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Selenocyanates represent an interesting class of organic selenium compounds. Due to their similarity with better known 

natural (iso-)thiocyanates, they promise high biological activity and may also be metabolized to other Reactive Selenium 

Species, such as selenols, diselenides and seleninic acids. Thirteen arylmethyl selenocyanates (1-13) have been synthesized 

and evaluated for potential antimicrobial, nematicidal and cytotoxic activity. The compounds exhibit pronounced 

antimicrobial activity against various strains of Gram-positive and Gram-negative bacteria and yeasts, including multidrug 

resistant strains. The results obtained so far demonstrate that these arylmethyl selenocyantes are also non-mutagenic and 

with limited cytotoxicity against human cells. Here, benzylselenocyanate (1) represents the most active anti-ESKAPE agent, 

with potent activity against multidrug resistant MRSA strains (HEMSA 5) - with a competitive MIC value of just 0.76 µg mL-1 

(3.88 µM) whereas it exhibits low(er) cytotoxicity (IC50 = 31 µM) and no mutagenicity against mammalian cells. Because of 

this selective antimicrobial activity, aromatic selenocyanates may provide an interesting lead in the development of 

antimicrobial agents, particularly in the context of drug resistance. 

.

Introduction 

Since the discovery of the first modern antibiotics almost one 
hundred years ago, substances such as the penicillin have served as 
important and effective weapons in the prevention and treatment 
of a wide spectrum of infectious diseases. Nonetheless, over- and 
misuse of antibiotics, among various other reasons, have led to a 
surge of resistance in pathogenic bacteria, which has now become 

one of the biggest threats and challenges facing humanity.
1
 The 

phenomenon of resistance to available antibiotics has attracted the 
attention of scientists for over two decades now, and has led to a 
considerable demand for the development of new types of 
antibiotics against such resistant strains of bacteria and fungi. 

Fortunately, Nature itself is an affluent source of antibiotics. Natural 
substances acquired from medicinal and culinary plants, such as 
garlic and mustard, have been employed extensively as antibiotics 
throughout History.

2-4
 More recently, such secondary metabolites 

have become important leads in the development of new and 
effective medicines.

5-7
 These phytochemicals include alkaloids, 

flavonoids, terpenes, polyphenols and, particularly, organosulfur 
compounds (OSCs).

8-11
 OSCs are distributed widely in Nature, for 

instance as allicin in garlic, ergothioneine in mushrooms, and 
thiocyanates and isothiocyanates in cruciferous vegetables, to 
name just a few (Figure 1).

12-14
 Isothiocyanates and thiocyanates are 

reactive, electrophilic substances belonging to the class of natural 
Reactive Sulfur Species (RSS) and are cherished for their ability to 
randomly modify cysteine proteins and enzymes of the cellular 
thiolstat.

15
 Such a wider “oxidative onslaught” in microorganisms 

frequently results in pronounced toxicity, even in otherwise 
resistant organisms, and RSS are often seen as promising 
candidates in the battle against resistant bacteria and fungi.

14-18
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Compared to RSS, Reactive Selenium Species (RSeS) are 
considerably less common in Biology. Despite the overarching 
importance of this trace element in humans, we actually find only a 
handful of selenium secondary metabolites in higher organisms, 
such as the ergothioneine-analogue selenoneine in blue tuna, 
whereas most selenium in higher organisms is incorporated in the 
amino acids selenocysteine and selenomethioneine and forms part 
of a range of selenoproteins and selenoenzymes.

19-21
  

The lack of a wider spectrum of selenium containing secondary 
metabolites is rather surprising and somewhat disappointing. A 
remarkable upsurge in activity and reactivity is often observed for 
the selenium analogues of organosulfur compounds, and “going for 
selenium” in form of selenium analogues of naturally occurring RSS 
is quite attractive from the perspective of drug design, especially at 
a time when certain selenium-containing organic compounds are 
receiving renewed attention. Selenazole compounds, such as 
ebselen (2-Phenyl-1,2-benzoselenazol-3-one), not only mimic the 
activity of the selenium enzyme glutathione peroxidase, they have 
already entered clinical trials in the context of mania and 
hypomania.

22-25
 Moreover, naturally occurring (iso-)thiocyanates, 

such as allyl isocyanate in mustard oil, and selenium analogues 
thereof, e.g. primarily (iso-)selenocyanates, represent a particularly 
promising class of compounds. Unfortunately, the most obvious 
analogues of such natural antibiotics are either not stable 
chemically or extraordinarily difficult to synthesise and to handle 
because of intense odour and inherent toxicity.

26, 27
 This is 

particularly the case for the respective, chemically simple 
isoselenocyanates, whilst replacement of sulfur with selenium in 
aromatic isothiocyanate has been reported to enhance the 
reactivity of compounds towards thiols in proteins.

28
 Additionally, 

isoselenocynates demonstrate a higher reactivity towards GSH, 

target several cellular proteins, possess a greater ability to 
modulate the redox cycle in the cells and also induce elevated levels 
of apoptosis as compared to isothiocyanates.

28
 Since 

isoselenocyanates have been explored already for biological 
applications, for instance against several kinds of cancers (e.g. lung, 
colon, liver, prostate and breast) and infective diseases (e.g. 
malaria, tuberculosis and leishmaniasis) we have shifted our focus 
to aromatic selenocyanates, which have received less attention and 
also promise greatly improved physico-chemical properties.

29-32
 

These compounds are intriguing as they are not only active on their 
own, they are also often metabolized to a range of other RSeS, such 
as selenols, diselenides and seleninic acids.

33-37
 Once again, such 

organoselenium compounds are not “exotic” and - either directly or 
as metabolites - play significant roles in Biology.

38
 Although 

aromatic selenocyanates so far have mostly been studied when 
attached to some other “bioactive” scaffolds which may have 
influenced or even dominated their biological activity, they have 
also been reported to exhibit leishmanicidal activity. 

35, 39, 40
 

Moreover, the dietary intake of benzyl selenocyanate has been 
reported to inhibit the incidence of small intestinal and colon 
adenocarcinoma.

41
 Since hardly any wider investigations of such - 

chemically quite stable - benzylselenocyanates are found in the 
more biological literature, we have turned our attention to this 
class of compounds first. Here we report the synthesis of aromatic 
selenocyanate compounds, including four novel compounds (2, 8, 9 
and 13), a pronounced and even somewhat selective antimicrobial 
activity against pathogenic and resistant microorganisms and a set 
of relevant pharmacological parameters which indicate a low(er) 
risk to human cells. 

 

Figure 1. An “isosteric replacement” of sulfur for selenium is found in Nature where it leads from Reactive Sulfur Species (RSS), such as 

ergothioneine, to Reactive Selenium Species (RSeS), such as selenoneine. In pharmaceutical research, this strategy encompasses a range of 

(iso-)selenocyanates based on naturally occurring allyl(iso-)thiocyanates. Notably, the direct analogues of allyl(iso-)thiocyanates are rather 

unpleasant substances. The aromatic counterparts (1-13), shown here with their synthesis and respective percentage yields, are more 

promising candidates in the context of modern drug development. 
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Results and discussion 

Chemical Synthesis. Thirteen arylmethyl selenocyanates (1-13, 

Figure 1) were designed and synthesized based on basic 

pharmacokinetic and pharmacodynamic considerations.
42-44

 The 

compounds were produced employing appropriate commercially 

available arylmethyl halides and potassium selenocyanate (KSeCN), 

according to the general procedure described by Wheeler and 

Merriam, and with minor modifications (Figure 1).
45

 All of the 

compounds - of which four are novel - were obtained in good yields 

(62–88 %) and structures of compounds 1-13 were confirmed by 
1
H 

and 
13

C-NMR. Molecular mass and purity were determined by LC-

MS. (see Experimental Section and Electronic Supplementary 

Information (ESI)). 

Crystallographic Studies. In order to provide a deeper insight into 
the structural properties, two selected compounds (1 and 12) were 
studied by X-ray crystallographic analysis (Figure 2 and Table S1 in 
ESI). In both crystal structures, the unit cells consisted of four 
molecules. The values of bond lengths formed by the selenium 
atom for C(sp)-Se were 1.850 Å and 1.837 Å for compound 1 and 
12, respectively, whereas for C(sp

3
)-Se the bond length was 1.991 Å 

for both structures. Similar values were observed in other crystal 
structures with selenium atoms. The search of the CSD 
demonstrated that the geometry of the methyleneselenocyanate 
moiety in 1 and 12 is not exceptional among structures containing 
this fragment. The crystal structure of 1 has been determined 
earlier lacking hydrogen atoms.

46
  

Figure 2. The molecular structure of (a) 1 and (b) 12, with the 

appropriate atomic numbering scheme. Displacement ellipsoids are 

drawn at 30 % probability level. Partial packing views, indicating the 

intermolecular interactions in a layer of (c) 1 and (d) 12. The 

intermolecular interactions are depicted as dashed lines. 

 

Antimicrobial Activity. Once available, compounds 1-13 were pre-

screened for potential antimicrobial activity against selected Gram-

positive and Gram-negative bacteria, fungi and multicellular 

nematodes. The antimicrobial activity was evaluated in terms of 

Minimum Inhibitory Concentrations (MICs) and values were 

compared to standard reference antimicrobial agents (Table 1).
47-52

 

Overall, a significant and on occasion astonishingly selective 
antimicrobial activity against highly pathogenic organisms has been 
observed, frequently overcoming the kind of multidrug resistance 
traditional antibiotics are faced with. The impact on cultured 
human cells was considerably more modest, pointing towards a 
possible selectivity against some - particularly nasty - pathogens. 
Indeed, most of compounds displayed significant activities against 
both, Gram-positive and Gram-negative members of a most 
obnoxious family of bacteria from the perspective of resistance, i.e. 
ESKAPE pathogens, which comprise of Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter species.

53
 

In the case of Gram-positive bacteria, the compounds were 

examined against the reference strain (ATCC 25923) and the 

multidrug resistant (MDR) clinical isolate of Staphylococcus aureus 

(S. aureus, HEMSA 5). It is noticeable that all compounds, except 

compound 11, displayed MIC values against the MDR strain which 

were considerably lower than the ones for the reference antibiotic 

oxacillin.
47, 48

 In the case of the most active compound, i.e. benzyl 

selenocyanate (1) an excellent antimicrobial activity was observed 

against HEMSA 5. Amazingly, the potency of this compound against 

the resistant strain (MIC 0.76 µg mL
-1

 or 3.88 µM) was almost one 

hundred fold higher than the reference drug oxacillin (MIC 128 µg 

mL
-1

 or 318.86 µM) (Table 1). 

Other compounds (2, 3, 6, 8, 9, 12 and 13) also demonstrated anti-

Staphylococcal activity with MIC values below 10 µg mL
-1

(62.5 µM). 

Once more, these selenocyanates did not discriminate between 

reference and resistant MDR strains of S. aureus, displaying similar 

antibacterial potency against both, with an activity comparable or 

even slightly higher against the MDR strain (12). Hence, 

selenocyanates appear to overcome bacterial MDR, most likely by 

circumventing the components responsible for resistance. Still, the 

exact biochemical causes for this “resistance busting activity” are 

unclear, and, as mentioned earlier, may also involve reactive 

metabolic products of selenocyanates, such as selenols, diselenides 

and seleninic acids, which together with the original selenocyanate 

may interfere with microbial targets to overcome resistance. 

Notably, most of these compounds were considerably less active 

against the harmless Staphylococcus strain S. carnosus, with an 

almost twenty to thirty-fold selectivity for HEMSA 5 over S. 

carnosus observed for compounds 12 and 1, respectively. Except for 

compounds 3, 6 and 13 which inhibited the growth of S. carnosus at 

the concentrations of 13.19, 6.69 and 15.39 µg mL
-1 

(62.5µM, 31.25 

µM and 62.5µM), respectively, no significant activity against this 

reference strain could be found. 
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The antibacterial activity of the selenocyanates was not limited to 

Gram-positive bacteria. Compound 1 also demonstrated excellent 

antimicrobial activity against pathogenic Acinetobacter baumannii 

(A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa). Once 

again, compound 1, with a MIC of 1.53 µg mL
-1

( 7.8 µM) against A. 

baumannii and 6.12 µg mL
-1

 (31.25 µM) against P. aeruginosa, was 

more potent against these Gram-negative pathogens when 

compared to the respective reference drug, in this case piperacillin 

with a MIC of 16 µg mL
-1

 (30.92 µM) against P. aeruginosa.
49, 50

 

Compounds 2, 3, 6, 9, 12 and 13 also demonstrated a significant, 

albeit slightly lower activity against A. baumannii (MIC values 6.57-

15.44 µg mL
-1

, i.e. 31.25-62.5 µM). Although the compounds exhibit 

selectivity for both Gram-positive and Gram-negative bacteria, the 

selectivity of compounds against pathogenic strains of Gram-

negative bacteria is particularly stimulating from a pharmaceutical 

perspective, as Gram-negative bacteria are generally more difficult 

to target, in part due to the specific structure and limited 

permeability of their cell wall.
54, 55

 

When evaluated against pathogenic yeast Candida albicans (C. 

albicans), compounds 1, 3, 5, 7 and 11 revealed an encouraging 

growth inhibitory activity at concentrations below 20 µg mL
-1 

(62.5 

µM). Compounds 5, 7 and 11 prevailed with MIC values even below 

10 µg mL
-1

 (31.25 µM). The fungistatic effect, however, is lower 

compared to clinically relevant  antifungal drugs, such as 

fluconazole and itraconazole ((MIC values 0.09-4 µg mL
-1

 (0.29-

13.06 µM) and 0.03-2 µg mL
-1

 (0.04-2.83 µM), respectively) (Table 

1).
46, 47

 When compared to a non-pathogenic yeast, the fungicidal 

activity of compound 7 exhibited a high level of selectivity towards 

C. albicans, where it was more than 60-fold more active (MIC of 7.4 

µg mL
-1 

 (31.25 µM)) compared to baker’s yeast Saccharomyces 

cerevisiae (S. cerevisiae)(MIC 460.8 µg mL
-1 

(2 mM)). Compounds 5 

and 11 exhibited similar activities, although their selectivity 

declined noticeably when compared to compound 7. Nonetheless, 

these two compounds still maintained remarkably low MIC values 

against the pathogenic yeast (6.69 µg mL
-1

 (31.25 µM) and 7.53 µg 

mL
-1

 (31.25 µM), respectively) compared to non-pathogenic S. 

cerevisiae (MIC 53.52 and 60.25 µg mL
-1

 (31.25-250 µM), 

respectively). Compound 1, which was extraordinarily active against 

bacteria, also possessed some activity against unicellular fungi. It 

exhibited slightly higher fungicidal activity against pathogenic C. 

albicans (MIC 12.24 µg mL
-1 

(62.5µM)) compared to S. cerevisiae 

(MIC 24.48 µg mL
-1

 (62.5-125 µM)). Such outcomes are promising in 

terms of utilizing these compounds as antifungal agents, for 

instance in the treatment of fungal infections, such as cutaneous, 

oropharyngeal and vulvovaginal candidiasis etc.
56-58

 

Nematicidal Activity. Although often ignored in developed 

countries, multicellular microorganisms, such as parasitic 

nematodes, still represent important targets in drug design which 

are particularly difficult to attack. In order to extend the scope of 

our preliminary studies, the series of aromatic selenocyanates (1-

13) was evaluated for nematicidal activity against the agricultural 

nematode S. feltiae, which often serves as a simple and reliably 

representative model of a multicellular organism (Figure 3). 

Figure 3. Concentration-dependent activities of the most active 

selenocyanates (from left 1, 9 and 11) against S. feltiae. PBS buffer 

and ethanol (70 % v/v) and were employed as negative and positive 

controls, respectively. Values represent mean ± S.D. *** p < 0.001 

and ** p < 0.01. 

Compounds 

Table 1. Antimicrobial activity of arylmethyl selenocyanates against selected bacteria from non-ESKAPE and 
ESKAPE families of bacteria and yeasts (1-13). 

MICs (µg mL-1) 

S. carnosus 
S. aureus 

ATCC25923 
MRSA * 

HEMSA 5 
A. baumannii 

4184/2/5 
P. aeruginosa 

4600 
C. albicans S. cerevisiae 

1 24.48 ≤0.76 0.76 1.53 6.12 12.24 24.48 
2 26.27 6.57 6.57 6.57–13.14 52.54 52.54 52.54 
3 13.19 6.59 6.59 13.19 26.37 13.19 6.59 
4 264.08 16.51 33.02 33.01 33.01 264.08 66.04 
5 53.52 ≥26.76 >26.76 26.76 26.76 6.69 53.52 
6 6.69 6.69 6.69 13.38 107.05–210.10 6.69 6.69 
7 230.4 14.4–28.8 28.8 14.4–28.8 28.8 7.4 460.8 
8 115.28 7.2–14.4 7.2–14.4 7.2–14.4 115.28 28.82 28.82 
9 33.13 8.28 8.28 8.28–16.56 66.25 33.13 66.25 

10 275.04 34.38 >34.38 34.38 34.38 275.04 68.76 
11 30.125 482 482 >482 >482 7.53 60.25 
12 123.09 15.44 7.72 15.44 246.17 61.55 123.09 
13 15.39 7.69 7.69 15.39 246.16 30.78 61.56 

Ref. 0.03 a 0.45 b 128 b <4 b ≤16 c 0.09–4 d 0.03–2 e 

* MRSA; methicillin-resistant S. aureus; MIC values for reference antibiotics: a ampicillin, b oxacillin, c piperacillin d fluconazole and e itraconazole.48-53. Bold 
denotes significant values. 

Page 4 of 11New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
4 

M
ar

ch
 2

01
9.

 D
ow

nl
oa

de
d 

by
 U

pp
sa

la
 U

ni
ve

rs
ity

 o
n 

3/
17

/2
01

9 
8:

11
:1

9 
A

M
. 

View Article Online
DOI: 10.1039/C9NJ00563C

http://dx.doi.org/10.1039/c9nj00563c


New Journal of Chemistry  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

Figure 4. Different targets affected by a typical aromatic selenocyanate and relevant concentrations required to affect for these targets. 

One may note the distinct differences in concentrations affecting resistant and non-resistant pathogens, normal and cancer cell lines (see 

text for details). 

After a pre-screen to determine the concentration range relevant 

for this organism, compounds were evaluated at four different 

concentrations, i.e. at 3.75, 7.5, 15 and 30 µM. A remarkable, 

concentration-dependent decrease in the viability of the 

nematodes was observed for all compounds, which was 

pronounced even at the lowest concentrations employed. 

Compounds 9 and 11 exhibited the most significant nematicidal 

activity and decreased the viability of nematodes to less than 40 % 

at the concentration of 3.75 and 15 µM. These compounds 

exhibited LD50 values of 0.28 µM and 4.90 µM against S. feltiae, 

respectively. Compound 1, which has shown considerable 

antibacterial and antifungal activity (see above), also exhibited 

significant nematicidal activity (LD50 = 6.85 µM) and decreased the 

viability of nematodes to less than 40 % at the concentration of 15 

µM. Other selenocyanates were less active. 

Although practical applications are more speculative at this time, 

these results indicate that the aromatic selenocyanates may also 

serve as excellent nematicidal agents, possibly against pathogenic 

nematodes affecting plants, animals and humans - clearly a matter 

of further investigation. 

Cytotoxicity of Arylmethyl Selenocyanates against Mammalian 

Cells. In medicine, selenocyanates have been associated frequently 

with outright toxicity. In order to rule out any major cytotoxicity 

against mammalian cells and to investigate if there may be any 

selectivity against microorganisms, compounds 1-12 were 

investigated for their activity towards two cancer cell lines of mouse 

T-lymphoma, i.e., the sensitive (PAR) and the multidrug resistant 

cell line (MDR) transfected with the human MDR1 (ABCB1) gene 

which codes for the ABC transporter, and a normal NIH/3T3 mouse 

embryonic fibroblast cell line as control. 

Compounds 1–12 exhibited some cytotoxicity against the non-

cancerous NIH/3T3 mouse fibroblast cell line at concentrations 

ranging from 24 to above 100 µM, which was around two to five-

fold lower when compared to the anticancer reference drug, 

doxorubicin and also significantly lower when pitched against the 

activity of these selenocyanates affecting various microorganisms 

(Table 2). Compounds 4, 5, 7 and 10 were the selenocyanates with 

the lowest cytotoxicity against both T-lymphoma cell lines, 

compared to doxorubicin. Intriguingly, compounds 1, 2, 3, 6, 8, 9, 

11 and 12 were more cytotoxic - and also selective. They displayed 

significant cytotoxic activities against the parental and multidrug-

resistant sublines of mouse T-lymphoma cells and were less 

cytotoxic against the non-cancerous NIH/3T3 cell line, pointing 

towards a slight, 3 to 10-fold selectivity against the cancer cells.  

It is also notable, that the concentrations required for cytotoxicity 

in non-cancerous NIH/3T3 cells are generally two to three-fold 

lower compared to the concentrations required for antimicrobial 

activity (see below). 

Table 2. Cytotoxicity of arylmethyl selenocyanates against non-

cancerous and cancer cells. 

Cytotoxicity against Mammalian Cell Lines 

Cpd 

Mouse T-Lymphoma Cells Non-
Cancerous 
NIH/3T3 

PAR MDR 

SI 
IC50 

(µM) 
SD ± 

IC50 
(µM) 

SD ± 
IC50 
(µM) 

SD ± 

1 5.84 0.45 7.69 0.66 0.76 31.00 3.24 

2 5.33 0.41 9.72 1.1 0.55 55.12 2.81 

3 9.03 0 5.95 0.18 1.52 29.58 0.95 

4 89.18 2.33 >100 - ≤0.89 >100 - 

5 >100 - >100 - n.d. >100 - 

6 7.93 0.36 8.08 0.75 0.98 59.94 0.35 

7 >100 - >100 - n.d. >100 - 

8 8.58 0.18 9.64 0.88 0.89 44.73 1.79 

9 8.53 0.39 10.32 1.13 0.83 42.17 3.08 

10 >100 - >100 - n.d. >100 - 

11 7.26 0.74 14.09 1.58 0.52 70.08 1.55 

12 8.47 0.1 7.05 0.15 1.20 24.18 1.97 

DOX 0.42 0.17 2.64 0.09 0.16 13.38 0.98 

DMSO 
>2 % 
v/v 

- 
>2 % 
v/v 

- n.d. 
>2 % 
v/v 

- 

PAR: parental T-lymphoma cells; MDR: multidrug resistant T-

lymphoma cells overproducing efflux pump ABCB1; NIH/3T3: non-

cancerous mouse embryonic fibroblast cells; DOX: doxorubicin; 

DMSO: dimethyl sulfoxide; SD: standard deviation; SI: selectivity 

index; n.d.: not determined. 

The substantial activity of compounds 1, 3 and 12 against MDR cells 

is worth noticing, despite the lack of any selectivity for particular 

cell lines. Aromatic selenocyanates 1-3, 6, 8, 9, 11 and 12 may not 
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only be of interest in the context of antimicrobial action - as 

anticipated initially - they may also represent a starting point in the 

search for anticancer agents with MDR-reversing properties. Such 

anti-cancer activity is a very complex issue and requires further 

investigations. 

Pharmacological parameters associated with activity 

Since the series of selenocyanates under investigation 

demonstrated pronounced antimicrobial and nematicidal activities, 

it was considered important to investigate their “drug-likeness” 

profile. Four compounds (1, 2, 4 and 13) were selected for further 

investigations employing in vitro assays indicative of safety and 

absorption properties. The mutagenic potential and membrane 

permeability of compounds were evaluated employing a modified 

Ames fluctuation assay and a Parallel Artificial Membrane 

Permeability Assay (PAMPA) (see ESI for details).
53, 59-62

 

Ames fluctuation assay. Since inorganic sodium selenite (Na2SeO3) 

is reputed for its toxic and mutagenic actions, the selenocyanates 

were evaluated for potential mutagenic potential. The Ames 

fluctuation assay was employed to calculate the mutagenic index 

(MI) and binomial B-values according to the method described in 

the literature.
53

 Compounds are generally considered mutagenic if 

the MI is above 2.0 and B is equal to or above 0.99.
53, 59, 60

 Neither 

the selenocyanates (1, 2, 4 and 13), nor the reference selenium 

compound ebselen displayed any mutagenic potential at 

concentrations of 1 µM and 10 µM (details in ESI), therefore ruling 

out any major mutagenic potential. Compound 1 exhibited an MI 

value of 1.15 (B= 0.74) and 1.20 (B= 0.81) at 1 µM and 10 µM 

concentrations, respectively. 

In Vitro PAMPA Permeability. The PAMPA permeability screening 

test imitates the structural and biological conditions of the cell 

membrane and allows for a rapid and simple determination of the 

passive transport of a compound through biological membranes, 

characterized by a permeability coefficient (Kp). Since some of the 

aromatic selenocyanates seem to enter cells readily and also appear 

to circumvent resistance based on efflux transporters, their 

transport properties were investigated employing a pre-coated 

PAMPA Plate System Gentest™ (Corning, Tewksbury, MA, USA), 

which provides good predictability and correlation of data for 

absorption in the human Caco-2 cell line. The concentrations of the 

compounds tested in the donor and acceptor compartments were 

estimated by capillary electrophoresis (CE) as described 

previously.
60-62

 The data on permeability obtained was compared to 

the one for selected reference drugs, i.e., highly permeable caffeine 

and lowly permeable norfloxacin (see ESI for details). 

Notably, all compounds investigated, i.e. 1, 2, 4 and 13, exhibited 

good permeability with Kp values above the threshold for highly 

permeable compounds (i.e. > 1.5 × 10
−6

 cm s
-1

).
62

 In this context, the 

highest permeability was observed for compound 2 (Kp = 3.17 × 10
-6 

cm s
-1

) and compound 1 (Kp = 2.69 × 10
-6 

cm s
-1

) which are 

comparable to the permeability of the reference drug caffeine (kP 

=3.61 × 10
-6 

cm s
-1

). 

Whilst permeability may explain the ability of the selenocyanates 

investigated to enter - and to remain inside - target cells, the 

mode(s) of action underlying the biological activities associated 

with these compounds are still elusive. Here, one may speculate 

that selenocyanates may act as strong electrophiles, hence widely 

modifying cysteine thiols and possibly also amine groups in proteins 

and enzymes (Figure 5).
63

 Such redox modulating interactions with 

proteins and enzymes of the cellular thiolstat may also explain, in 

part, some of the selectivity observed for certain bacteria and cell 

lines. Other activities, possibly exerted by the various metabolic and 

breakdown products of the selenocyanates, may also be possible 

and clearly require further investigation. 

 

Figure 5. Selenocyanates and their metabolites exhibit a wide spectrum of redox activity, which includes electrophilic attacks, oxidative 

modifications of thiol and selenol functions in proteins and enzymes, catalysis metal binding. The considerable impact on the cellular redox 

homeostasis in general, and on the cellular thiolstat, in particular, may explain the pronounced biological activities observed as part of this 

study. 
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Experimental 

Chemical Synthesis. 
1
H NMR and 

13
C NMR spectra were 

recorded on a Varian Mercury-VX 300 MHz PFG instrument in 

DMSO-d6 at ambient temperature employing the solvent signal 

as an internal standard. The values of the chemical shifts are 

expressed in δ values and the coupling constants (J) in Hz. 

Mass spectra were recorded on a UPLC–MS/MS system 

consisting of a Waters ACQUITY® UPLC® (Waters Corporation, 

Milford, MA, USA) coupled to a Waters TQD mass 

spectrometer (electrospray ionization mode ESI-tandem 

quadrupole). The purity of final products was confirmed by 

UPLC/MS to be higher than 95 %. Retention times (tR) are 

provided in min. Thin-layer chromatography (TLC) was 

performed on pre-coated Merck silica gel 60 F254 aluminium 

sheets. 

General Procedure for the Synthesis of Selenocyanates. 

Selenocyanates were synthesized following the general 

protocol described by Wheeler and Merriam with some 

modifications.
45

 Alkyl halides (10-20 mmol) were treated with 

KSeCN (12-25 mmol) in ethanol (10-20 mL). The reaction 

mixture was refluxed for 6 h and progress of the reaction was 

monitored periodically by TLC. After completion, the inorganic 

salt was separated by filtration and the filtrate was purified 

with charcoal, condensed and crystallized with ethanol, to 

yield crystals of arylmethylselenocyanates (1-13). 

Compounds 1, 3-7 and 10-12 have been described in the 

literature before and analytical data for these compounds is in 

agreement with the values reported (see ESI).
40, 64, 65

 

4-Methylbenzyl Selenocyanate (2). 4-Methylbenzyl chloride 

(1.4 g, 10 mmol), KSeCN (1.73 g, 12 mmol) and ethanol (10 mL) 

were employed. Compound 2 was obtained as light crystals. 

Yield 83.6 % (1.76 g, 8.36 mmol); m.p.= 43-45 °C, TLC Rf (DCM, 

100 %): 0.51. 
1
H NMR (DMSO-d6, ppm): δ 7.23 (d, J = 7.62 Hz, 

2H, 2 C-H), 7.17 (d, J = 8.21 Hz, 2H, 2 C-H), 4.27 (s, 2H, CH2), 

2.28 (t, J = 9.10 Hz, 3H, CH3). 
13

C NMR (DMSO-d6, ppm): δ 

137.62,135.65, 129.61,129.22,105.39 (Se-CN), 33.08, 21.22. 

LC–MS: purity 100 %, tR = 6.25, (ESI) m/z: calculated for 

C9H9NSe [M + H]
+
: 105.07, found: 105.02. 

3-Chlorobenzyl Selenocyanate (8). 3-Chlorobenzyl chloride 

(3.22 g, 20 mmol), KSeCN (3.60 g. 25 mmol) and ethanol (20 

mL) were employed. Compound 8 was obtained as light 

crystals. Yield 82.55 % (3.81 g, 16.51 mmol); m.p.= 40-42 °C, 

TLC Rf (DCM, 100 %): 0.75. 
1
H NMR (DMSO-d6, ppm): δ 7.42(m, 

1H, CH), 7.37 (m, 2H, CH), 7.33 (m, 1H, CH), 4.28 (t, J = 9.15 Hz, 

2H, CH2). 
13

C NMR (DMSO-d6, ppm): δ 141.45, 133.38, 130.95, 

129.04, 128.17, 128.00, 105.23 (Se-CN), 31.96. LC–MS: purity 

98.95 %, tR = 6.24, (ESI) m/z: calculated for C8H6ClNSe [M + H]
+
: 

125.02, found: 125.02. 

3,4-Dichlorobenzyl Selenocyanate (9). 3,4-Dichlorobenzyl 

chloride (3.91 g, 20 mmol), KSeCN (3.6 g. 25 mmol) and 

ethanol (20 mL) were employed. Compound 9 was obtained as 

yellow crystals. Yield 88.2 % (4.673 g, 17.64 mmol); m.p.= 76-

79 °C, TLC Rf (DCM, 100 %): 0.60. 
1
H NMR (DMSO-d6, ppm): δ 

7.62 (m, 2H, CH), 7.37 (dd, J1 = 2.12 Hz, J2 = 2.09 Hz, 1H, CH), 

4.28 (t, J = 9.15 Hz, 2H, CH2). 
13

C NMR (DMSO-d6, ppm): δ 

140.24, 131.29 (4 C), 129.67, 105.19 (Se-CN), 31.23. LC–MS: 

purity 99.49 %, tR = 6.86, (ESI) m/z: calculated for C8H5Cl2NSe 

[M + H]
+
: 158.98, found: 158.97. 

1-(Selenocyanatomethyl)naphthalene (13). 1-Chloromethyl 

naphthalene (3.533 g, 20 mmol), KSeCN (3.6 g. 25 mmol) and 

ethanol (20 mL) were employed. Compound 13 was obtained 

as yellow crystals. Yield 75.5 % (3.71 g, 15.1 mmol); m.p.= 92-

94 °C, TLC Rf (DCM, 100 %): 0.64. 
1
H NMR (DMSO-d6, ppm): δ 

8.27 (d, J = 8.21 Hz, 1H, CH), 7.96 (dd, J1 = 7.03 Hz, J2 = 7.03 

Hz, 2H, CH), 7.49 (m, 4H, CH), 4.78 (t, J = 9.38 Hz, 2H, CH2). 
13

C 

NMR (DMSO-d6, ppm): δ 134.02, 130.87, 129.21, 128.61, 

126.77, 125.73, 124.54, 105.33 (Se-CN), 31.09. LC–MS: purity 

94.69 %, tR = 6.59, (ESI) m/z: calculated for C12H9NSe [M + H]
+
: 

141.07, found: 141.03. 

X-Ray Crystallography. Single crystals suitable for X-ray 

analysis were obtained in ethanol for 1 and in butan-2-ol for 

12 by slow evaporation of the solvent at room temperature. 

Intensity data of 1 was collected on the Bruker-Nonius Kappa 

CCD four circle diffractometer, whereas data for 12 was 

collected on an Oxford Diffraction SuperNova Diffractometer 

equipped with a Mo (0.71069 Å) Kα radiation source. The 

positions of non-hydrogen atoms were determined by the 

direct method employing the SIR-2014 programme.
66

 

Hydrogen atoms bonded to carbons atoms were included at 

idealized positions and were refined utilising a riding model. 

The aryl hydrogen atoms were constrained with C-H 0.93 Å, 

the methylene groups with C-H 0.97 Å and Uiso(H) = 1.2 Ueq. 

The final refinements were performed by the SHELXL 

programme. ORTEP and MERCURY programmes were 

employed for molecular graphics.
67-69

 

Compound 1: C8H7NSe, Mr = 196.11, crystal size 0.08 × 0.16 × 

0.46 mm
3
, monoclinic, space group P21/c, a = 5.9880(1) Å, b = 

7.4440(2) Å, c = 17.4880(5) Å, β = 96.277(2)°, V = 774.85 Å3, Z 

= 4, T = 100(2) K, 6844 reflections collected, 1786 unique 

reflections [RINT = 0.0326], R1 = 0.0226, wR2 = 0.0521 [I > 

2σ(I)], R1 = 0.0226, wR2 = 0.0536 [all data]. 

Compound 12: C12H9NSe, Mr = 246.16, crystal size 0.25 × 0.48 

× 0.60 mm
3
, monoclinic, space group Ia, a = 8.2486(2) Å, b = 

5.9838(1) Å, c = 20.4158(7) Å, β = 93.097(3)°, V = 1006.23 Å3, Z 

= 4, T = 130(2) K, 4415 reflections collected, 2048 unique 

reflections [RINT = 0.0300], R1 = 0.0368, wR2 = 0.0921 [I > 

2σ(I)], R1 = 0.0397, wR2 = 0.0947 [all data]. 

CCDC 1819893-1819894 contains the Supplementary 

Crystallographic Data for this manuscript. This data can be 

obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Antimicrobial Activity. The minimal inhibitory concentrations 

(MICs) were determined by the standard microdilution method 

in cation-adjusted Mueller-Hinton II Broth (MHB, Becton-

Dickinson, Germany) according to the recommendations of the 

Clinical and Laboratory Standard Institute (CLSI).
70

 The 

compounds (1-13) were evaluated for their antimicrobial 

activity against a broad spectrum of microorganisms, including 

Gram-positive bacteria (S. carnosus and S. aureus), Gram-

negative bacteria (A. baumannii and P. aeruginosa) and yeasts 

(C. albicans and S. cerevisiae). The values of MIC were 

recorded after 20 h and 24 h incubation of compounds for 
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bacteria and yeasts, respectively. Experiments were performed 

in triplicate and on three different occasions (i.e., a total of 

nine repeats for each individual measurement). 

Nematicidal Activity. S. feltiae was obtained from Sautter and 

Stepper GmbH (Ammerbuch, Germany). The assay was 

performed according to an established literature protocol.
71, 72

 

Results are provided as means ± SD. GraphPad Prism 5 was 

employed to perform the statistical analysis. Statistical 

significances were calculated by employing one-way ANOVA, 

with p < 0.05 considered to be statistically significant. 

Cytotoxicity Assays. L5178 mouse T-cell lymphoma cells (PAR) 

(ECACC Cat. No. 87111908, obtained from FDA, Silver Spring, 

MD, USA) were transfected with pHa MDR1/A retrovirus, as 

described previously by Cornwell et al..
73

 The NIH/3T3 mouse 

embryonic fibroblast cell line (ATCC CRL-1658) was purchased 

from LGC Promochem, Teddington, UK. The cell line was 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 

containing 4.5 g L
-1

 glucose) supplemented with 10 % heat-

inactivated fetal bovine serum. The cell line was incubated at 

37 °C in a 5 % CO2, 95 % air atmosphere. Cytotoxicity assays 

were performed following the procedure described in the 

literature.
74, 75

 

Mutagenicity assay. The Salmonella typhimurium TA100 strain 

with base pair substitution (hisG46 mutation, whose target is 

GGG) was purchased from Xenometrix, Allschwil, Switzerland, 

and employed in the Ames 384-well microtiter assay.
76

 Prior to 

the experiment, the Salmonella typhimurium TA100 strain was 

cultivated overnight (NB-2 liquid medium in the presence of 25 

µg mL
-1

 ampicillin). Then, all of the compounds were assayed 

according to the microtitre liquid Ames fluctuation protocol 

described in the literature.
76

 NQNO was utilized as a positive 

control in the mutagenicity assays. This reagent causes point 

mutations in the genome as it induces G:C→A:T transitions in 

the Salmonella typhimurium TA-100 strain.
76

 

In Vitro PAMPA Permeability Assay. Compounds 1, 2, 4, and 

13 and reference substances were dissolved in PBS buffer (pH 

= 7.4) from 10 mM DMSO stocks, according to a protocol 

described previously.
60

 The concentrations of compounds and 

references drugs - in this case caffeine, and norfloxacin - were 

estimated in the donor and acceptor compartments employing 

capillary electrophoresis (CE), and calibration curves were 

determined accordingly. Finally, the permeability coefficients 

(Kp, (cm s
-1

)) of the compounds tested were calculated 

employing the formula provided by the PAMPA Plate System 

manufacturer.
60, 62

 

Conclusions 

The comprehensive studies presented in the previous sections 
have provided new insights into the chemistry and biological 
activity of small aromatic selenocyanates, which may be 
valuable in the search for new antimicrobial agents. It is 
particularly noteworthy that several of the compounds 
investigated, in particular benzyl selenocyanate (1), exhibit 
considerable activity against Gram-positive and Gram-negative 
bacteria at concentrations below 1 μg mL

-1
, i.e. at 

concentrations comparable to or even below the ones of 
traditional antibiotics, such as ampicillin, oxacillin and 
piperacillin. In the case of the most aggressive drug-resistant 
strains of S. aureus, the activity of some of these 
selenocyanates even seems to supersede the one of oxacillin, 
which is not active against these dangerous pathogens. 
Similarly, an excellent activity has been noted against Gram-
negative organisms, such as A. baumannii and P. aeruginosa, 
and against a pathogenic yeast, C. albicans. In the case of 
yeasts, a surprisingly high activity against infectious C. albicans 
and a surprisingly low activity against baker’s yeast has been 
observed for several compounds, which besides an astonishing 
antibacterial action also promises some interesting selectivity 
within the fungal kingdom. 

Additional studies are now required to elucidate the 
underlying mode(s) of action and to enhance the activity and 
selectivity of these agents. Here, the notion of a random attack 
of such selenocyanates - and their respective metabolites - 
against a range of redox-sensitive cysteine proteins and 
enzymes composing the cellular thiolstat of the target 
organisms may serve as a first hypothesis (Figure 5). Such a 
more random attack is not uncommon within the realm of 
chalcogen redox chemistry and may also explain the ability of 
such electrophiles to overcome the traditional, more focussed 
mechanisms of drug resistance.  

Here, it should be emphasized that such seemingly 
indiscriminate modifications of certain proteins and enzymes 
are not necessarily preventing selectivity, as the defence 
mechanisms against such oxidative onslaughts tend to differ 
dramatically between different target organisms, and also 
between targets and healthy human cells. Notably, our initial 
studies de facto hint at a low(er) (cyto-)toxicity against human 
cells, and relevant toxicity studies in higher organisms are 
clearly warranted now. As for other redox modulating drugs, 
such a low(er) activity may be due to the presence of a 
pronounced antioxidant defence in human cells, which is often 
lacking in smaller organisms. Still, this is speculative at this 
time and provides space for further studies, also addressing 
questions concerning any indiscriminatory activity and toxicity. 

Furthermore, sulfur and selenium compounds are notorious 
for their unpleasant odour and one may indeed “sniff a rat” 
here when considering the smell of several naturally occurring 
compounds, such as polysulfanes from garlic and allyl 
isothiocyanate in mustard oil.

26, 77, 78
 Since such a smell is due 

to high volatility of compounds, and aromatic selenocyanates 
are fairly stable solids, odour, and any apparent toxicity which 
may traditionally be associated with it, are not of any major 
concern. In fact, this aspect has been considered carefully as 
part of the selection of suitable compounds, as depicted in 
Figure 1. 

In any case, selenocyanates and their closely related 
isoselenocyanates represent an interesting addition to the 
menu of selenium agents able to break through the resistance 
mechanisms of dangerous pathogens.

47
 Once developed and 

studied in more detail, they may spice up the search for the 
next generation of effective antibiotics with a specific culinary 
note of matured broccoli-mustard. 
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Selenocyanates demonstrate pronounced activity against bacteria of ESKAPE family, yeast and nematodes with limited cytotoxicity against 
human cells
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