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Diacetate protection of 5 and 6-carboxyfluorescein followed by synthesis of the N-

hydroxysuccinimide esters allowed ready separation of the two isomers on a multi-gram scale. 

The 5 and 6-carboxyrhodamine B N-hydroxysuccinimide esters were also readily synthesised 

and separated.  

2009 Elsevier Ltd. All rights reserved. 
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Fluorescein and its derivatives represent one of the most 

popular families of fluorescent labelling agents for various 

biomolecules,
1
 including labelling of actin,

2
 myosin,

3,4
 

hemoglobin,
5
 histones,

6
 DNA,

7
 RNA,

8
 and antibodies.

1, 9
 Peptides 

are also routinely tagged with carboxyfluorescein, as 

demonstrated by Nguyen who reported a carboxyfluorescein 

conjugated peptide that labels nerves in human tissues, with 

potential to aid surgery and prevent accidental transection.
10

 The 

monitoring of enzymatic activities using fluorescein-based 

probes is wide spread. For example, Tanaka designed a quenched 

fluorescein phosphate-polymer that in the presence of alkaline 

phosphatase liberated fluorescein, while Bradley has developed a 

quenched multi-branched scaffold liberating fluorescein in the 

presence of human neutrophil elastase.
11,12

 Furthermore, 

fluorescein has been incorporated into numerous chemical 

sensors that have been used to detect reactive oxygen species,
13

 

hydrogen peroxide,
13

 nitric oxide,
13

 or measure pH (e.g. pH 

sensing in living cells).
14,15

  

Widely used derivatives of fluorescein are the N-

hydroxysuccinimide esters of 5 and 6-carboxyfluorescein 

diacetate (often referred as CFSE), which have been extensively 

used to monitor cellular division,
16,17

 with over 226 reports in 

2013 alone.
18

 Here the two acetate groups render the molecule 

membrane permeant, while once inside cells, the active ester 

labels intracellular proteins, while esterases remove the acetate 

groups restoring the fluorescein’s fluorescence.
19

  

Fluorescein is commonly used as a mixture, namely 5(6)-

carboxyfluorescein, and the synthesis of fluorescein-labelled 

probes results in a mixture of isomers. This complicates their 

purification and analysis of the resulting fluorescein-tagged 

probes since labelling will result in two probes with slightly 

differing properties. Kvach studied the properties of 5 and 6-

carboxyfluorescein conjugated to an oligonucleotide and 

demonstrated that, although they had similar absorbance and 

fluorescence quantum yields, the emission band from the 6-

carboxyfluorescein–oligonucleotide was substantially sharper 

than that of the 5-carboxyfluorescein analogue, making it the 

optimal isomer for multiplex detection.
20

 When proteins are 

labelled at multiple sites the situation is even more complex. 

The separation of the 5 and 6-isomers of carboxyfluorescein 

by chromatography
21,22

 or crystallisation
23,24

 has been reported 

but the latter method, in our hands, was inconsistent and not 

easily reproduced. A recent review supports the view that a more 

efficient method of separation of the isomers is necessary.
25

 

Another fluorophore that is also used as a mixture is (5)6-

carboxyrhodamine B. Rhodamine dyes are highly fluorescent and 

have good photostability,
26

 and therefore have broad applications, 

such as a fluorescence standard for quantum yield 

determinations,
27

 detection of reactive oxygen species,
13

 ion 

sensors in living cells,
28

 DNA and protein labelling
29,30

 to name 

but a few. The efficient synthesis of 5 or 6-

carboxytetraethylrhodamine N-hydroxysuccinimide ester is not 

well established.  

Herein, a simple two-step process for the synthesis and 

subsequent separation of the two isomers of the N-

hydroxysuccinimide esters of 5 and 6-carboxyfluorescein 

diacetate and 5 and 6-carboxytetraethylrhodamine is reported. 

The proposed routes have multiple advantages over existing 

methods in terms of scale, speed and ease of separation of the 

two isomers. 

 

 

Scheme 1. N-hydroxysuccinimide ester formation and isomer 

separation of carboxyfluorescein diacetate.  

 

 
Scheme 2. Isomer separation and active ester formation of 

rhodamine B. 

 

Synthesis began with acetylation of the phenol moieties of 

fluorescein, modifying the procedure reported by Tour
31

 using 

acetic anhydride and pyridine (>15g scale, >95% yield), with a 

mild acid wash being the only work-up necessary (Scheme 1).
32

 

Carboxylic acid activation used N,N'-diisopropylcarbodiimide 

(DIC) and N-hydroxysuccinimide (NHS) in dichloromethane. 

The two carboxyfluorescein diacetate N-hydroxysuccinimide 

esters were readily purified on a plug of silica gel (7 × 15 cm) 

using an optimised solvent system of EtOAc:Toluene (20:80) to 

give a 35% yield of 5-isomer and 25% yield of 6-isomer.
33

  

 



  

Fung reported the synthesis of 5 and 6-

carboxytetraethylrhodamine N-hydroxysuccinimide esters using 

N,N′-disuccinimidyl carbonate (DSC) and DMAP,
34

 but in our 

hands, this gave a mixture of starting material and the di-ester 

product (Figure 1).  

 

 

 

 

 

 

Figure 1. Di-ester obtained when treating carboxytetraethylrhodamine 

with DSC and DMAP.  

 

To achieve 5 or 6-carboxylic acid regioselectivity over the 3-

carboxylic acid, rhodamine must react in its closed lactone form; 

however, unlike fluorescein, rhodamine B is in the lactone form 

under basic conditions, and in the open form under acidic 

conditions.
35

 Therefore it was reasoned that the active ester of 5 

and 6-carboxytetraethylrhodamine would be generated using a 

combination of DMAP and DSC with 5 equivalents of 

triethylamine to give the desired regioselectivity (Scheme 2).
36

 

Larger quantities of base interfered with the efficiency of the 

reaction. The separation of the isomers of 5 and 6-

carboxytetraethylrhodamine by column chromatography was 

straightforward using a gradient of TEA:DCM:MeOH (5:95:0 to 

5:75:20).
37

  

In conclusion, methods have been developed for the formation 

and separation of the active esters of 5 and 6-isomers of 

carboxyfluorescein and carboxyrhodamine B. These methods are 

robust and reliable, and make single isomers of these two widely 

used fluorophores readily available.  
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