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A B S T R A C T

A method using N,O-bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling

agents for dipeptide synthesis is descried. The coupling reaction between N-hydroxysuccinimide (NHS)

esters and amines could be performed under mild conditions with N,O-bis(trimethylsilyl)acetamide

(BSA) as coupling reagent and no additional acid/base is required. All byproducts and excessive reactants

are water soluble or hydrolysable and easy to eliminate through water-washing at the purification stage.

Moreover, all the reactants are inexpensive and widely used in conventional drug production.
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1. Introduction

Since du Vigneaud published the first solution-phase synthesis
of oxytocin in 1953 [1], it has been found that peptides participate
in various biocatalytic processes [2]. With assistance of recent
advances in synthetic [3] and drug delivery technologies [4],
peptide-based anti-cancer [5], anti-diabetic [6], anti-microbial [7],
anti-fungal [8] drugs and intrinsic hormonal analogues have been
discovered [9]. Therefore, it is imperative to develop large scale
synthetic approaches for the production of complex peptides.

Traditional solution-phase methodologies are the most
widely used approaches for industrial production of approved
peptide-based pharmaceuticals. In general, they have no scale
limitations, and each step can be monitored precisely. However,
significant shortcomings of solution-phase methodologies, such
as consumption of a large amount of organic solvents, tedious
protection/de-protection steps and difficult purification process-
es, still hamper the development of scale-up routes of peptide
syntheses. Solid-phase methodologies, in which the peptides of
relatively complex sequences could be synthesized using
automated and rapid synthesis/workup procedures, were pio-
neered by Bruce Merrifield to overcome the problems in
traditional solution-phase methodologies [10]. However, after
54
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57
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decades of optimization, shortcomings of solid-phase synthesis
still limited its applications in commercial-scale manufacture.
For example, lack of scalability, inadequate in-process controls
and low purity of the final products still need improvement
[11]. Alternative approaches consisting of soluble polymer-
tagged liquid-phase reactions have also been developed to
ensure both high reaction rate and real time reaction monitoring
[12]. In this method, peptide syntheses could be performed in the
solution phase but work-up is accomplished in a manner similar
to solid-phase synthesis where most of the excess organic
reagents and activated amino acids are removed by simple
solidification and filtration procedures. However, the high-cost
of soluble polymers, the time-consuming process of solidifica-
tion/crystallization in each coupling cycle and the inherent scale
limitation as observed in solid-phase methodologies represent
serious challenges for large scale synthesis of peptides.

Here we describe a simplified dipeptide synthesis strategy
using the N-hydroxysuccinimide (NHS) ester of amino acids and a
silylation agent N,O-bis(trimethylsilyl)acetamide (BSA) as a
coupling agent (Fig. 1) The coupling reactions between NHS esters
and amines occur efficiently under mild conditions with BSA only
and no additional acid/base is required. Besides, excessive BSA and
other byproducts are water soluble or hydrolysable [13] and easy
to remove by simple water-washing at the purification stage.
Consequently, less racemization, fewer units of operation, and
simpler purification processes can be achieved compared to other
solution-phase methodologies.
ethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as
tp://dx.doi.org/10.1016/j.cclet.2015.11.012
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Fig. 1. Synthesis of t-butyloxycarbonyl (Boc)-protected dipeptide using BSA and

NHS ester as coupling agents.

Table 1
Synthesis of N-Boc protected dipeptides via the BSA/NHS methoda.

Entry Product Time (h) Solvent BSA/AA/NHS esterb Yield (%)c

1 Boc-Phe-Pro-OH 48 DCM �/1.1/1 Trace

2 Boc-Phe-Pro-OH 8 DCM 2.2/1.1/1 94.3

3 Boc-Phe-Pro-OH 12 DCM 4.4/1.1/1 64.4

4 Boc-Phe-Pro-OH 24 DCM 1.1/1.1/1 58.7

5 Boc-Phe-Pro-OH 8 THF 2.2/1.1/1 44.5

6 Boc-Phe-Pro-OH 24 THF 2.2/1.1/1 78.8

7 Boc-Phe-Pro-OH 8 DMF 2.2/1.1/1 63.2

8 Boc-Phe-Pro-OH 24 DMF 2.2/1.1/1 83.2

9 Boc-Leu-Phe-OH 10 DCM 2.2/1.1/1 82.1

10 Boc-Ala-Phe-OH 10 DCM 2.2/1.1/1 81.5

11 Boc-Ala-Pro-OH 8 DCM 2.2/1.1/1 91.1

12 Boc-Ile-Val-OH 16 DCM 2.2/1.1/1 85.4

a Reaction conditions: unprotected amino acid (AA) reacted with BSA at room

temperature, followed by the addition of N-Boc protected NHS ester (NHS ester).
b The molar ratio of BSA to amino acid and NHS ester.
c Isolated yield.
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 Experimental

All reactions were performed under a nitrogen atmosphere
ing anhydrous techniques unless otherwise noted. 1H NMR
00 MHz) on a Varian Mercury 300 spectrometer was recorded in

SO-d6 or CDCl3. Chemical shifts are reported in d (ppm) units
lative to the internal standard tetramethylsilane (TMS). All the
actions were monitored by thin-layer chromatography (TLC)
alysis on pre-coated silica gel G plates at 254 nm under UV lamp

 HPLC analysis.

1. General procedure for the preparation of N-Boc protected

peptide

Under argon protection, BSA (2.2 equiv.) was added to a
lution of amino acid (1.1 equiv.) in anhydrous dichloromethane.
ter the mixture was stirred for 1–8 h at 23 8C, a solution of N-Boc
otected NHS ester (1 equiv.) in dichloromethane was added. The
action mixture was stirred at 23 8C under argon until all active
ter was consumed as judged by TLC analysis. The reaction
ixture was washed with brine, dried over Na2SO4 and
ncentrated in vacuo to provide a white solid. The isolated
oduct was recrystallized from diethyl ether/n-hexane to yield
e targeted dipeptide as a white solid.
N-Boc-L-phenylalanine-L-proline (Boc-Phe-Pro-OH): ESI-MS
/z): 363.2 [M + H]+; 307.1 (M-(CH3)2C = CH2). 1H NMR

00 MHz, CDCl3): d 7.26 (m, 5H), 5.39 (d, 1H, J = 8.6 Hz), 4.69–
49 (m, 2H), 3.63–3.52 (m, 1H), 3.01 (m, 3H), 2.28–2.16 (m, 1H),
10–1.98 (m, 1H), 1.86 (m, 2H), 1.39 (s, 9H).

N-Boc-L-alanine-L-proline (Boc-Ala-Pro-OH): ESI-MS (m/z):
7.2 [M + H]+; 231.1 (M-(CH3)2C = CH2). 1H NMR (400 MHz,
Cl3): d 4.60 (dd, 1H, J = 8.1, 3.9 Hz), 4.49 (s, 1H), 3.73 (q, 1H,

 8.0 Hz), 3.59 (m, 1H), 2.31–2.00 (m, 4H), 1.43 (s, 9H), 1.34 (d,
 6.9 Hz, 3H).
N-Boc-L-alanine-L-phenylalanine (Boc-Ala-Phe-OH): ESI-MS
/z): 337.2 [M + H]+; 281.1 (M-(CH3)2C = CH2). 1H NMR

00 MHz, CDCl3): d 7.32–7.10 (m, 5H), 6.85 (d, 1H, J = 7.5 Hz),
36–5.06 (m, 1H), 4.82 (q, 1H, J = 6.5 Hz), 4.21 (s, 1H), 3.20 (dd, 1H,

 14.0, 5.5 Hz), 3.03 (dd, 1H, J = 14.3, 6.4 Hz), 1.43 (s, 9H), 1.26 (s,
).
N-Boc-L-leucine-L-phenylalanine (Boc-Leu-Phe-OH): ESI-MS
/z): 379.2 [M + H]+; 323.2 (M-(CH3)2C = CH2). 1H NMR

00 MHz, CDCl3): d 7.29–7.11 (m, 5H), 6.97–6.78 (m, 1H), 5.13
, 1H, J = 8.8 Hz), 4.92–4.73 (m, 1H), 4.21 (d, 1H, J = 8.2 Hz), 3.26–
10 (m, 1H), 2.98 (dd, 1H, J = 13.9, 6.4 Hz), 1.59 (m, 2H), 1.44 (m,
H), 0.89 (t, 6H, J = 7.0 Hz).
N-Boc-L-isoleucine-L-valine (Boc-Ile-Val-OH): ESI-MS (m/z):

1.2 [M + H]+; 275.2 (M-(CH3)2C = CH2). 1H NMR (400 MHz,
Cl3): d 6.87 (d, 1H, J = 8.7 Hz), 5.34 (d, 1H, J = 9.0 Hz), 4.62 (dd,
, J = 8.6, 4.8 Hz), 3.97 (t, 1H, J = 8.2 Hz), 2.00 (m, 2H), 1.43 (s, 9H),

22 (m, 2H), 0.93 (m, 12H).

 Results and discussion

In order to avoid racemization under alkaline conditions for the
protection step, all the N-terminus of NHS ester were protected
Please cite this article in press as: Y. Huang, W.-H. Feng, N,O-bis(tri
coupling agents for dipeptide synthesis, Chin. Chem. Lett. (2015), h
by Boc group. Most N-Boc protected NHS ester could be purchased,
those commercially unavailable N-Boc protected NHS esters were
readily obtained by coupling the corresponding N-Boc protected
amino acids with N-hydroxysuccinimide (NHS-OH) in the presence
of N,N-dicyclohexylcarbodiimide (DCC) [14]. The resulting bypro-
ducts containing the dicyclohexyl urea could be removed by
filtration though a short pad of silica gel. After concentration of the
filtrate, pure active esters could be recrystallized from various
solvent systems. The solid N-Boc protected NHS esters were stable
at �4 8C for a long period of time.

The coupling conditions and purification processes were
optimized first through the synthesis of various dipeptides
(Table 1). When no BSA was added, the coupling product was
hardly detected (entry 1). Through screening various reaction
conditions for the synthesis of Boc-Phe-Pro-OH, we found that the
coupling efficiency and yield were optimal when 1.1 equiv. of
unprotected proline reacted with 2.2 equiv. of BSA first in
dichloromethane (DCM) at room temperature, followed by the
addition of 1 equiv. of N-Boc protected Phe NHS ester (enrty 2). The
ratio of BSA was important that either excessive (entry 3) or
insufficient (entry 4) BSA would reduce the coupling yield
significantly. Meanwhile, the ratio of each reagent was important
not only for coupling efficiency, but also for purification process.
NHS esters were insoluble in water, but soluble in organic solvents.
In contrary, unprotected amino acid and BSA were either soluble in
water or easily hydrolyzed in water. Therefore, the molar quantity
of the NHS ester should be slightly lower than the unprotected
amino acid and BSA to guarantee the NHS ester to be exhausted
completely. Then the excessive unprotected amino acids and BSA
could be easily removed by simply washing with water.

All the unprotected amino acids are insoluble in organic
solvents. So the addition order of reagents is quite important and
unprotected amino acids should react with BSA first to increase its
solubility and nucleophilicity. According to our data, the solubility
of most amino acids improved significantly after being silylated
with BSA. Among them, the silylation of proline was the fastest and
it became soluble in dichloromethane after just 1 h reaction with
BSA. But it took hours for other unprotected amino acids to be
silylated and dissolve in dichloromethane. Therefore, the slightly
lower yield when C-terminal was unprotected amino acids other
than proline may be owing to their relatively poorer solubility. For
the same reason, when C-terminal was several unprotected
hydrophilic amino acids, such as aspartic acid, glutamic acid
and cysteine, nearly no dipeptide products were obtained. Besides,
unprotected basic amino acids that have two amino groups, such as
arginine, lysine and histidine, are also unsuitable for the BSA/NHS
method. The solubility of silylated amino acid in THF and DMF was
methylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as
ttp://dx.doi.org/10.1016/j.cclet.2015.11.012
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Fig. 2. HPLC analysis of Boc-Phe-Pro-OH synthesized using the BSA/NHS strategy. Chromatographic conditions: Instrument: Waters Acquity UPLC; Chromatographic column:

Waters UPLC BEH C18 reversed-phase column (1.7 mm, 50 � 2.1 mm); Flow rate: 0.2 mL/min; Column temperature: 40 8C; Mobile phase: phase A: 0.1% formic acid aqueous

solution; phase B: CH3CN; gradient conditions: 0 min ! 6 min: 95% phase A ! 5% phase A; 6 min ! 8 min: 5% phase A; 8 min ! 8.1 min: 5% phase A ! 95% phase A;

8.1 min ! 10 min: 95% phase A ! 5% phase A.
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clearly worse and even proline could not totally dissolve after
reacting with BSA for 24 h. Consequently, the coupling efficiency
was lower when the solvent was changed to THF (entry 5) or DMF
(entry 7), and the time for achieving an acceptable yield in this two
solvents was longer too (entries 6 and 8).

Excessive addition of BSA would silylated the carboxyl group
and amino group simultaneously. When the carboxyl group and
amino group were both silylated, it has been proved that acylating
agents reacted with N-trimethylsilyl group exclusively [15]. The
selectivity may be owing to the stability of silicon–oxygen bond is
higher than that of silcon–nitrogen bond and silylation could
increase the nucleophilicity of amines. Therefore, NHS esters react
with amines selectively under these mild conditions (Scheme 1).

After all active ester being consumed as judged by TLC analysis,
the dipeptide product was isolated through a convenient
purification process. The silicon–oxygen bond could be easily
hydrolyzed by water to produce the targeted N-Boc protected
dipeptide [15d,e]. Besides, excessive BSA and amino acids are
either hydrolysable or water soluble and the water-insoluble NHS
esters are exhausted, all the excessive reagents and byproducts
could be removed simply by water or saturated sodium chloride
solution wash. The coupling reaction and purification process were
both performed under mild conditions and no additional coupling
reagents or acid/base were involved. Consequently, racemization
was minimal. As expected, none of excessive reactants, byproducts
or the racemized products was detected by HPLC analysis (Fig. 2).
Then the coupling and purification method was verified through
the synthesis of another four dipeptides, all of which were
obtained in high isolated yield of above 80 percent (entries 9–12).

The N-Boc protecting group was subsequently cleaved using
trifluoroacetic acid/dichloromethane (1:2) and the pure depro-
tected dipeptide was obtained after additional recrystallization
from diethyl ether. More impurities could be observed when pure
trifluoroacetic acid was utilized as the deprotection reagent,
leading to lower yields and more complicated purification
223
224
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Scheme 1. The possible process for N-Boc protected peptide synthesis via the BSA/

NHS method.
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processes. When the dipeptides were produced in the form of
hydrochloride salts, they would be more hygroscopic. Above all, we
could synthesize the dipeptide products in good yields and high
purity in significantly shorter reaction time with simpler
purification processes.

4. Conclusion

In summary, the BSA/NHS strategy has been successfully
utilized in the rapid, large scale solution-phase synthesis of various
dipeptides. Through the BSA/NHS strategy, coupling reaction was
completed under neutral and mild conditions that involve no extra
coupling reagents or acid/base. Excessive reagents and byproducts
were removed using water or saturated sodium chloride solution
rather than several rounds of acidic and basic aqueous extractions.
Moreover, all the reactants are inexpensive and widely used in
conventional drug production. Above all, the BSA/NHS strategy has
the potential to be applied in further commercial-scale manufac-
ture of other peptide drugs.
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