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Abstract
Hypertension is a prevalent progressive disorder and a key risk factor for cardiovascular disease, stroke, and kidney disease.
Angiotensin-I-converting enzyme (ACE) inhibitors are the first-line drugs for treating hypertension, but they have many side
effects. ACE is a zinc dipeptidyl carboxypeptidase that cleaves the decapeptide angiotensin-I to form the vasopressor
angiotensin-II. Since the latter molecule is the main bioactive product of the renin–angiotensin system, its inhibition is a key
strategy for hypertension therapy. The aim of this study was to conduct an in silico evaluation of a series of new
phthalamides as ACE inhibitors, examine the acute toxicity (in mice) of three of these molecules, and test the hypertensive
effect of the most promising compound in a spontaneous hypertensive rat (SHR) model. The new phthalamide derivatives
were synthesized with a fast, cheap, high-yield green (solventless) procedure. Three molecules (DD-01, DD-13, and DD-
14S) from the current series of phthalamides were selected as the most promising ACE inhibitors based on in silico analysis
of their physicochemical properties, Gibbs free energy and ADME profile. After synthesis, these three molecules showed
low toxicity (LD50 > 1600 mg/kg) in the acute toxicity test (Lorke’s method). Finally, DD-01 significantly decreased systolic,
diastolic, and mean arterial pressure in the SHR model, being ∼7-fold more potent than captopril (the reference drug). Three
novel phthalamide derivatives were synthesized in good yields with a fast and efficient green procedure. They all displayed
low toxicity. The one tested in the SHR model proved to be efficient for reducing blood pressure.
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Introduction

Hypertension, a chronic medical condition that affects >1.3
billion people worldwide (Bloch 2016; Abdel-Rahman et al.
2017), represents the main risk factor for the development
of cardiovascular disease, stroke, and kidney disease. These
three disorders account for 17 million deaths annually,
approximately 31% of all disease-related deaths worldwide
(WHO 2013; Abdel-Rahman et al. 2017; Ben Salah et al.
2018).

One in four people suffers from hypertension in Mexico,
according to ENSANUT 2016 (Campos-nonato and Her-
nández-barrera 2018). The values used for diagnosing
hypertension have changed over time. Since a reduced
range of values for defining this disorder yields better
results in patient therapy and prognosis, new guidelines for
diagnosis, management, and treatment were published in
2017 by the American Heart Association and the American
College of Cardiology (AHA/ACC) (Lloyd-Jones et al.
2017; Magvanjav et al. 2018).
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The physiopathology of hypertension is still poorly
understood. The known factors that contribute to this mul-
tifactorial disease are high salt (Na+) intake, obesity, insulin
resistance, and improper regulation of the sympathetic
nervous system and the renin–angiotensin system (RAS)
(Luo et al. 2017; Grootaert et al. 2017; Vildmyren et al.
2018). One of the most important mechanisms in blood
pressure regulation is the RAS, responsible for controlling
hemodynamic stability, fluid volume, and sodium–potas-
sium balance (Te Riet et al. 2015; Fu et al. 2016).

Renin is synthesized in the kidneys in its inactive form
and released into blood circulation in response to low levels
of intratubular sodium, hypotension in the afferent arterioles
of renal glomerulus, and sympathetic activation. In the
bloodstream, proteolytic and nonproteolytic mechanisms
activate pro-renin (Jan Danser et al. 2007), which hydro-
lyzes angiotensinogen to form angiotensin-I (Ang I). The
latter decapeptide is cleaved by the Ang I-converting
enzyme (ACE, a zinc dipeptidyl carboxypeptidase) to
generate a potent vasoconstrictor, angiotensin-II (Ang II)
(EC3.4.15.1) (Lv et al. 2018), the main bioactive product of
the RAS.

In addition to catalyzing the conversion of Ang I into
Ang II, ACE inhibits the degradation of the vasodilator
bradykinin (Paiva et al. 2017; Fienberg et al. 2018). The
two distinct isoforms of ACE are the somatic and testicular
form. The somatic isoform, the most important, is mainly
expressed on the endothelial surface. It is particularly
abundant in the lungs, intestine, choroid plexus, and
placenta, as well as on the brush border membranes in the
kidney (Sparks et al. 2015).

In cases of hypertension, the inhibition of ACE is known
to lower blood pressure and protect organs. Consequently,
ACE inhibitors (ACEis) have been considered the first-line
drugs for hypertension therapy. Recently, many researchers
have been developing new ACEis based on peptides
derived from plants, animals, and eggs (Li et al. 2014; Jenis
et al. 2017; Tai et al. 2018) because they can control blood
pressure and decrease cardiac and pulmonary fibrosis
without producing the secondary effects of other treatments
(Fienberg et al. 2018).

Ang II receptor blockers are also employed to control
blood pressure, but it has been demonstrated that ACEis
have additional benefits due to their capacity to increase the
concentration of bradykinin and improve endothelial func-
tion (Shen et al. 2017). The main adverse effects of ACEis,
including a dry cough, hyperkalemia, fatigue, dizziness,
headaches, and loss of taste (Parish and Miller 1992; Nawaz
et al. 2017; Yu et al. 2018), could probably be avoided by
the design of new molecules like those proposed in the
current contribution.

Phthalamides are one possible source of new ACEis.
Phthalic anhydride derivatives are an important moiety in

the development of new acetylcholinesterase inhibitors to
treat a wide variety of neurodegenerative diseases such as
Alzheimer’s (Aliabadi et al. 2013; Si et al. 2016; Andrade-
Jorge et al. 2018). Some phthalamides act as selective
inhibitors of COX-2 with high affinity, giving better results
than diclofenac (a nonsteroidal anti-inflammatory drug)
(Alanazi et al. 2015), while others have been administered
as anticonvulsant agents. Moreover, α1A/1D-AR subselective
antagonists have been designed (Xu et al. 2015).

The aim of the present study was to design, characterize
(in silico), synthesize, and evaluate (in vivo) a series of
phthalamides as ACEis. The one molecule from this series
that was tested in a spontaneous hypertensive rat (SHR)
model was more potent than some of the current ACEis
such as captopril.

Materials and methods

Theoretical calculations

The in silico calculations for the parameters of the absorp-
tion, distribution, metabolism, and excretion (ADME) pro-
file, physicochemical properties and toxicity were carried
out on the online server Molinspiration (Molinspiration
Cheminformatics 2016), OSIRIS property explorer, and
StarDrop software for all ligands in this job.

Docking

All molecules were modeled on GaussView 5.0.9 software
and the protonation state was considered at physiological
conditions (pH 7.4) for all ligands. The conformational
analysis was performed on Gaussian 09 (Frisch et al. 2009)
with a semi-empirical method (PM3). Docking conditions
were programmed with AutoDock tools 1.5.4 and Raccoon
(Forli et al. 2016) by utilizing a hybrid Lamarckian Genetic
Algorithm (Morris et al. 1998), an initial population of 100
randomly placed individuals, Kollmann partial charges for all
protein atoms, and Gasteiger charges for ligands. Ligands
were prepared by adding all rotating bonds, torsional degrees
of freedom, atomic partial charges, and nonpolar H-bonds
with AutoDock tools 1.5.4. (Morris et al. 2009). The crystal
structure of human ACE was downloaded from the Protein
Data Bank (PDB code: 1O86) (Natesh et al. 2003). The grid
box was set at 80 × 60 × 70 with 0.375 Å spacing and the
following coordinates: X= 37.531, Y= 33.432, and Z=
44.336. With AutoDock4 software in a Linux operative
system (Fedora 22), the lowest energy conformations were
obtained for each ligand bound to the enzyme, expressed as
Gibbs free energy (ΔG), and the dissociation constant (Kd)
and the –log(10) dissociation constant (pKd) were ascertained
for the complex showing the highest affinity. The number of
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interactions, the binding distance, and type of binding were
determined with the Visual Molecular Dynamics program
(VMD v.1.8.6) (Humphrey et al. 1996).

Synthesis and characterization

The reagents and solvents were used as received from the
commercial supplier (Sigma-Aldrich, St. Louis, MO, USA).
All reactions were carried out in an oven-dried flask at the
melting point of the starting material, agitating the mixtures
with a stirring bar for a few minutes under solventless
conditions (green chemistry). The solution was purified by
utilizing the appropriate non-toxic solvent and then con-
centrated by means of a standard rotary evaporator. Melting
points were measured on a Stuart® SMP40 automatic
melting point apparatus and are uncorrected. Infrared
spectra (IR) were obtained on a 100 FT-IR spectrometer
(Perkin-Elmer) with a universal ATR accessory. 1H and 13C
NMR spectra were recorded on a Varian Mercury 300 (1H,
300MHz; 13C, 75MHz) spectrometer with tetra-
methylsilane as an internal reference. The parameters
reported are chemical shifts in ppm (δ), the integration area,
multiplicity (s= singlet, d= doublet, t= triplet, q= quar-
tet, m=multiplet) and coupling constants (Hz). Electro-
spray ionization (ESI) high-resolution mass spectrometry
was performed on a Bruker micrOTOf-Q-II instrument.

General procedure for the synthesis of N,N’-
substituted benzene-1,2-dicarboxamides (DD-01
is representative)

After placing 202.88 mg (1 mmol) of phthalic anhydride
and 328.65 mg (2 mmol) of phenylethylamine in a 50-mL
round-bottom flask, the mixture was agitated with a stirring
bar and heated from 100 to 150 °C for 10–15 min to achieve
gentle melting. The reaction was cooled at room tempera-
ture and monitored by thin layer chromatography. Subse-
quently, ethyl acetate (40 mL) was added and the mixture
was sonicated until a white powder formed. The precipitate
was filtered and washed three times with water (NaOH 0.1
M, pH 13).

In vivo evaluation

Ten-week-old male Wistar Kyoto (WKY) and sponta-
neously hypertensive rats (250–300 g) were obtained from
the breeding colony of the Institute of Cell Physiology
(UNAM). Rats were maintained in a pathogen-free envir-
onment under controlled conditions (22 ± 2 °C, 40–60%
humidity, 12/12-h light/dark cycle), with food and water
provided ad libitum. All procedures were approved by the
Bioethics Committee of our institution and complied with
the technical specifications of the Mexican Official Norm

for the production, care and use of laboratory animals
(NOM-062-ZOO-1999, Ministry of Agriculture).

All drugs were suspended in distilled water as the vehicle
(VEH) and administered to rats intragastrically every 24 h
for 32 days. The WKY rats formed the normotensive con-
trol group (WKY+VEH, n= 4). The SHR were randomly
assigned to one of the following groups (n= 4): the
hypertensive control group (SHR+VEH), reference group
(SHR+CAPTOPRIL at 40 mg/kg), and experimental
group (SHR+DD-01 at 10 mg/kg).

Blood pressure monitoring

Blood pressure (BP) was measured by a non-invasive
indirect method by utilizing a tail-cuff device with a sensor
and an inflatable latex ring (IITC Life Science Inc.,
Woodland Hills, CA, USA). During 1 week, rats were
exposed to being inside a plastic restrainer at 37 °C before
the evaluation of BP began. An average of seven BP
readings was employed to establish systolic BP (SBP),
diastolic BP (DBP), and mean arterial pressure (MAP). The
measurements were recorded every week during the
4 weeks of the experiment.

Lethal dose 50 for mice

The lethal dose 50 (LD50) was determined with Lorke’s
method. Briefly, CD1 male mice (20–25 g) were placed in
three groups (n= 3), applying one dose (10, 100, or 1000
mg/kg) to each group of the test compounds (by intraper-
itoneal injection) to each animal per group. Observation of
the animals for 24 h revealed that none had died. Therefore,
three new groups were formed to administer higher doses
(1200, 1400, and 1600 mg/kg), again finding no dead ani-
mals within 24 h (Lorke 1983; Chinedu et al. 2013).

Statistical analysis

The data from the in vivo assays are expressed as the mean
± standard error of the mean (SEM). Each treatment group
was compared with the corresponding control group.
Repeated-measures analysis of variance (RM-ANOVA) and
the Bonferroni post-test were carried out on GraphPad
Prism statistical software, with significant differences con-
sidered at p < 0.05.

Results and discussion

Molecular docking and theoretical calculations

Twenty-three phthalamides derived from phthalic anhydride
were proposed (Scheme 1) and their basic structures
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modeled with a semi-empirical method (PM3). They were
then docked with ACE, obtaining ΔG, Kd, and pKd for the
interactions between human ACE and the ligands, the latter
comprising the test compounds and some reference drugs
like benazepril, captopril, enalapril, and lisinopril (Table 1).
Molecular docking results clearly show a high affinity of the
test compounds for the enzyme, exceeding the capacity of
some of the reference drugs. This is not enough for selecting
the best candidate for synthesis and the in vivo test, in order
to define the molecules with high probability to present
in vivo effects, additional theoretical calculations were

carried out with the online servers Molinspiration and
OSIRIS property explorer to examine some physicochem-
ical properties with Lipinski’s rule of five (Lipinski et al.
1997), as well as the ADME profile and some toxicity
parameters using StarDrop software, results are shown in
Tables 2 and 3. The parameters estimated here are discussed
briefly below in order to select the best candidates for the
synthesis.

The octanol/water partition coefficient (LogP) is an
important descriptor of molecular hydrophobicity and
therefore serves as a parameter of absorption and

(CH2)n

NH
R2

R1

R3

R4 (CH2)n

NH
R2

R1

R3

R4
OO

Molecule R1 R2 n R3 R4
DD-01 H H 1 H H
DD-02 H H 1 OH OH
DD-03R H OH 1 OH OH
DD-03S OH H 1 OH OH
DD-04R H OH 1 H H
DD-04S OH H 1 H H
DD-05R COOH H 1 OH OH
DD-05S H COOH 1 OH OH
DD-06R COOH H 1 OCH3 OH
DD-06S H COOH 1 OCH3 OH
DD-07R COOH CH3 1 OH OH
DD-07S CH3 COOH 1 OH OH
DD-08R COOCH3 H 1 OH OH
DD-08S H COOCH3 1 OH OH
DD-09 CH3 CH3 0 OH OH
DD-10R H OH 1 OCH3 OH
DD-10S OH H 1 OCH3 OH
DD-11 H H 1 H OH
DD-12A H H 1 OCH3 H
DD-12B H H 1 H CH3
DD-13 H H 1 OCH3 OCH3
DD-14R H CH3 0 H H
DD-14S CH3 H 0 H H

Scheme 1 Proposed structure of the phthalamides
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bioavailability. Although Lipinski suggested that the value
must not be over 5.0, a negative number also represents low
hydrophobicity and poor absorption, leading to the exclu-
sion of some of the proposed molecules (DD-03R, DD-03S,
DD-07R, and DD-07S, among others see Table 2). LogS
(aqueous solubility) refers to solubility measured in mol/L,
where values >−4 are desirable since it has been seen that
>80% of all drugs on the market with these values present
good absorption. Therefore, this parameter is a good
descriptor of absorption. Some molecules had values >2.1
and were eliminated (DD-08R, DD-08S, DD-09, DD-10R,
and DD-10S). Polar surface area (PSA) is a descriptor that
has been found to correlate with the passive transport of
molecules through membranes. Based on the recommen-
dation that values should be <120, additional molecules
were discarded (DD-02, DD-03R, DD-03S, and others).
Furthermore, analysis was made of molecular weight

(MW), the number of hydrogen bond acceptors (HBA) and
the number of hydrogen bond donors (HBD). Lipinski
pointed out that for good absorption, molecules must have a
MW< 500, no >5 HBD and <10 HBA. The few molecules
in accordance with these values were included in the next
screening.

In drug development, the inclusion of the ADME profile
is obligatory (see Table 3). The first parameter evaluated
was human intestinal absorption (HIA), an indicator of the
passive absorption from the intestine into the hepatic portal
vein (without considering the effect of first pass metabo-
lism). This parameter provided evidence of poor HIA for
most of the test compounds (Table 3). Acceptable HIA
values (absorption ≥ 30%) are desirable but insufficient to
describe a good oral bioavailability. Greater plasma protein
binding (PPB90) reduces the capacity of compounds to
traverse cell membranes and therefore may affect drug
efficiency. Only a few molecules exhibited strong binding
(over 90%) to plasma proteins. Therefore, those molecules
were discarded since the less bound a drug is, the more
efficiently it can traverse cell membranes. Since metabolism
is a crucial parameter of pharmacokinetic studies, two
relevant isoforms of cytochrome P450 were herein tested
for affinity to the ligands using the StarDrop software.
Isoform 2C9 is responsible for the phase I metabolism of up
to 20% of all drugs, mainly through oxidation (Van Booven
et al. 2010). Isoform P450 2D6, located in the liver and
brain (Wang et al. 2009), participates in the metabolism of
up to 25% of the current clinically used drugs. Both of these
isoforms are involved in the metabolism of aromatic rings,
which are present in all the proposed molecules. All
molecules were found to have similar values of affinity for
isoform 2C9, with an average of 5.72. For isoform 2D6,
most of the molecules displayed low affinity (see Table 3).
P-glycoprotein, a protein belonging to the superfamily of
ATP-binding cassette (ABC) transporters, is implicated in
the absorption and disposal of drugs, acting as a pump to
remove xenobiotics from cells (Lin and Yamazaki 2003).
Accordingly, a determination was made as to whether the
compounds in the series of phthalimides are a substrate of
this protein, and if absorption is thus affected. Such was true
for many of the test compounds. Finally, blood–brain bar-
rier penetration (BBB log([brain]:[blood])) and blood–brain
barrier penetration category (BBB category) are two rele-
vant parameters in the development of central nervous
system (CNS) drugs. However, ACEis do not need to cross
the BBB to exert their action, and the present results indi-
cated that they are unlikely to do so. In addition, 57 toxicity
parameters were assessed by using the Derek Nexus module
with StarDrop software (Table 4). The data reveal three
negative properties for some ligands, including the follow-
ing presumptive toxicity: skin sensitization, hepatotoxicity,
and chromosome damage in vitro, such as DD-02, DD-03R/S,

Table 1 Gibbs free energy (ΔG), the dissociation constant (Kd), and
–log (10) dissociation constant (pKd) for the interactions between the
ligands and angiotensin-I-converting enzyme of human

Receptor

Ligand ΔG (kcal/mol) Kd (µM) pKd

DD-01 −9.800 0.066 7.18

DD-02 −10.65 0.018 7.74

DD-03R −9.660 0.082 7.08

DD-03S −9.650 0.085 7.07

DD-04R −9.290 0.156 6.81

DD-04S −8.990 0.258 6.59

DD-05R −8.080 1.200 5.92

DD-05S −7.660 2.430 5.61

DD-06R −7.760 2.050 5.69

DD-06S −8.100 1.150 5.94

DD-07R −8.010 1.350 5.87

DD-07S −8.010 1.350 5.87

DD-08R −8.550 0.543 6.26

DD-08S −8.570 0.522 6.28

DD-09 −9.750 0.072 7.14

DD-10R −9.900 0.056 7.25

DD-10S −9.670 0.082 7.08

DD-11 −10.60 0.017 7.77

DD-12A −10.88 0.011 7.97

DD-12B −10.10 0.040 7.40

DD-13 −9.900 0.055 7.26

DD-14R −9.170 0.191 6.72

DD-14S −9.500 0.109 6.96

Benazepril −10.67 0.015 7.82

Captopril −7.120 6.010 5.22

Enalapril −10.79 0.012 7.91

Lisinopril −10.81 0.012 7.93
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Table 2 Physicochemical
properties based on the
Lipinski’s rules of five

LIGAND LogP < 5 LogS (−5 a 1) PSA < 120 MW (g/mol) < 500 HBA < 10 HBD < 5 nrotb < 10

DD-01 3.634 1.08 58.2 372.5 4 2 10

DD-02 1.781 2.43 139.1 436.5 8 6 10

DD-03R −0.2098 3.219 179.6 468.5 10 8 10

DD-03S −0.2098 3.219 179.6 468.5 10 8 10

DD-04R 1.888 2.586 98.66 404.5 6 4 10

DD-04S 1.888 2.586 98.66 404.5 6 4 10

DD-05R 0.7275 2.553 213.7 524.5 12 8 12

DD-05S 0.7275 2.553 213.7 524.5 12 8 12

DD-06R 1.116 2.286 191.7 552.5 12 6 14

DD-06S 1.116 2.286 191.7 552.5 12 6 14

DD-07R −1.311 2.521 220 556.6 12 10 12

DD-07S −1.311 2.521 220 556.6 12 10 12

DD-08R 1.371 2.318 191.7 552.5 12 6 14

DD-08S 1.371 2.318 191.7 552.5 12 6 14

DD-09 2.215 2.142 139.1 464.5 8 6 8

DD-10R 0.3713 3.004 157.6 496.5 10 6 12

DD-10S 0.3713 3.004 157.6 496.5 10 6 12

DD-11 2.831 1.673 98.66 404.5 6 4 10

DD-12A 3.465 1.51 76.66 432.5 6 2 12

DD-12B 3.465 1.51 76.66 432.5 6 2 12

DD-13 3.018 2.023 95.12 492.6 8 2 14

DD-14R 3.369 0.9025 58.2 372.5 4 2 8

DD-14S 3.369 0.9025 58.2 372.5 4 2 8

LogP octanol/water partition coefficient, LogS aqueous solubility, PSA polar surface area, MW molecular
weight, HBA number of hydrogen bond acceptors, HBD number of hydrogen bond donors, nrotb number of
rotatable bonds

Table 3 ADME profile LIGAND HIA PPB90 2C9 pKi 2D6 affinity P-gp BBB log([brain]:[blood]) BBB category

DD-01 + High 5.447 Medium Yes −0.2858 −

DD-02 − High 5.606 Low Yes −0.6993 −

DD-03R − Low 5.620 Low No −0.8803 −

DD-03S − Low 5.620 Low No −0.8803 −

DD-04R + Low 5.145 Low Yes −0.5687 −

DD-04S + Low 5.145 Low Yes −0.5687 −

DD-05R − Low 5.715 Low Yes −1.2720 −

DD-05S − Low 5.715 Low Yes −1.2720 −

DD-06R − Low 5.915 Low Yes −1.3810 −

DD-06S − Low 5.915 Low Yes −1.3810 −

DD-07R − Low 5.793 Low Yes −1.5030 −

DD-07S − Low 5.793 Low Yes −1.5030 −

DD-08R + Low 5.737 Low Yes −0.9135 −

DD-08S + Low 5.737 Low Yes −0.9135 −

DD-09 − High 5.904 High Yes −0.7201 −

DD-10R − Low 5.985 Low Yes −0.9973 −

DD-10S − Low 5.985 Low Yes −0.9973 −

DD-11 + High 5.65 Medium Yes −0.6184 −

DD-12A + High 5.896 Medium No −0.4444 −

DD-12B + High 5.852 Medium No −0.4444 −

DD-13 − low 6.118 Low Yes −0.4697 −

DD-14R + High 5.675 Medium No −0.2397 −

DD-14S + High 5.675 Medium No −0.2397 −

HIA: “+” indicates absorption ≥ 30% and “−” absorption < 30%

PPB90: “Low” denotes < 90% and “high” ≥ 90% of the compound bound to plasma protein

2D6 affinity: “Low” refers to a pKi < 5, “medium” a pKi in the range 5–6, “high” in the range 6–7, and “very
high” > 7

BBB category: “+” means a ratio ≥−0.5 and “−” a ratio <−0.5

HIA human intestinal absorption, PPB90 plasma protein binding (90% threshold), 2C9 pKi cytochrome P450
CYP2C9 affinity, 2D6 cytochrome P450 CYP2D6 affinity, P-gp P-glycoprotein substrate, BBB log([brain]:
[blood]) blood–brain barrier penetration, BBB category blood–brain barrier penetration category
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DD-05R/S, DD-06R/S, DD-12A, DD-12B, and others,
except those molecules selected (DD-01, DD-13, and DD-
14S).

As can be appreciated, theoretical analysis is a vital tool
for drug discovery. Three molecules were chosen in
accordance with the best corresponding scores obtained in
the in silico study (docking, physicochemical properties,
ADME profile, and toxicity parameters) (see Table 5),
which indicated a high probability of producing the best
effect in vivo. The next step was the examination of the
binding mode of the three molecules chosen (Table 5) and
also the references molecules with the ACE.

The main amino-acid residues involved in ligand-ACE
recognition for the test compounds and some reference
drugs were identified (Table 6). Some amino-acid residues
are the same for the phthalamides and the reference drugs
like Lys511, His353, Tyr523, His387, and the Zinc atom
(Zn701), and also the kind of interaction are shown in
Table 7, as well as the binding distances. Thee residues are
very important for the inhibition of ACE (Natesh et al.
2003). The binding mode with ACE turned out to be very
similar for the three selected test compounds and lisinopril
(Fig. 1). Moreover, these test compounds and the reference
drugs (benazepril, captopril, enalapril, and lisinopril)
exhibited the same pattern in relation to the binding dis-
tances with the amino-acid residues of the enzyme (Figs. 2
and 3). The validation of the molecular docking was per-
formed by comparison of docked and crystallographic lisi-
nopril, obtaining the same pattern of interaction with the
receptor for both molecules (Fig. 1d).

It can be concluded that the binding site for the three
selected phthalamides is the catalytic active site of ACE. In
addition, the principal interactions between these phthala-
mides and ACE are very similar to those described for the
reference molecules. All the information above allowed us
to select three molecules for the synthesis, since these
molecules may act as good inhibitors, and estimate their
lethal doses 50.

Chemical characterization

N,N’-bis(2-phenylethyl)phthalamide (DD-01)

A white solid was obtained in 90% yield; mp 167–168 °C;
1H NMR (CDCl3, 300MHz) δ 2.89 (4H, t, H-10,10’), 3.62
(4H, c, H-9,9’), 6.79 (2H, s, NH), 7.24 (6H, m, H-
12,12’,14,14’,16,16’), 7.29 (4H, m, H-13,13’,15,15’), 7.39
(2H, m, H-4,5), 7.46 (2H, m, H-3,6); 13C NMR (CDCl3, 75
MHz) δ 134.6 (C-1,2), 128.4 (C-3,6), 130.1 (C-4,5), 169.1
(C-7,8), 41.3 (C-9,9’), 36.5 (C-10,10’), 138.6 (C-11,11’),
128.6 (C-12,12’,16,16’), 128.7 (C-13,13’,15,15’), 126.5 (C-
14,14’). IR (ATR, cm−1) ύ: 3254 (N-H), 3076 (C-H,
Aromatic), 2929 (C-H, Aliphatic), 1626 (C=O), 1575
(C=C), 1442 (CH2), 1313 (C-N). MS (m/z): 395.1713 (M
+Na).

Table 4 Properties of toxicity evaluated by using the Derek Nexus
module with StarDrop software

Carcinogenicity, irritation of the skin, phototoxicity, kidney
function-related toxicity, photocarcinogenicity, lachrymation,
cholinesterase inhibition, nephrotoxicity, chromosome damage
in vitro, anaphylaxis, neurotoxicity, ocular toxicity, chromosome
damage in vivo, blood in urine, adrenal gland toxicity, pulmonary
toxicity, photo-induced chromosome damage in vitro, cerebral
edema, bladder disorders, splenotoxicity, mutagenicity in vitro,
chloracne, bladder urothelial hyperplasia, thyroid toxicity,
mutagenicity in vivo, cyanide-type effects, bone marrow toxicity,
urolithiasis, photomutagenicity in vitro, high acute toxicity,
cumulative effect on white cell count and immunology,
developmental toxicity, nonspecific genotoxicity in vitro,
methaemoglobinaemia, bradycardia, teratogenicity, nonspecific
genotoxicity in vivo, mitochondrial dysfunction, cardiotoxicity,
testicular toxicity, photo-induced nonspecific genotoxicity
in vitro, uncoupler of oxidative phosphorylation, HERG channel
inhibition in vitro, occupational asthma, photo-induced
nonspecific genotoxicity in vivo, oestrogenicity, hepatotoxicity,
respiratory sensitization, eye irritation, peroxisome proliferation,
alpha-2-mu-globulin nephropathy, photoallergenicity, irritation of
the gastrointestinal tract, phospholipidosis, kidney disorders, skin
sensitization, irritation of the respiratory tract.

Table 5 Structure of the synthesized phthalamides and analyzed in the
molecular approach with the angiotensin-I-converting enzyme

Nomenclature Structure

DD-01

DD-13

DD-14S
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Table 6 Amino-acid residues involved in the interaction between angiotensin-I-converting enzyme of human and the ligands: phthalamides and
reference molecules

Ligand Residues

DD-01 Zn701, Lys511, His353, Tyr523, His387, Tyr520, His513, Ser513, Glu384, Ala354, Phe457, Glu162, Glu411, His383, Val380

DD-13 Zn701, Lys511, Tyr523, Tyr520, Phe457, His387, His383, His353, Ala354, Ser355, Glu384, Glu162

DD-14S Zn701, Lys511, His353, Tyr523, Glu384, His383, Glu162, Phe457, Gln281, Trp279, Tyr520, His513

Benazepril Zn701, Lys511, His353, Tyr523, Glu384, Ser355, His387, Ala354, His513, Tyr520, Glu162, Gln281

Captopril Zn701, Lys511, Tyr523, Gly200, Glu384, Tyr520, His513, Gln281, Phe457

Enalapril Zn701, Lys511, His353, Tyr523, Glu384, Ala356, His387, Glu411, Val518, His513, Tyr520, Phe512, Phe457, Gln281

Lisinopril Zn701, Lys511, His353, Tyr523, His387, Glu384, Arg522, Glu411, His383, Ala354, Tyr520, His513, Phe512, Gln281

Table 7 Binding distances
between amino-acid residues
involved in the interaction and
the selected ligands

Ligand Interactions

DD-01 4 H-bond: 5 π-π interactions:

His387:C----C:DD-01 to 4.34 Å

Tyr520:H----O:DD-01 to 1.92 Å His383:C----C:DD-01 to 5.59 Å

His353:H----O:DD-01 to 2.09 Å His353:C----C:DD-01 to 3.94 Å

His513:H----O:DD-01 to 2.37 Å Phe457:C----C:DD-01 to 5.27 Å

Lys511:H----O:DD-01 to 1.72 Å Tyr523:C----C:DD-01 to 3.32 Å

2 Hydrophobic interactions: 1 π-cation interactions:

Val380:C----C:DD-01 to 5.44 Å Zn701:Zn----C:DD-01 to 3.07 Å

Ala354:C----C:DD-01 to 4.61 Å

2 π-anion interactions:

Glu411:O----C:DD-01 to 4.69 Å

Glu162:O----C:DD-01 to 3.07 Å

DD-13 3 H-bond: 3 π-π interactions:

His383:C----C:DD-13 to 5.67 Å

Tyr520:H----O:DD-13 to 1.99 Å Phe457:C----C:DD-13 to 4.97 Å

His353:H----O:DD-13 to 2.47 Å Tyr523:C----C:DD-13 to 3.51 Å

Lys511:H----O:DD-13 to 1.84 Å

3 Hydrophobic interactions: 1 π-cation interactions:

Ala354:C----C:DD-13 to 5.02 Å Zn701:Zn----C:DD-13 to 3.38 Å

His387:C----C:DD-13 to 3.75 Å

Ser355:C----C:DD-13 to 3.36 Å

2 π-anion interactions:

Glu384:O----C:DD-13 to 3.53 Å

Glu162:O----C:DD-13 to 4.61 Å

DD-14S 4 H-bond: 4 π-π interactions:

His383:C----C:DD-14S to 5.71 Å

Tyr520:H----O:DD-14S to 2.16 Å His353:C----C:DD-14S to 3.68 Å

Gln281:H----O:DD-14S to 2.15 Å Phe457:C----C:DD-14S to 4.93 Å

His513:H----O:DD-14S to 2.05 Å Tyr523:C----C:DD-14S to 3.35 Å

Lys511:H----O:DD-14S to 1.81 Å

1 Hydrophobic interaction: 1 π-cation interactions:

Trp279:C----C:DD-14S to 3.58 Å Zn701:Zn----C:DD-14S to 2.33 Å

2 π-anion interactions:

Glu384:O----C:DD-14S to 4.68 Å

Glu162:O----C:DD-14S to 2.88 Å
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N,N’-bis[2-(3,4-dimethoxyphenyl)ethyl]phthalamide (DD-13)

The procedure gave a white solid in 92% yield; mp 147–
148 °C; 1H NMR (CDCl3, 300MHz) δ 2.83 (4H, t, H-
10,10’), 3.61 (4H, dd, H-9,9’), 3.83 (6H, s, H-17,17’), 3.84

(6H, s, H-18,18’), 5.28 (2H, s, NH), 6.77 (6H, m, H-
12,12’,15,15’,16,16’), 7.41 (2H, m, H-3,6), 7.45 (2H, m, H-
4,5); 13C NMR (CDCl3, 75MHz) δ 134.71 (C-1,2), 128.15
(C-3,6), 130.19 (C-4,5), 169.14 (C-7,8), 41.56 (C-9,9’),
35.11 (C-10,10’), 131.11 (C-11,11’), 111.30 (C-12,12’),

Fig. 1 Binding mode of the ligands in the catalytic active site of the
human ACE established by molecular docking: a Binding site of DD-
01 and lisinopril (fuchsia); a’ the binding mode of DD-01 was similar
to that of lisinopril (fuchsia); b binding site of DD-13 and lisinopril
(fuchsia); b’ a similar binding mode was found for DD-13 and

lisinopril (fuchsia); c binding site of DD-14S and lisinopril (fuchsia);
c’ a similar binding mode was observed for DD-14S and lisinopril
(fuchsia); d reproduction of the binding mode of lisinopril obtained by
molecular docking (fuchsia) and by crystal structure (ocher; PDB code
1O86) (color figure online)
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148.94 (C-13,13’), 147.64 (C-14,14’), 111.87 (C-15,15’),
120.62 (C-16,16’), 55.84 (C-17,17’), 55.87 (C-18,18’). IR
(ATR, cm−1) ύ: 3238 (N-H), 3083 (C-H, Aromatic), 2928
(C-H, Aliphatic), 2836 (O-CH3, Aliphatic), 1618 (C=O),
1590 (C=C), 1453 (CH2), 1262 (C-N), 1239 (O-CH3). MS
(m/z): 515.2083 (M+Na).

N,N’-bis[(1S)-1-phenylethyl)phthalamide (DD-14S)

The procedure afforded a white solid in 89% yield; mp 218–
219 °C; 1H NMR (CDCl3, 300MHz) δ 1.37 (6H, d, H-
10,10’), 5.05 (1H, q, H-9,9’), 7.20 (2H, m, H-3,6), 7.27
(4H, m, H-13,13’,15,15’), 7.35 (4H, m, H-12,12’,16,16’),

Fig. 2 Binding mode and main amino-acid residues in the catalytic
active site of the human ACE when interacting with the ligands
(observed by docking simulation): a Binding site of DD-01; a’) amino-
acid residues interacting with DD-01; b binding site of DD-13; b’

amino-acid residues interacting with DD-13; c binding site of DD-14S;
c’ amino-acid residues interacting with DD-14S; d binding mode of
DD-01 (fuchsia), DD-13 (green), and DD-14S (yellow), each with
great similarity to the others (color figure online)
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7.45 (2H, m, H-14,14’), 7.46 (2H, m, H-4,5), 8.71 (2H, d,
NH); 13C NMR (CDCl3, 75MHz) δ 136.6 (C-1,2), 126.9
(C-3,6), 129.6 (C-4,5), 167.7 (C-7,8), 48.7 (C-9,9’), 22.9
(C-10,10’), 145.0 (C-11,11’), 126.4 (C-12,12’,16,16’),
128.6 (C-13,13’,15,15’), 128.1 (C-14,14’). IR (ATR, cm−1)
ύ: 3291 (N-H), 3029 (C-H, Aromatic), 2976 (C-H,

Aliphatic), 1624 (C=O), 1542 (C=C), 1450 (CH2), 1332
(C-N). MS (m/z): 395.1719 (M+Na).

Three phthalamide derivate of phenylethylamines were
synthesized based on the green chemistry principles
(Scheme 2). This strategy incorporates almost all reagents
with good yield in very short times (10–15 min) without any

Fig. 3 Binding mode and main amino-acid residues in the catalytic
active site of the human ACE when interacting with the reference
drugs (observed by docking simulation): a Binding site of benazepril;
a’ amino-acid residues interacting with benazepril; b binding site of

captopril; b’ amino-acid residues interacting with captopril; c binding
site of enalapril; c’ amino-acid residues interacting with enalapril; d
binding site of lisinopril; d’ amino-acid residues interacting with
lisinopril
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solvent or catalytic reagent, with this technique we can be
synthesizing up to 5 g each time, and also the purification is
easy just basic water and ethyl acetate. Our new technique
allows complying with at least nine principles of green
chemistry using just the melting point of the reagents.

LD50 on mice

Acute toxicity of the three synthesized compounds was
assessed by the LD50 on CD1 male mice by following
Lorke’s method. The LD50 for all compounds was >1600
mg/kg, which represents >160 times the dose used for the
in vivo experiment. Hence, phthalic derivatives can be
proposed for continued research on their potential as drugs
with low toxicity and a potent antihypertensive effect.

In vivo evaluation

The SHR is the most common model for testing hyperten-
sion. Although the physiopathology of the increase in BP in
these rats is still undefined, some evidence suggests that
Ang II plays an essential role (Sueta et al. 2014). The RAS
comprises systemic and local activity in several tissues such
as the heart, lung, adrenal gland, kidney, blood vessels, and
brain. The complex mechanisms of RAS activate several
functions after ACE catalyzes Ang I to form Ang II. The
interaction of Ang II with the AT1 receptor triggers vaso-
constrictor, trophic, proliferative and pro-thrombotic

activity (Herichova and Szantoova 2013). However,
excessive activity of Ang II has been implicated in hyper-
tension and cardiovascular disease.

Ang II elevates BP through several pathways, the most
important ones being vasoconstriction, sympathetic stimu-
lation, and increased aldosterone biosynthesis and renal
activity (Fyhrquist et al. 1995). Consequently, hypertension
is commonly controlled by inhibiting the synthesis of this
peptide. Indeed, the first-line drugs for the control of
hypertension are ACEis and Ang II receptor blockers.
ACEis decrease BP by preventing smooth muscle con-
striction in the vasculature and by reducing the release of
aldosterone. Nevertheless, the recommendation has been
made to use a different pathway that can enhance the
activity of ACE/Ang (1–7)/MasR axis (Maia et al. 2004).

Based on the molecular docking results, the theoretical
assessment of the physicochemical properties, and the
determination of the ADME profile of the three molecules
synthesized, the one with the best properties (DD-01) was
selected. Thus, an in vivo evaluation of DD-01 and capto-
pril (as the reference drug) was carried out with the SHR
model. Compared with the normotensive control group
(WKY+VEH), the hypertensive control group (SHR+
VEH) exhibited higher SBP (Fig. 4), DBP (Fig. 5) and
MAP (Fig. 6). DD-01 (10 mg/kg) significantly diminished
all three parameters as of week 1 of treatment and for the
subsequent 3 weeks. Captopril (40 mg/kg) presented the
same pattern. The mol to mol comparison of both molecules
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Scheme 2 The synthetic route under solventless conditions for the three molecules selected based on their favorable properties
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revealed that DD-01 is 6.85-fold more potent than captopril.
These two compounds produce an equivalent effect.

However, the normotensive values of the WKY+VEH
group were not reached by either captopril or DD-01. These
findings concur with those of other studies reporting a
decrease of 40–50% in BP after ACEi monotherapy. ACEis
administered in combination with diuretics or calcium
antagonists reduced BP by 80–90% (Cheung et al. 2009).
According to some researchers, the relatively low efficacy
of ACEis in diminishing BP implies that chymase is the
primary enzyme involved in forming Ang II from Ang I in
humans (Dell’Italia and Husain 2002). Although the inhi-
bition of chymase limits the synthesis of Ang II, it does not
control BP in the short term, possibly because chymase
inhibitors, unlike ACEis, only decrease Ang II locally and
not systemically (Roszkowska-Chojecka et al. 2015).

Conclusions

The design of new molecules with potential action on ACE
is a worthwhile strategy to find alternative treatments for
hypertension, especially if green chemistry is involved in
their synthesis. Three molecules were herein selected by in
silico analysis of their physicochemical properties, Gibbs
free energy, and ADME profile. Their structures were
confirmed by all spectrometry and spectroscopy methods.
After finding low toxicity for these selected molecules, one
was chosen for testing on the SHR model. It exhibited an
effect similar to that of captopril but is ∼7-fold more potent.
Therefore, we propose further studies to explore the inhi-
bitory activity of this and related phthalimide derivatives.
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