SYNTHESIS OF α-CYCLOOCTYL- AND α-CYCLOPENTADECYLGLYCOSIDES OF *N*-ACETYLMURAMYL-L-ALANYL-D-ISOGLUTAMINE

A. E. Zemlyakov,^{*} V. V. Tsikalov, and V. N. Tsikalova

N-Acetylmuramyl-L-alanyl-D-isoglutamine α -cyclooctyl- and α -cyclopentadecylglycosides were synthesized. The starting peracetylated α -N-glucosaminides were synthesized by reacting the cycloalkanols with peracetyl α -D-glucosaminyl chloride in the presence of Hg(II) iodide in CH₃NO₂ with heating or by using ZnCl₂/tetrabutylammonium bromide in CH₂Cl₂ at room temperature. Sequential deacetylation, isopropyl protection, and alkylation by (S)-2-bromopropanoic acid gave α -cycloalkyl-4,6-O-isopropylidene-N-acetyl-D-muramic acids, condensation of which with the benzyl ester of L-Ala-D-iGln using the HOSu/DCC method and deprotection afforded the target glycopeptides.

Keywords: N-acetylglucosamine glycosides, glucosaminides muramyl dipeptide, muramyl-dipeptide glycosides.

Studies of the influence of the configuration of the anomeric center in *N*-acetylmuramyl-L-alanyl-D-isoglutamine (muramyl dipeptide, MDP) glycosides on the immunostimulating activity found that the α -anomers of glycosides with amphiphilic aglycons (α - and β -butyl-, α - and β -heptyl-, α - and β -cyclohexyl-) exhibited lower induction in *in vitro* and *in vivo* experiments [1, 2]. Earlier, MDP β -methyl- and β -benzylglycosides were reported to have higher adjuvant activity than the corresponding α -isomers [3, 4]. Conversely, more lipophilic α - and β -dodecyl- or α - and β -cyclododecyl-MDP did not show statistically significant differences for stimulation of anti-infection resistance of mice to *Staphylococcus aureus* [5, 6].

The set of compounds was expanded by synthesizing two new anomeric MDP derivatives in this series, i.e., α -cyclooctyl- and α -cyclopentadecyl-MDP (**8a**,**b**). Syntheses of the corresponding MDP β -glycosides were described in a preceding article [7].

a. ROH; b. MeONa, MeOH; c. Me₂C(OMe)₂, TsOH; d. NaH; e. 1. HOSu, DCC, 2. TFA·L-Ala-D-iGlnOBn, Et₃N; f. 1. H₂O, H⁺, 2. H₂ (Pd/C)

0009-3130/18/5406-1139 [©]2018 Springer Science+Business Media, LLC

V. I. Vernadsky Crimean Federal University, 4 Prosp. Acad. Vernadskii, Simferopol', 295007, Russian Federation, e-mail: alex_z56@mail.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 6, November–December, 2018, pp. 968–971. Original article submitted June 5, 2018.

TABLE 1. Characteristic PMR Resonances of 6a,b, 7a,b, and 8a,b (DMSO-d₆, δ, ppm, J/Hz)*

Atom	6a	6b	7a	7b	8a	8b
R: (CH ₂) _n	1.46 m, 1.65 m	1.29 m, 1.47 m	1.46 m, 1.65 m	1.30 m, 1.51 m	1.47 m, 1.66 m	1.29 m, 1.52 m
MurNAc-NAc	1.80 s	1.81 s	1.78 s	1.78 s	1.78 s	1.78 s
H-1	4.85 (d, J = 4)	4.85 (d, J = 3)	4.79 (d, J = 3)	4.79 (d, J = 3)	4.79 (d, J = 3.5)	4.80 (d, J = 3)
NH	7.87 (d, J = 9)	7.98 (d, J = 9)	7.95 (d, J = 8)	7.94 (d, J = 8)	7.97 (d, J = 8)	7.96 (d, J = 8)
CMe ₂	1.32 s, 1.46 m	1.33 s, 1.47 s	_	_	_	_
C-4-OH	_	_	5.26 (d, J = 6.5)	5.23 (d, J = 6.5)	5.28 br.d	5.30 br.d
С-6-ОН	_	_	4.53 (t, J = 6)	4.43 (t, J = 6)	4.55 (t, J = 6)	4.52 br.d
<u>CH</u> ₃ CHCO	1.21 (d, J = 6.5),	1.23 (d, J = 7.5),	1.21 (d, J = 7),	1.23 (d, J = 7),	1.22 (d, J = 7),	1.21 (d, J = 7),
	1.24 (d, J = 7.5)	1.25 (d, J = 7.5),	1.24 (d, J = 7.5)	1.26 (d, J = 7)	1.25 (d, J = 7.5)	1.24 (d, J = 7.5)
Ala: NH	7.46 (d, J = 7)	7.51 (d, J = 7)	7.62 (d, J = 7.5)	7.63 (d, J = 7)	7.63 (d, J = 6.5)	7.61 (d, J = 6)
iGln: % CH ₂	2.36 (t, J = 8)	2.35 (t, J = 7)	2.36 (t, J = 7)	2.35 (t, J = 8)	2.21 (t, J = 7.5)	2.20 (t, J = 7.5)
β -CH ₂	1.80 m, 2.01 m	1.79 m, 2.01 m	1.79 m, 1.99 m	1.80 m, 2.01 m	1.75 m, 1.94 m	1.75 m, 1.94 m
CONH ₂	7.01 s, 7.29 s	7.07 s, 7.28 s	7.08 s, 7.29 s	7.01 s, 7.26 s	7.07 s, 7.29 s	7.05 s, 7.27 s
CO ₂ CH ₂ Ph	5.08 s, 7.35 m	5.08 s, 7.36 m	5.08 s, 7.36 m	5.07 s, 7.35 m	_	_
NH	8.07 (d, J = 8)	8.17 (d, J = 8.5)	8.16 (d, J = 9)	8.17 (d, J = 8.5)	8.15 (d, J = 8)	8.15 (d, J = 8)

*Operating frequency 300 MHz; for 6b and 7b, 400 MHz.

Reactions of alcohols with peracetyl α -D-glucosaminyl chloride (1) at ~100°C in CH₃NO₂ in the presence of Hg(II) chloride is a simple route to α -D-glucosaminides [8, 9] and could produce α -cyclooctyl- and α -cyclopentadecylglycosides **2a,b** in 49 and 46% yields, respectively.

Alternatively, the literature method [10] that carried out the reaction at room temperature in CH_2Cl_2 using $ZnCl_2$ and Bu_4NBr as activators could increase the yield to 51% only for **2b**.

PMR spectra of **2a**,**b** contained resonances for the carbohydrate protons and multiplets for the aglycon methylene protons at 1.33–1.80 ppm and a quintet for the methine proton at δ 3.77 and 3.65 ppm, respectively. The spin–spin coupling constant of 4 Hz for the anomeric proton was consistent with a 1,2-*cis*-glycoside bond in **2a**,**b**.

The glycopeptides were synthesized from glycosides 2a,b using the classical scheme. The β -glycol group in triols 3a,b, which were prepared by Zemplen deacetylation of 2a,b, was blocked using 2,2-dimethoxypropane. The C-3 hydroxyl in acetals 4a,b was converted to the alcoholate and alkylated by (*S*)-2-bromopropanoic acid. Protected D-muramic acids 5a,b were condensed with L-alanyl-D-isoglutamine benzyl ester using the activated ester method. PMR spectra of glucopeptides 6a,b had proton resonances for the carbohydrate and characteristic resonances for the peptide protons (Table 1).

Glycopeptides 6a, b were deprotected stepwise. The acetal was hydrolyzed with heating in AcOH (70%). The benzyl esters in the isoglutamine of diols 7a, b were removed by catalytic hydrogenolysis. PMR spectra of diols 7a, b and final glycopeptides 8a, b were consistent with the structures of the compounds (Table 1).

EXPERIMENTAL

Melting points were determined on a PTP apparatus. Optical rotation at 20–22°C was measured on a Polamat-A polarimeter (λ 546 nm). PMR spectra were taken with TMS internal standard on Varian VXR-300 (300 MHz) and Mercury 400 spectrometers (400 MHz). TLC used Sorbfil-AFV-UF plates (Sorbpolimer, Russia). Compounds were detected by H₂SO₄ solution (5%) in EtOH with heating to 200–300°C. The solvent systems were C₆H₆–*i*-PrOH (10:1, 1); CHCl₃–*i*-PrOH (15:1, 2; 5:1, 3; 3:1, 4); and *n*-BuOH–H₂O–AcOH (3:3:1, 5). Column chromatography (CC) used silica gel 60 (63–200 µm, Merck). Cyclooctanol and cyclopentadecanol were prepared via LiAlH₄ reduction of cyclooctanone and cyclopentadecanone (Alfa Aesar). The constants of the alcohols agreed with handbook data.

Cyclooctyl-2-acetamido-3,4,6-tri-*O***-acetyl-2-deoxy**- α **-D-glucopyranoside (2a).** Version 1. A solution of 2-acetamido-3,4,6-tri-*O***-acetyl-2-deoxy**- α -D-glucopyranosyl chloride (1, 2.50 g, 6.84 mmol) [11] in anhydrous CH₃NO₂ (50 mL) was treated with Hg(II) iodide (3.59 g, 7.9 mmol), molecular sieves (400 mg, 0.3 nm), and cyclooctanol (1.31 g, 10.26 mmol). The mixture was stirred at ~100°C (bath temperature) until the glycosyl donor disappeared (TLC monitoring using systems 1 and 2) and then heated for another 2 h. The molecular sieves and salts were filtered off. The filtrate was

evaporated. The resulting solid was dissolved in CHCl₃ (100 mL) and washed with saturated sodium thiosulfate solution $(2 \times 2 \text{ mL})$ and H₂O (20 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated. The solid was purified by CC (gradient elution, C₆H₆ \rightarrow C₆H₆-i-PrOH, 100:1 \rightarrow 50:1). Yield of glycoside **2a**, 1.53 g (49%); oily compound, [α]₅₄₆+92° (*c* 1.0, CHCl₃). ¹H NMR spectrum (300 MHz, CDCl₃, δ , ppm, J/Hz): 1.45–1.80 (14H, m, 7 CH₂), 1.95 (3H, s, NAc), 2.03, 2.04, 2.10 (3H each, s, OAc), 3.77 (1H, qt, H-1'), 4.03 (1H, ddd, J = 9.5, 2.5, 5, H-5), 4.10 (1H, dd, J = 2.5, 12.5, H-6a), 4.22 (1H, dd, J = 5, 12.5, H-6b), 4.31 (1H, m, H-2), 4.93 (1H, d, J = 4, H-1), 5.10 (1H, dd, J = 9.5, 9.5, H-4), 5.20 (1H, dd, J = 10.5, 9.5), 5.63 (1H, d, J = 9.5, NH).

Cyclopentadecyl-2-acetamido-3,4,6-tri-*O***-acetyl-2-deoxy-***α***-D-glucopyranoside** (**2b**) was prepared analogously, yield 1.75 g (46%); mp 112–114°C, $[\alpha]_{546}$ +104° (*c* 1.0, CHCl₃). ¹H NMR spectrum (300 MHz, CDCl₃, δ, ppm, J/Hz): 1.33, 1.48–1.62 (28H, m, 14 CH₂), 1.95 (3H, s, NAc), 2.03, 2.04, 2.10 (3H each, s, OAc), 3.65 (1H, qt, H-1'), 4.04 (1H, ddd, J = 9.5, 2.5, 5, H-5), 4.07 (1H, dd, J = 2.5, 12.5, H-6a), 4.24 (1H, dd, J = 5, 12.5, H-6b), 4.32 (1H, m, H-2), 4.94 (1H, d, J = 4, H-1), 5.10 (1H, dd, J = 9.5, 9.5, H-4), 5.20 (1H, dd, J = 10, 9.5, H-3), 5.64 (1H, d, J = 9.5, NH).

Version 2. A reaction mixture consisting of α -D-glucopyranosyl chloride (1, 2.50 g, 6.84 mmol), anhydrous ZnCl₂ (0.93 g, 6.84 mmol), cyclooctanol (875 mg, 6.84 mmol), Bu₄NBr (2.20 g, 6.83 mmol), and anhydrous CH₂Cl₂ (30 mL) was held for 48 h at room temperature, diluted with CH₂Cl₂ (20 mL), and washed with H₂O (5 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated. The solid was purified analogously to version 1 to afford **2a** (1.53 g, 49%). Glycoside **2b** (1.94 g, 51%) was also synthesized analogously.

Cyclooctyl-2-acetamido-2-deoxy- α **-D-glucopyranoside (3a).** Acetate **2a** (1.50 g, 3.3 mmol) was dissolved in anhydrous MeOH (30 mL) and treated with NaOMe in MeOH (0.5 mL, 0.1 M). When the reaction was finished (TLC monitoring using systems 1 and 2), the solution was neutralized by KU-2 cation exchanger (H⁺). The resin was rinsed with MeOH. The filtrate was evaporated to afford **3a** (1.0 g, 92%), mp 109–111°C, [α]₅₄₆ +168° (*c* 1.0, EtOH).

Cyclopentadecyl-2-acetamido-2-deoxy- α **-D-glucopyranoside** (**3b**, 1.3 g, 88%) was prepared analogously; mp 212–218°C, [α]₅₄₆ +131° (*c* 1.0, EtOH).

Cyclooctyl-2-acetamido-2-deoxy-4,6-*O***-isopropylidene-** α **-D-glucopyranoside (4a).** A suspension of 3a (0.95 g, 2.87 mmol) in anhydrous THF (20 mL) was stirred, heated to 50–55°C, treated with 2,2-dimethoxypropane (1.0 mL) and anhydrous *p*-toluenesulfonic acid (10 mg), cooled after 1 h (TLC monitoring using system 3), neutralized with Py (~50 µL), and evaporated. The solid was purified by CC (gradient elution, C₆H₆–*i*-PrOH, 50:1 \rightarrow 10:1). Yield of 4a, 0.85 g (80%); glassy compound, [α]₅₄₆ +102° (*c* 1.0, CHCl₃).

Cyclopentadecyl-2-acetamido-4,6-*O***-isopropylidene-** α **-D-glucopyranoside** (**4b**, 1.25 g, 91%) was prepared analogously; glassy compound, [α]₅₄₆ +83° (*c* 1.0, CHCl₃).

Benzyl Ester of *O*-(Cyclooctyl-2-acetamido-2,3-dideoxy-4,6-*O*-isopropylidene- α -D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-D-isoglutamine (6a). A suspension of 4a (740 mg, 1.99 mmol) in anhydrous dioxane (20 mL) was stirred, treated in portions with a suspension of NaH (320 mg, 7.96 mmol, 60%), heated to 95°C, held at that temperature for 1 h, cooled to 65°C, treated with (*S*)-2-bromopropanoic acid (0.27 mL, 3.00 mmol), held at 65°C for 3 h, and cooled. The excess of NaH was decomposed by EtOH. The mixture was concentrated, poured into cold H₂O (50 mL), and acidified with HCl (2 M) to pH 3–4. Muramic acid was extracted with CHCl₃ (3 × 30 mL). The extract was dried over anhydrous Na₂SO₄ and evaporated.

The resulting partially protected muramic acid **5a** (800 mg, 1.8 mmol, 90%) was used without further purification by dissolving in anhydrous THF (10 mL), stirring, and treating with *N*-hydroxysuccinimide (HOSu, 250 mg, 2.16 mmol) and *N*,*N'*-dicyclohexylcarbodiimide (DCC, 445 mg, 2.16 mmol). The precipitate of dicyclohexylurea was filtered off after 3 h and rinsed with solvent. The filtrate was treated with L-alanyl-D-isoglutamine benzyl ester trifluoroacetate [prepared by treating the corresponding Boc-derivative with trifluoroacetic acid (730 mg, 1.79 mmol) followed by evaporating to dryness] and Et₃N to pH 8. When the reaction was finished (TLC monitoring using system 3), the mixture was evaporated. The solid was dissolved in CHCl₃ (70 mL). The solution was washed with HCl (25 mL, 1 M), saturated NaHCO₃ solution (25 mL), and H₂O (25 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated. The solid was purified by CC (gradient elution, CHCl₃–*i*-PrOH, 50:1→10:1) to afford **6a** (1.15 g, 87%), mp 68–72°C, [α]₅₄₆ +54° (*c* 1.0, CHCl₃). Table 1 lists the PMR spectral data.

The benzyl ester of *O*-(cyclopentadecyl-2-acetamido-2,3-dideoxy-4,6-*O*-isopropylidene- α -D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-D-isoglutamine (6b, 560 mg, 60%) was synthesized analogously, amorphous compound, $[\alpha]_{546}$ +80° (*c* 0.6, CHCl₃). Table 1 lists the PMR spectral data. Benzyl Ester of *O*-(Cyclooctyl-2-acetamido-2,3-dideoxy- α -D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-Disoglutamine (7a). Glycopeptide 6a (650 mg, 0.89 mmol) was dissolved with heating on a boiling-water bath in AcOH (10 mL, 70%), held at that temperature for 15 min (TLC monitoring using systems 3 and 4), and evaporated to dryness. The solid was co-evaporated with toluene and purified by CC (gradient elution, CHCl₃-*i*-PrOH, 50:1 \rightarrow 5:1) to afford 7a (270 mg, 44%), mp 115–119°C, [α]₅₄₆ +96° (*c* 1.0, EtOH). Table 1 lists the PMR spectral data.

The benzyl ester of *O***-(cyclopentadecyl-2-acetamido-2,3-dideoxy-\alpha-D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-D-isoglutamine** (7b) was prepared analogously; mp 177–179°C, [α]₅₄₆+63° (*c* 1.0, EtOH). Table 1 lists the PMR spectral data.

O-(Cyclooctyl-2-acetamido-2,3-dideoxy-α-D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-D-isoglutamine (8a). Benzyl ester 7a (260 mg, 0.38 mmol) was dissolved in THF–H₂O (30 mL, 9:1) and hydrogenated over Pd/C (50 mg, 10%) at room temperature for 4 h (TLC monitoring using systems 4 and 5). The catalyst was filtered off and rinsed with the solvent mixture (5 mL). The filtrate was evaporated to dryness. Addition of Et₂O precipitated amorphous 8a (140 mg, 61%), $[\alpha]_{546}$ +90° (*c* 1.0, EtOH). Table 1 lists the PMR spectral data.

 $\textbf{\textit{O-(Cyclopentadecyl-2-acetamido-2,3-dideoxy-} \alpha-D-glucopyranosid-3-yl)-D-lactyl-L-alanyl-D-isoglutamine (8b)} was synthesized analogously; amorphous compound, [<math>\alpha$]₅₄₆ +75° (*c* 1.0, EtOH). Table 1 lists the PMR spectral data.

REFERENCES

- Yu. L. Krivorutchenko, I. B. Andronovskaja, J. Hinkula, Yu. S. Krivoshein, E. Ljung-dahl-Stahle, S. S. Pertel, V. I. Grishkovets, A. E. Zemlyakov, and B. Wahren, *Vaccine*, **15**, 1479 (1997).
- 2. A. E. Zemlyakov, V. V. Tsikalov, O. V. Kalyuzhin, V. O. Kur'yanov, and V. Ya. Chirva, *Bioorg. Khim.*, 29, 316 (2003).
- 3. Y. Nagai, K. Akiyama, S. Kotani, Y. Watanabe, T. Shimono, T. Shiba, and S. Kusumoto, Cell. Immunol., 35, 168 (1978).
- 4. I. Azuma, H. Okumura, I. Saiki, M. Kiso, A. Hasegawa, Y. Tanio, and Y. Yamamura, *Infect. Immun.*, 33, 834 (1981).
- A. E. Zemlyakov, V. N. Tsikalova, V. V. Tsikalov, V. Ya. Chirva, E. L. Mulik, and O. V. Kalyuzhin, *Bioorg. Khim.*, 32, 424 (2006).
- O. V. Kalyuzhin, A. E. Zemlyakov, N. G. Kalina, E. L. Mulik, F. N. Kuzovlev, and O. V. Makarova, *Byull. Eksp. Biol. Med.*, 145, 561 (2008).
- 7. A. E. Zemlyakov, V. N. Tsikalova, and V. V. Tsikalov, Chem. Nat. Compd., 53, 929 (2017).
- 8. A. E. Zemlyakov, V. O. Kur'yanov, E. A. Sidorova, and V. Ya. Chirva, *Bioorg. Khim.*, 24, 623 (1998).
- 9. A. E. Zemlyakov, V. N. Tsikalova, S. A. Zemlyakov, and V. Ya. Chirva, *Uch. Zap. Tavrich. Nats. Univ. im. V. I. Vernadskogo, Ser. Biol. Khim.*, **23**, 225 (2010).
- 10. E. R. Kumar, H.-S. Byun, S. Wang, and R. Bittman, Tetrahedron Lett., 35, 505 (1994).
- 11. D. Horton, *Methods in Carbohydrate Chemistry*, Vol. 6, Academic, New York, 1972.