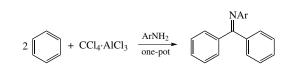


Available online at www.sciencedirect.com

ScienceDirect

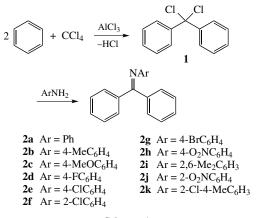
Mendeleev Commun., 2020, 30, 238-240

Mendeleev Communications


An expedient one-pot synthesis of benzophenone Schiff bases from benzene

Irena S. Akhrem,* Lyudmila V. Afanas'eva, Dzhul'etta V. Avetisyan, Oleg I. Artyushin and Nikolai D. Kagramanov

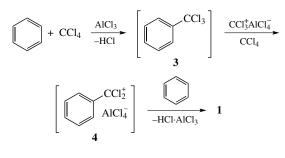
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation. E-mail: cmoc@ineos.ac.ru


DOI: 10.1016/j.mencom.2020.03.037

A simple and efficient one-pot synthesis of benzophenone Schiff bases from benzene, CCl_4 and aromatic amines was developed based on the the reaction of benzene with CCl_4 ·AlCl₃ complex. This method affords Ph₂CCl₂ as well as the products of its subsequent reaction with aromatic amines, benzophenone Schiff bases, selectively and in good yields.

Keywords: one-pot synthesis, benzene, Schiff bases, tetrachloromethane, benzophenone, aluminum trichloride.

Benzophenone Schiff bases demonstrate promising activity against different bacterial and fungal strains¹ as well as are used as catalysts and multipurpose reactants.2 Numerous methods have been developed for their synthesis.¹⁻³ Among them, the widely used ones originated from ketones and arylamines have definite drawbacks.^{3(a)} Unlike the condensation of aldehydes and arylamines, the reactions of ketones require high temperatures as well as use of catalysts and specific techniques. A set of Brønsted or Lewis acids, dehydration agents as well as microwave, infrared or ultrasound irradiation have been employed to carry out the syntheses of ketone Schiff bases.^{3(a)} Most of these procedures suffer from low yields, long reaction times, poor functional group tolerance, the need for elevated temperature, expensive substrates, toxic reagents, or have a limited scope. On the other hand, the application of a Lewis acid-base pair like AlCl₃-Et₃N provided products in good yields under mild conditions.^{3(a)} However, this reaction required large amounts of AlCl₃ and Et₃N in a ratio of [Ph₂C(O)]/[AlCl₃]/[Et₃N] 1:1.7:5.1 and failed to produce anils from sterically crowded anilines. Alternative procedures for the synthesis of Schiff bases were used rarely, notwithstanding their potential advantage.^{1,3(b)-(f)} Generally, in more than 150 years since the first Schiff base had been obtained,⁴ the development of milder and cheaper methods for their synthesis has remained a challenge.



Scheme 1

In this work, we have developed a simple one-pot synthesis of benzophenone anils **2a**–**k** from benzene, $CCl_4 \cdot AlCl_3$ complex and aromatic amines (Scheme 1) through *in situ* generated dichlorodiphenylmetane **1**. The reaction can be performed in CH_2Cl_2 or as a solvent-free one.

The reaction of benzene with CCl_4 in the presence of $AlCl_3$ has been known since the early 20^{th} century (Scheme 2).⁵ It involves the Friedel–Crafts alkylation of benzene with CCl_3^+ cation, generated from CCl_4 and $AlCl_3$ with formation of benzo-trichloride **3**. In turn, compound **3** undergoes the abstraction of Cl^- ion by the electrophile resulting in cation **4** which can alkylate another benzene molecule affording compound **1**.

Willard reported that the exchange of chlorine atom of CCl₄ and AlCl₃ labeled with ³⁵Cl occurs even at -20 °C, thus indicating the ionization of CCl₄ to CCl⁺₃ cation.⁶ Complex PhCCl⁺₂AlCl⁻₄ **4** preceding the formation of dichloride **1** was found to possess definite stability and could be stored for two weeks at 25 °C.⁷ The complication arises (see Scheme 2) since the electrophiles, namely CCl⁺₃AlCl⁻₄ if the reaction is carried out in excess CCl₄, or HCl·AlCl₃ if CCl₄ is used in the equimolar ratio, can initiate the subsequent transformations of dichloride **1**. Depending on the reaction conditions, this process results in Ph₃CCl,^{8(a)} Ph₂CCl₂,^{5(b),(c)} Ph₃CH^{8(a)} or PhCCl₃.^{8(b),(c)} If the reaction is carried out in CH₂Cl₂ or CHCl₃, the yield of compound **1** decreases due to the side reactions of benzene and CH₂Cl₂^{9(a)} or CHCl₃,^{9(b)} respectively. Several works reported on the use of CS₂ as a solvent.¹⁰ Examples of the preparative use of the reaction of

Scheme 2

© 2020 Mendeleev Communications. Published by ELSEVIER B.V. on behalf of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences. - 238 -

Italian Oral Surgery, 30 (2020) 238-240. doi:10.1016/j.mencom.2020.03.037

Italian Oral Surgery, 30 (2020) 238-240. doi:10.1016/j.mencom.2020.03.037