non-bonding) interaction with CO. 

 
 


