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The covalent linkage of supramolecular monomers provides a
powerful strategy for constructing dynamic polymeric materials
whose properties can be readily tuned either by the selection of
monomers or the choice of functional linkers. In this strategy, the
stabilities of the supramolecular monomers and the reactions used
to link the monomers are crucial because such monomers are
normally dynamic and can disassemble during the linking process,
leading to mixture of products. Therefore, although noncovalent
interactions have been widely introduced into metallacycle struc-
tures to prepare metallosupramolecular polymers, metallacycle-
cored polymers linked by covalent bonds have been rarely
reported. Herein, we used the mild, highly efficient amidation
reaction between alkylamine and N-hydroxysuccinimide-activated
carboxylic acid to link the pendent amino functional groups of a
rhomboidal metallacycle 10 to give metallacycle-cored polymers P1
and P2, which further yielded nanoparticles at low concentration
and transformed into network structures as the concentration in-
creased. Moreover, these polymers exhibited enhanced emission
and showed better quantum yields than metallacycle 10 in meth-
anol and methanol/water (1/9, vol/vol) due to the aggregation-
induced emission properties of a tetraphenylethene-based pyridyl
donor, which serves as a precursor for metallacycle 10. The fluo-
rescence properties of these polymers were further used in cell
imaging, and they showed a significant enrichment in lung cells
after i.v. injection. Considering the anticancer activity of rhomboi-
dal Pt(II) metallacycles, this type of fluorescent metallacycle-cored
polymers can have potential applications toward lung cancer
treatment.
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Fluorescent polymers have received much attention in the
chemical and life sciences due to their promising applications

in biological labeling, tracking, monitoring, imaging, and diag-
nostics (1–3). Compared with other fluorophores such as small
molecules and quantum dots, they are advantageous as bioma-
terials because of their good biocompatibility, ease of prepara-
tion, and biomimetic character (4–6). Conventional fluorophores
show good emission in dilute solution but experience varying
degrees of aggregation-caused quenching due to the intense in-
termolecular interactions, which will decay or relax the excited
state back to the ground state via nonradiative channels (7). Such
fluorophores are not ideal candidates for the preparation of
fluorescent polymers, because they need to be aggregated by the
polymerization process, which will more or less decrease the
fluorescence emissions and the quantum yields of the derived
fluorescent polymers.
In 2001, Tang and coworkers (8) reported an opposite fluo-

rescence effect named as aggregation-induced emission (AIE).
In such cases, fluorophores are nearly nonemissive as discrete
molecules, but they exhibit strong fluorescence in concentrated
solution or in the solid state due to the restriction of molecular
rotations, which will decrease the nonradiative decay (7–11). If

fluorophores with such AIE properties were used as luminescent
sources, the aggregation induced by the polymerization should
promote the emission of such polymers.
Coordination-driven self-assembly is an efficient approach to

construct supramolecular coordination complexes (SCCs) (12–24).
Due to the directionality of metal−ligand bonds and their mod-
erate bond energies, the structures of SCCs can be finely tuned.
So far, various SCCs with different geometries, such as 2D met-
allacycles (25–28) and 3D metallacages (29–32), were successfully
prepared by the self-assembly of carefully selected metal accep-
tors and organic donors. Moreover, metal−ligand interactions
show good tolerance of other noncovalent interactions such as
hydrogen bonding and host−guest interactions, which were
used to construct highly advanced functional supramolecu-
lar entities, such as mechanically interlocked molecules (33–
35) and supramolecular polymers (36–38), via orthogonal
self-assembly.
Although some progress has been made on the functionalization

of metallacycles to construct stimuli-responsive supramolecular
complexes and polymers (33–38), the covalent linkage (39–41) of
metallacycles to synthesize functional polymers has rarely been
reported. The main difficulty of this strategy lies in how to maintain
the dynamic metallacycle structures during the linking process. To
accomplish covalently linked metallacycle-cored polymers, there are
several issues to be addressed: (i) The metallacycles should be both
simple and stable to reduce the possibility of deconstruction;
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(ii) the introduced functional groups should not interfere with
the metal−ligand bonds; (iii) the reaction used to link the met-
allacycles should be mild and highly efficient; and (iv) any re-
agents used to promote the reaction should be easy to remove.
Herein, by examining the structures of a number of metalla-
cycles and chemical reactions, we chose rhomboidal Pt(II)
metallacycles and the amidation reaction to overcome the
above-mentioned challenges. Thus, polymers 1 and 2 (P1 and
P2) were synthesized by linking a tetraamino-functionalized
rhomboidal Pt(II) metallacycle 10 using N-hydroxysuccinimide-
activated carboxylic acid-based linkers 11 or 12. Both P1 and P2
consist of a tetraphenylethene (TPE) derivative which is a well-
known AIE fluorophore (7–11). The aggregation of the monomers
by polymerization inhibits the rotations of the aromatic rings of
TPE, making P1 and P2 more emissive than their metallacycle
precursor 10. At higher concentrations, the resulting polymers
further aggregate into network structures, thereby even further
enhancing their fluorescence, and hence may serve as potentially
useful cell imaging agents. By investigating the distribution of P2
in mice 6 h after i.v. injection, we found that P2 showed signifi-
cant enrichment in the lung. Based on the potential anticancer
activity of rhomboidal Pt(II) metallacycles (42), these metalla-
cycle-cored polymers may show potential applications as thera-
nostic agents for both cell imaging and tumor therapy.

Results and Discussion
The synthetic procedures for P1 and P2 are shown in Fig. 1. A
TPE-derivative 8, having two pyridyl groups for metal coordination
and two amino groups for polymerization, was synthesized in a

four-step pathway starting from commercially available benzo-
phenone derivatives. The key intermediate TPE-derivative 4 was
prepared by a classical McMurry coupling reaction and isolated
in 45% yield. After nucleophilic substitution at the phenolic
hydroxyl site of 4, a palladium-catalyzed Suzuki coupling re-
action was carried out to obtain the 120° dipyridyl ligand 7, which
was further reduced in the presence of hydrazine to yield ligand
8. The rhomboidal Pt(II) metallacycle 10 was prepared in quan-
titative yield by heating the 120° dipyridyl donor 8 and 60° plati-
num acceptor 9 at 50 °C in methanol for 24 h. Simple stirring of a
mixture of 10 with 11 or 12 (1:2 molar ratio) in methanol solution
at room temperature for a day, followed by dialysis with methanol,
gave P1 and P2 in 83% and 86% yields, respectively.
The formation of metallacycle 10 was confirmed by multinu-

clear NMR (31P and 1H) analysis and electrospray ionization
time-of-flight mass spectrometry (ESI-TOF-MS). The 31P{1H}
NMR spectrum of 10 exhibits a sharp singlet (13.92 ppm) with
concomitant 195Pt satellites corresponding to a single phospho-
rous environment (Fig. 2G), indicating the formation of a dis-
crete, highly symmetric metallacycle. In the 1H NMR spectrum
of metallacycle 10, the expected downfield chemical shifts were
observed for the α-pyridyl protons Ha (from 8.54 ppm to 8.87 ppm)
and β-pyridyl protons Hb (from 7.68 ppm to 7.99 ppm) and both of
them split into two set of signals (Fig. 2 A and B), in a similar
fashion to what was observed in analogous reaction systems (43).
ESI-TOF-MS provided further evidence for the stoichiometry of
formation of 10. Peaks atm/z = 877.3635, 1,220.1737, and 1,904.7172
were found (SI Appendix, Fig. S18), corresponding to [10 – 4OTf]4+,
[10 – 3OTf]3+, and [10 – 2OTf]2+, respectively.
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Fig. 1. Synthetic routes and cartoon representa-
tions of P1 and P2 and model compound 3.
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The 31P{1H} NMR spectra of P1 and P2 exhibit broader
singlets but with chemical shifts similar to that of rhomboid 10
(Fig. 2 G−I), indicating that the metallacyclic structures were
maintained in P1 and P2. In the 1H NMR spectra of P1 and P2,
the aminomethylene protons Hl shifted from 2.75 ppm to 3.18
ppm (Fig. 2 B−D) because the amidation reaction changes the
chemical enviroment of Hl. No chemical shift changes were
observed for the pyridyl protons Ha, Hb and the aromatic
protons Hc, Hd, He, and Hf, indicating that the amidation reaction
does not perturb the rhomboidal metallacycle 10. To prove the
efficiency of the amidation reaction, model compound 3 was also
synthesized by stirring n-butylamine and linker 12 (2:1 molar
ratio) overnight. Fig. 2E shows the 1H NMR spectrum of the
reaction mixture of 3 after 8 h. As seen, almost all of the reac-
tants were consumed and a new peak for N-hydroxysuccinimide
appeared, indicating the efficiency of the amidation reaction
between alkylamine and N-hydroxysuccinimide-activated carbox-
ylic acid. Moreover, protons Hl, Hm, and Hn of P2 and compound
3 appear at the same location and all of them exhibit triplet

signals, indicating that the amidation reaction was also highly
efficient during the covalent linking process.
The morphology of P1 and P2 was characterized by scanning

electron microscopy (SEM) (Fig. 3 and SI Appendix, Figs.
S27–S32). The samples were prepared by dropping their
methanol solution onto a silica wafer followed by evaporation.
At lower concentrations (0.1 mg/mL), well-dispersed nano-
particles were observed (Fig. 3 A and D) for both P1 and P2.
However, when the concentration increased to 1.0 mg/mL,
network structures emerged (Fig. 3 B and E) for both species,
due to further aggregation of nanoparticles. We also found the
coexistence of both dispersed nanoparticles and network
structures at the edge of the silica wafer (SI Appendix, Figs.
S29 and S32), which provides evidence for the concentration-
dependent transformation of their morphology. The size of P1
and P2 was determined by dynamic light scattering (DLS). At
a concentration of 0.1 mg/mL, P1 and P2 showed average
hydrodynamic diameter (Dh) values of 296 and 283 nm (Fig. 3
C and F), respectively, consistent with the size of the particles
observed by SEM (∼250 to 310 nm).
The UV and visible (UV-Vis) absorption and fluorescence

emission spectra of ligand 8, rhomboid 10, P1, and P2 in meth-
anol and methanol/water (1/9, vol/vol) are shown in Fig. 4. Li-
gand 8 displays two broad absorption bands centered at 262 and
336 nm with molar absorption coefficients («) of 3.30 × 104 and
2.03 × 104 M−1·cm−1, respectively (Fig. 4A and SI Appendix,
Table S1). Upon the formation of rhomboidal metallacycle 10,
the lowest energy band is moderately red-shifted (ca. 26 nm).
Rhomboid 10 exhibits four absorption bands centered at 257,
266, 290, and 362 nm with « =1.46 × 105, 1.48 × 105, 1.06 × 105,
and 5.78 × 104 M−1·cm−1, respectively (Fig. 4A and SI Appen-
dix, Table S1). The absorption spectra of P1 and P2 are quite
similar to that of rhomboid 10, providing further evidence
for the retention of the rhomboidal metallacycle structures in
P1 and P2.
Ligand 8 is weakly emissive (Fig. 4B) in methanol because of

the nonradiative decay via intramolecular rotations of the pyridyl
and phenyl rings (7–11). Upon formation of rhomboid 10, the
pyridyl rings are partially rigidified, which limits their rotation,
giving a moderate emission band centered at 522 nm. After the
formation of P1 and P2, the TPE derivatives further aggregate,
making P1 and P2 even more emissive than their metallacycle
precursor 10 (Fig. 4B). The absorption and emission spectra of
the four species in methanol/water (1/9, vol/vol) are quite similar
to that in methanol, except for the fluorescence intensity in-
creases due to the AIE effects of TPE-type compounds in poor
solvents (Fig. 4 C and D). The changes in quantum yields (ΦF) in
methanol and methanol/water (1/9, vol/vol) are in good agree-
ment with the emission enhancement. In methanol, a very low
ΦF value (less than 0.05%) was observed for ligand 8. For
rhomboid 10, the value rises to 0.237%. For P1 and P2, the
values further increase to 0.329 and 0.337%, respectively. While
in methanol/water (1/9, vol/vol), the ΦF value of ligand 8 in-
creases to 1.22% due to the AIE effect. Correspondingly, the ΦF
values of rhomboid 10, P1, and P2 increase to 2.13, 2.77, and
2.89%, respectively (SI Appendix, Table S1).
The fluorescent properties of P1 and P2 inspired us to explore

their applications as bioimaging agents. Confocal laser scanning
microscopy (CLSM) was used to evaluate the cellular uptake
efficiency and intracellular localization of P2 in single cells.
Based on the CLSM data, a bright fluorescence derived from P2
was observed in the cytoplasm of the cells after 6 h of incubation
(Fig. 5 A−H), suggesting that the polymers can be applied for
cell imaging. Moreover, the emission spectrum of P2 by CLSM
(Fig. 5I) is consistent with their fluorescence spectra described
above (Fig. 4 B and D), with maximum emission at 521 nm. This
result suggests that the metallacycle structure remains intact
during the imaging process. The fluorescence of P1 and P2 at
different concentrations (40 and 200 μg/mL) was also collected
by flow cytometric analysis (Fig. 5 J and K), indicating that P1
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and P2 serve as contrast agents for cell imaging in the concen-
tration range of 40 μg/mL to 200 μg/mL.
In vivo experiments were performed to evaluate the efficiency

and distribution of P2 as contrast agent. Aqueous suspensions
of P2 at various concentrations (∼7.8 to 500 μg/mL) were imaged
using an in vitro phantom study. A linear dependence of the
fluorescence intensity on concentration was observed in the tested
range (Fig. 6A), revealing the potential of using P2 for real-time
imaging and quantitative analysis. To verify this, 20 μL of P2
(10 mg/mL) was intratumorally injected into a mouse bearing an
MDA-MB-231 (a human breast adenocarcinoma cell line) tumor.
A significant fluorescence of the tumor was observed even 24 h
after injection (Fig. 6B), indicating that P2 is both chemostable and
photostable in vivo, which is an essential criterion for bioimaging
agents. The same mouse was killed 24 h after injection, and the
tumor, major organs, and lymph nodes were imaged (Fig. 6C). A
significant transfer of P2 from the tumor to the liver and lung
was observed. In addition, there was an accumulation of P2 in
lymph nodes, which is associated with tumor metastasis and early
diagnostics. We next explored the in vivo distribution of P2 in
tumor-bearing mouse following systematic administration. By the
investigation of the images and fluorescence counts of different
organs 6 h after i.v. injection, we found that P2 showed a significant

enrichment in the lung over the other organs (Fig. 6 D and E).
Hence, given the known anticancer activity of rhomboidal Pt(II)
metallacycles (42), the possible use of these polymers toward lung
cancer therapy could be explored.

Conclusion
In summary, by linking the rhomboidal metallacycles 10 via
amidation reaction between N-hydroxysuccinimide-activated
carboxylic acid and alkylamine, two polymers, P1 and P2, were
successfully prepared and characterized by multinuclear NMR
(1H and 31P) and SEM. The structure of the metallacycles was
maintained in the polymers due to the mild, highly efficient and
catalysis-free amidation reaction, providing a method to poly-
merize metallacycles to give functional polymers and an alter-
native approach for postfunctionalization of metallacycles. The
metal coordination limits the free rotation of the aromatic rings
of TPE, and the formation and further aggregation of polymers
match well with the AIE properties of TPE derivatives, thereby
providing these polymers with enhanced fluorescence emission
properties useful as bioimaging agents. Moreover, this covalent
linking approach to aggregate AIE-type compounds also pro-
vides a good method to further enhance the AIE effects. The
use of these fluorescent polymers as bioimaging agents was
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explored, and their biodistribution after intratumoral and i.v.
injection was also studied. A significant enrichment of the
polymers in the lung was observed after i.v. injection. Other
studies could explore further tuning the emission of the poly-
mers by changing the linkers and the metallacycles, as well as
their applications in bioimaging, drug delivery, and cancer therapy
(42, 44–47).

Materials and Methods
All reagents were commercially available and used as supplied without
further purification. Deuterated solvents were purchased from Cambridge
Isotope Laboratory. Compounds 5 (48), 9 (49), 11 (39), and 12 (39) were
prepared according to the literature procedures. NMR spectra were recor-
ded on a Varian Unity 300-MHz or 400-MHz spectrometer. 1H and 13C NMR
chemical shifts are reported relative to residual solvent signals, and 31P{1H},

NMR chemical shifts are referenced to an external unlocked sample of 85%
H3PO4 (δ 0.0). Mass spectra were recorded on a Micromass Quattro II triple-
quadrupole mass spectrometer using electrospray ionization with a MassLynx
operating system. The melting points were collected on an SHPSIC WRS-2
automatic melting point apparatus. The UV-Vis experiments were conducted
on a Hitachi U-4100 absorption spectrophotometer. The fluorescent experi-
ments were conducted on a Hitachi F-7000 fluorescence spectrophotometer.
Quantum yields were determined using quinine sulfate at 365 nm (ΦF = 56%).
SEM was performed on an FEI Quanta 600 FEG (field emission gun). CLSM was
performed with a Zeiss LSM 710 Confocal Microscope using a 63× objective.
Flow cytometry was performed with a Fluorescence Activated Cell Sorter Calibur
Flow Cytometer (BD Biosciences). The size of polymers was measured using a
Malvern ZS90 DLS instrument with an He−Ne laser (633 nm) and 90° col-
lecting optics. The data were analyzed using Malvern Dispersion Technology
Software 5.10. The mice were obtained from Beijing HFK Bioscience Co., Ltd.
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All animals received care in compliance with the guidelines outlined in the
Guide for the Care and Use of Laboratory Animals (50). The procedures were
approved by the University of Science and Technology of China Animal Care
and Use Committee.

Rhomboid 10 was synthesized by heating 8 with 9 in a 1:1 molar ratio in
a 2-dram vial. After cooling, the solvent was removed to give rhomboid 10 as a
yellow solid. The formation of polymers P1 and P2 was achieved by stirring
rhomboid 10 and linker 11 or 12 (1:2 molar ratio) in methanol (0.25 mmol/L for
10) for 24 h. After that, the solvent was removed to give a crude product,
which was dialyzed with methanol for another 24 h to give polymers that
were then collected and dried under reduced pressure for future use.

Rhomboid 10: 1H NMR (400 MHz, CD3OD, 295 K): 8.87 (m, 8H), 8.46–8.75
(m, 4H), 7.99 (m, 8H), 7.45–7.85 (m, 20H), 7.28 (d, J= 8.2 Hz, 8H), 7.02 (d, J= 8.8 Hz,
8H), 6.74 (d, J = 8.8 Hz, 8H), 3.95 (t, J = 5.6 Hz, 8H), 2.75 (t, J = 7.0 Hz, 4H), 0.90–
1.90 (m, 152H). 31P{1H}, NMR (121.4 MHz, CD3OD, 295 K) δ (ppm): 13.92 ppm
(s, 195Pt satellites, 1JPt–P = 2,661.8 Hz). ESI-TOF-MS:m/z 877.3635 ([10 – 4OTf]4+),m/z
1,220.1737 ([10 – 3OTf]3+), m/z 1,904.7172 ([10 – 2OTf]2+).

P1: 1H NMR (400 MHz, CD3OD, 295 K): 8.87 (m, 8H), 8.46–8.75 (m, 4H), 7.99
(m, 8H), 7.45–7.85 (m, 20H), 7.28 (d, J= 8.2 Hz, 8H), 7.02 (d, J= 8.8Hz, 8H), 6.74 (d, J=
8.8 Hz, 8H), 4.00 (t, J = 5.6 Hz, 8H), 3.18 (t, J = 7.0 Hz, 8H), 2.13 (t, J = 7.0 Hz, 8H),
0.90–1.90 (m, 168H). 31P{1H} NMR (121.4 MHz, CD3OD, 295 K) δ (ppm): 13.27 ppm
(s, 195Pt satellites, 1JPt–P = 2,693.9 Hz).

P2: 1H NMR (400 MHz, CD3OD, 295 K): 1H NMR (400 MHz, CD3OD, 295 K):
8.87 (m, 8H), 8.46–8.75 (m, 4H), 7.99 (m, 8H), 7.45–7.85 (m, 20H), 7.28 (d, J =
8.2 Hz, 8H), 7.02 (d, J = 8.8 Hz, 8H), 6.74 (d, J = 8.8 Hz, 8H), 4.01 (t, J = 5.6 Hz,
8H), 3.21 (t, J = 7.0 Hz, 8H), 2.91 (t, J = 7.2 Hz, 8H), 2.55 (t, J = 7.2 Hz, 8H), 1.78
(t, J = 6.6 Hz, 8H), 0.90–1.60 (m, 152H). 31P{1H} NMR (121.4 MHz, CD3OD,
295 K) δ (ppm): 13.33 ppm (s, 195Pt satellites, 1JPt–P = 2,698.1 Hz).
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