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Dual Nicotinic Acetylcholine Receptors αααα4ββββ2 Antagonists/αααα7 Agonists: 

Synthesis, Docking Studies and Pharmacological Evaluation of 

Tetrahydroisoquinolines and Tetrahydroisoquinolinium Salts 

François Crestey,†,§ Anders A. Jensen,†,§ Christian Soerensen,‡ Charlotte Busk Magnus,†,‡ Jesper T. 

Andreasen,† Günther H. J. Peters‡ and Jesper L. Kristensen*,† 

†Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of 

Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark 

‡Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, 

Denmark 

ABSTRACT: We describe the synthesis of tetrahydroisoquinolines and tetrahydroisoquinolinium salts 

together with their pharmacological properties at various nicotinic acetylcholine receptors. In general 

the compounds were α4β2 nAChR antagonists, with the tetrahydroisoquinolinium salts being more 

portent than the parent tetrahydroisoquinoline derivatives. The most potent α4β2 antagonist 6c, 

exhibited submicromolar binding Ki and functional IC50 values and high selectivity for this receptor 

over the α4β4 and α3β4 nAChRs. Whereas the (S)-6c enantiomer was essentially inactive at α4β2, (R)-

6c was a slightly more potent antagonist than the reference β2-nAChR antagonist DHβΕ. The 

observation that the α4β2 activity resided exclusively in the (R)-enantiomer was in full agreement with 

docking studies. Several of tetrahydroisoquinolinium salts also displayed agonist activity at the α7 

nAChR. Preliminary in vivo evaluation revealed antidepressant-like effects of both (R)-5c and (R)-6c in 

the mouse forced swim test supporting the therapeutic potential of α4β2 nAChR antagonists for this 

indication.  
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Keywords: nAChRs, dual α4β2 antagonist/α7 agonist, tetrahydroisoquinolines, quaternary ammonium 

salts, chiral resolution. 

INTRODUCTION 

The nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of ligand-gated ion channels 

widely distributed throughout the peripheral and central nervous systems, are involved in a broad range 

of psychiatric and neurodegenerative disorders such as schizophrenia, attention deficit hyperactivity 

disorder, depression, Alzheimer’s and Parkinson’s diseases, pain and substance abuse.1–4 Considerable 

efforts have been put into the design of agonists (based on scaffolds such as nicotine, varenicline, 

cytisine and epibatidine) as well as positive allosteric modulators targeting the neuronal nAChRs.5–9 In 

comparison, antagonists are far less studied, despite their substantial therapeutic potential.10–20 Most of 

the available nAChR antagonists are natural products such as methyllycaconitine (MLA), α-

bungarotoxin, ibogaine, d-tubocurarine, α-conotoxins and dihydro-β-erythroidine (DHβE), the latter 

being a widely used selective antagonist of β2-containing heteromeric nAChRs and a semisynthetic 

member of the Erythrina alkaloid family.21,22 We recently reported the design, synthesis and 

pharmacological evaluation of 21 analogs of aromatic Erythrina alkaloids as nAChR antagonists and 

found that the structurally simple tetrahydroisoquinoline 1 (also known as O-methylcorypalline)23,24 

displayed submicromolar binding affinity at the α4β2 nAChR and more than 300-fold binding 

selectivity over the α4β4, α3β4 and α7 subtypes (see Figure 1A).25  

Ligands containing quaternary nitrogens have previously been shown to possess high activity at the 

nAChR.27–30 For example, several known nAChR antagonists and neuromuscular blocking agents are 

mono- and bis-quaternary ammonium derivatives,31 and Crooks and co-workers have investigated N-

substituted nicotine analogs and bis-azaaromatic quaternary ammonium ligands at the α4β2 and α7 

receptors.32–36 Furthermore, introduction of a methyl group in cytisine (which provides caulophylline) 

has been shown to dramatically reduce its affinity at the α4β2 receptor, while a second N-methylation 
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restores the affinity.37 Finally, the nAChR antagonism exhibited by a broad range of synthetic and 

natural quaternary derivatives of curare-like alkaloids has been described.38 

In view of the promising properties of O-methylcorypalline (1) in our previous study,25 we decided to 

pursue a series of quaternary ammonium salts (series 2) based on this scaffold where the length and the 

size of the N-substituent was varied. Based on their pharmacological properties, two subsequent series 

of tetrahydroisoquinolines 3 and 5 were targeted to provide N-methyl tetrahydroisoquinolinium iodides 

4 and 6, respectively (see Figure 1B). 

RESULTS AND DISCUSSION  

Synthetic chemistry. As depicted in Scheme 1, treatment of tetrahydroisoquinoline 1 with the 

appropriate alkyl or benzyl halides led to the corresponding quaternary ammonium salts 2a–e in 67–

96% yield. N-Methyl tetrahydroisoquinolinium iodides 4a–f and 6a–g were obtained in 63–96% yield 

after reaction of the corresponding tetrahydroisoquinolines 3a–f and 5a–g with methyl iodide in dry 

acetone. Besides, racemic ligands 5c and 5d were obtained via a three-step protocol as depicted in 

Scheme 2.39 First, phenethylamines 7a–b were heated in neat γ-butyrolactone at 150 °C for 15 min 

under MW conditions providing amides 8a–b which cyclized upon treatment with POCl3 at 150 °C for 

15 min once again under MW conditions. Subsequent reduction of the intermediate iminium salt with 

NaBH4 gave tetrahydroisoquinolines 5c and 5d in 39% and 21% overall yield, respectively.40  

The two enantiomerically pure compounds (R)-5d and (S)-5d which are also known as (R)-(+)-crispine 

A and (S)-(–)-crispine A, respectively, as well as (S)-5c and (R)-5c were resolved via separation on 

chiral HPLC.41,42 The absolute configurations of (S)-5c and (R)-5c (and consequently (S)-6c and (R)-6c) 

were established as detailed in the Supporting Information. As shown in Scheme 2, (S)-5c, (R)-5c, (S)-

5d and (R)-5d were quaternized using methyl iodide in acetone to provide (S)-6c, (R)-6c, (S)-6d and 

(R)-6d in 60%, 54%, 42% and 44% yield, respectively.  

Computational chemistry: A docking study of the aforementioned ligands was performed using 

Glide43 in extra precision mode based on the recently published X-ray structure of the human α4β2 
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nAChR44 with a critical water molecule modelled into the binding site.45 Figure 2 shows the spacial 

limitations of the binding pocket with bicyclic derivatives 2a–c. Thus, the quaternization of the amine, 

responsible for important π-cation interactions, with substituents larger than a methyl backbone leads to 

serious steric clashes which are substantiated by the affinities of the abovementioned ligands. 

Interestingly, the chiral carbon atom next to the amine showed consistent difference as there was a clear 

tendency of ligands with a R-configuration to yield higher binding affinity originating from π-cation 

interactions between the charged ligand nitrogen and receptor residues as well as a hydrogen-bond 

between the moiety derived from a catechol function and the water molecule. The specific binding of 

the ligands was mediated by the two mentioned pharmacophores where the hydrogen-bond acceptor 

moiety was often the differentiator between the two enantiomers, as the ligands tended to twist which 

resulted in an increased hydrogen bond acceptor-donor distance. As shown in Figure 3A, the position of 

the amine moiety of (R)-6c (colored in dark green) and (S)-6c (colored in purple) seems to be regulated 

by the absolute configuration in order to obtain optimal fit into the binding site. This is confirmed by the 

poses of (R)-6c and (S)-6c depicted in Figure 3B. Although both ligands appear very uniform, small 

changes regarding the amine position are critical for the affinity and the number of interactions.  

With a coefficient of determination of 0.58 between the docking scores and the in vitro data of the 

enantiopure ligands, the model correlates well with the experimentally determined affinities. This was 

further supported by re-docking nicotine into the binding site yielding a root-mean-square deviation 

value of 0.66 Å. The generated poses indicated that the position of the amine moiety was essential as it 

entailed 2-4 π-cation interactions to receptor residues depending on the compound as expected based on 

previous studies (for more details see the Supporting Information).46  

In vitro evaluation: The binding properties of the compounds were determined using membranes from 

the stable rα3β4-, rα4β4- and rα4β2-HEK293 cell lines in a [3H]epibatidine binding assay. The 

functional properties of the compounds were determined using the mα4β2-HEK293T- and rα3β4-

HEK293-cell lines in the FLIPR Membrane Potential Blue (FMP) assay essentially as previously 

Page 4 of 38

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5

described,16,18,25,26 whereas the functional characterization of selected ligands at the human α7 nAChR 

was performed at the stable hα7Ric-3/NACHO-HEK293 cell line in the Ca2+/Fluo-4 assay in the presence of 

the α7 nAChR PAM PNU-120596 (3 µM). (S)-Nicotine (EC70-EC90) was used as agonist in the 

antagonist experiments at mα4β2 and rα3β4 in the FMP assay, and acetylcholine (EC70-EC90) was used 

as agonist in the antagonist experiments at hα7 in the Ca2+/Fluo-4 assay. All ligands were tested both as 

agonists and antagonists.  

Binding and functional properties of the analogs at the α4β2, α4β4 and α3β4 nAChRs. The methyl 

tetrahydroisoquinolinium derivative 2a was found to be equipotent with the parent compound as an 

α4β2 nAChR antagonist. The N-ethylation of O-methylcorypalline (1) which provided derivative 2b 

was also well tolerated although its affinity at the α4β2 nAChR was about 10-fold lower when 

compared to the methyl derivative 2a. A further increase in the bulk on the nitrogen when growing 

through propyl, allyl and benzyl led to decreases in both the affinities and antagonistic potencies of the 

analogs at the α4β2 nAChR (Table 1) as suggested by the docking studies. All of these compounds 

displayed negligible binding affinities at the α4β4 and α3β4 nAChRs. In view of this, we proceeded 

with the quaternization of structurally related scaffolds with N-methyl groups. Derivatives 3d and 4d 

displayed no significant binding affinity at any of the tested subtypes, suggesting that substitution on C-

1 is detrimental to nAChR activity, at least when a rather bulky substituent is introduced in this 

position.25 In contrast, the binding affinities at α4β2 were increased for all bicyclic derivatives with the 

presence of the quaternary nitrogen. Overall, the tetrahydroisoquinolinium salts 4 exhibited ~5-fold 

higher binding affinities at α4β2 than the parent tetrahydroisoquinolines 3, with all of these analogs 

displaying negligible activity at the α4β4 and α3β4 nAChRs (Table 1, Figure 4A). For example, 4c 

displayed a similar Ki value at the α4β2 nAChR (0.38 µM) as that displayed by DHβE and ~80- and 

~130-fold binding selectivity for α4β2 over α4β4 and α3β4 nAChRs, respectively. In contrast, the IC50 

values displayed by the tetrahydroisoquinolinium compounds compared to their respective 

tetrahydroisoquinolines at the α4β2 nAChR in the FMP assay were largely comparable, and thus the 
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introduction of the methyl group on the nitrogen only seemed to slightly increase the functional 

inhibitory potencies of some of these analogs. We propose that this difference in the relative binding 

affinities and antagonist potencies of the bicyclic derivatives 3 and 4 could arise from the fact that the 

measurement of binding affinities and functional inhibitory potencies most likely are performed at 

different α4β2 nAChR conformations. In terms of understanding of the SAR of these compounds, no 

clear conclusions with respect to the substitution pattern on the phenyl ring of the tested bicyclic ligands 

could be extracted from these series. 

Interestingly, the increase in α4β2 binding affinity brought on by quaternization of the nitrogen with a 

methyl side chain was reproduced when moving from the bicyclic scaffold to the tricyclic ring system, 

albeit to a smaller extent than for the bicyclic analogs (Table 2). Thus, quaternization of 5a–g generally 

led to ligands (6a–g) exhibiting higher binding affinities at the α4β2 nAChR, and this was also 

generally accompanied by weak binding affinities to the α4β4 and α3β4 nAChRs (Table 2, Figure 4A). 

For example, the tetrahydroisoquinolinium derivative 6c displayed a 5-fold lower Ki value (0.14 µM) 

than DHβE at α4β2 and displayed the highest degree of binding selectivity for α4β2 over the α4β4 and 

α3β4 nAChRs (360- and 210-fold, respectively) of the analogs in the series. Compounds 5e and 6e 

constituted interesting outliers from this overall α4β2 selectivity, as both ligands displayed comparable 

binding affinities to the α4β2 and α4β4 nAChRs and considerably weaker binding affinities to the α3β4 

subtype. When tested at the α4β2 nAChR in the FMP assay, several of the tetrahydroisoquinolinium 

analogs displayed significantly higher antagonist potencies than the corresponding 

tetrahydroisoquinoline analogs, the IC50 values of 6a, 6b, 6c and 6e at the α4β2 nAChR being 5-10 fold 

lower than those of 5a, 5b, 5c and 5e, respectively (Table 2, Figure 4A). With a functional IC50 value of 

0.52 µM, 6c was the most potent α4β2 nAChR antagonist emerging from this series, and just as the 

other derivatives in this study 6c displayed negligible activity at the α3β4 nAChR in the FMP assay.  

Inspired by the findings in the computational chemistry investigation and in a previous study on a α4β2-

selective bridged-nicotine antagonist,18 we next investigated whether the two sets of enantiomers of 5c 
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 7

and 5d, i.e. ligands (S)-5c, (R)-5c, (S)-5d and (R)-5d and their corresponding quaternized analogs (S)-

6c, (R)-6c, (S)-6d and (R)-6d, respectively, would exhibit different pharmacological properties at the 

nAChRs. Characterization of (S)-5d and (R)-5d revealed that the α4β2 activity resides in the (R)-

enantiomer, (R)-5d displaying Ki values of 2.5, ~100 and ~100 µM at the α4β2, α4β4 and α3β4, 

respectively (Table 3). (S)-6d and (R)-6d displayed similar tendencies with (R)-6d exhibiting Ki values 

of 2.4, ~25 and ~25 µM at the α4β2, α4β4 and α3β4 receptors, respectively. As observed in Table 3, 

compounds (S)-5c and (R)-5c displayed higher affinity for the α4β2 receptor than (S)-5d and (R)-5d 

[(S)- and (R)-crispine-A, respectively]. Moreover, (R)-5c exhibited ~25-fold higher binding affinity (Ki 

= 0.17 µM) than (S)-5c at this subtype. The corresponding quaternary ammonium salts were also tested, 

and here the α4β2 activity was also found to reside in one enantiomer as (R)-6c displayed Ki values of 

0.045, 2.7 and 11 µM at the α4β2, α4β4 and α3β4, respectively. Notably, (R)-6c exhibited ~10-fold 

higher binding affinities than DHβE itself at all of the three tested nAChRs (α4β2, α4β4 and α3β4) 

(Table 3, Figure 4B). These differences in the α4β2 activity between the (S)- and (R)-enantiomers were 

mirrored in the functional properties as (R)-5c, (R)-5d, (R)-6c and (R)-6d displayed ~23-, >6-, >450- 

and >14-fold lower IC50 values, respectively, than their respective (S)-enantiomers at the receptor in the 

FMP assay (Table 3). (R)-6c was the most potent α4β2 antagonist in the series, displaying an IC50 value 

of 0.22 µM and ~230 fold selectivity for this receptor over the α3β4 subtype (Table 3, Figure 4B).  

The tricyclic derivative (R)-6c displayed significantly higher binding affinity and somewhat higher 

antagonist potency at the α4β2 nAChR than DHβE. Since (R)-6c also exhibited higher binding affinities 

at α4β4 and α3β4 nAChRs and also is a fairly potent α7 nAChR agonist, it cannot be claimed to be a 

more selective β2-nAChR antagonist than DHβE (Table 3, Figures 4B and 4C). However, considering 

its high antagonist potency at α4β2 and being a much more accessible scaffold for derivatization efforts 

than DHβE, we propose that this ligand could be an interesting lead structure for the future development 

of β2-nAChR selective antagonists. Alternatively, some of the several potent and truly selective α4β2 

antagonists identified in this study (for example, analogs 3e–f and 5c) could be applied in such efforts.  
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 8

Functional properties of the analogs at the α7 nAChR. The functional properties of the ligands at the α7 

nAChR were investigated at a HEK293 cell line stably co-expressing the receptor with the Ric-3 and 

NACHO proteins in the Ca2+/Fluo-4 assay.47,48 Agonist-induced responses through the α7 nAChR in 

these cells could not be detected in the assay unless the assay buffer was supplemented with PNU-

120596 (3 µM), an α7 nAChR PAM that exerts its modulatory effects by dramatically slowing down the 

extremely fast desensitization of the receptor.49,50 Thus, the presence of PNU-120596 in the assay means 

that the functional properties of the ligands were determined at essentially non-desensitizing α7 

receptors. Nevertheless, the functionalities as well as the rank orders of agonist and antagonist potencies 

exhibited by a selection of 8 reference agonists and 4 reference antagonists at the receptor in the assay 

were found to be in good agreement with the pharmacological properties reported for the ligands in the 

literature (see the Supporting Information for more details). Hence, while the presence of PNU-120596 

in the assay certainly should be kept in mind and caution should be taken when it comes to the absolute 

values for potencies and efficacies displayed by the ligands in the assay, we propose that the basic 

functionalities exhibited by the ligands as well as the rank order of their potencies are likely to reflect 

their true pharmacological characteristics at the receptor.  

In concordance with the SAR displayed by compounds 1–6 at the α4β2 nAChR, the 

tetrahydroisoquinolinium salts (2a–e, 4a–f, 6a–g) were consistently more potent ligands at the α7 

nAChR than their corresponding tetrahydroisoquinolines (1, 3a–f, 5c–g) (Tables 1–3). In fact, the 

differences in the activities exhibited by the respective analogs at the α7 receptor were even more 

pronounced than at the α4β2 nAChR. With the exception of 5a–b that displayed weak but significant α7 

antagonism, all tetrahydroisoquinolines (1, 3a–f, 5c–g) displayed negligible activity at the α7 nAChR. 

In contrast, the tetrahydroisoquinolinium salts (2a–e, 4a–f, 6a–g) were not only more potent α7 ligands 

but displayed a wide range of receptor functionalities, ranging from being moderately potent antagonists 

(2e, IC50 = 2.0 µM) over fairly potent agonists (for example 4e and 6e with EC50 values of 0.99 µM and 

1.2 µM, respectively) to other apparently potent agonists that displayed notable biphasic concentration-
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 9

response curves (4a–b, 6a–b). The most potent agonists in the series displayed EC50 values comparable 

to those exhibited by ACh, (S)-nicotine and (–)-cytisine at the receptor, while not being nearly as potent 

as other reference nAChR agonists such as (±)-epibatidine and varenicline or as the α7-selective 

agonists TC-1698 and PNU-282987 (see the Supporting Information for more details).  

As described above, quaternization of the tetrahydroisoquinoline scaffold yielded compounds with 

increased α7 nAChR activity. As an example of this, the inactivity of 1 at the receptor (both as agonist 

and antagonist) was contrasted by the pronounced agonist activity displayed by the corresponding 

tetrahydroisoquinolinium salt 2a (EC50 value of 9.0 µM). The introduction of an ethyl, propyl or allyl 

group on the nitrogen completely eliminated the α7 activity (2b–d), which could be a reflection of steric 

clashes between these bigger aliphatic substituents and some of the residues forming the orthosteric 

binding site. However, the benzyl-substituted analog 2e displayed potent antagonist activity at the 

receptor (IC50 value of 2.0 µM). Thus, the aromatic substituent is either able to fit into the binding 

pocket or alternatively protrudes into a vestibule adjacent to the orthosteric site. Whichever way 2e 

accommodates binding to α7, it is clearly not able to trigger channel gating in the receptor, in contrast to 

the methyl analog 2a. Furthermore, judging from the negligible activity displayed by 2e at α4β2 and the 

other heteromeric nAChRs, this analog could be an interesting lead compound for future development 

of selective α7 nAChR antagonists. In this respect, it is interesting to note that ligands 4c and 4e (the 

6,7-methylenedioxy and 7-hydroxy-6-methoxy analogs of 2a, respectively) are considerably more 

potent α7 agonists than 2a with EC50 values of 2.6 and 0.99 µM, respectively. Thus, introduction of a 

benzyl group on the nitrogen in this series could potentially yield more potent antagonists.  

In 4a–f, the 6- and 7-substituents on the tetrahydroisoquinolinium scaffold were varied compared to the 

6,7-dimethoxy analog 2a. As mentioned above, the 7-hydroxy-6-methoxy 4e and 6,7-methylenedioxy 

4c analogs were both considerably more potent α7 agonists than 2a, whereas 6-methoxy 4f essentially 

was equipotent with 2a at the receptor (Table 1). Analogously to the inactivity of 4d at the heteromeric 

nAChRs, introduction of a dMBn group in the C1–position also almost completely eliminated its α7 
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 10

activity. Interestingly, introduction of benzyloxy substituents in either the 6-position or the 7-position of 

the tetrahydroisoquinolinium scaffold resulted in derivatives 4a–b that while displaying agonist 

activities in the same concentration ranges as ligands 4c and 4e also displayed distinctly biphasic 

concentration-response curves. It is tempting to ascribe the decreased agonist responses observed at 

higher concentrations of these analogs to increased degrees of receptor desensitization, despite the 

presence of PNU-120596 in the assay and even though the other agonists in the series did not exhibit 

this characteristic. However, in view of the rather coarse measurement of α7 nAChR signaling provided 

by this assay, solid conclusions on the underlying basis for these signaling characteristics will have to 

await electrophysiology studies. Nevertheless, it is interesting to note that 6a–b, the tricyclic derivatives 

corresponding to 4a–b, display very similar biphasic concentration-response curves and thus this 

signaling phenotype was exclusively observed for derivatives comprising a benzyloxy substituent.  

The agonist properties displayed by the tricyclic analogs 6a–g were comparable to those exhibited by 

the bicyclic derivatives 4a–f with similar substituents on the catechol moiety (Tables 1–2). Thus, 6c–g 

displayed low-micromolar EC50 values as α7 nAChR agonists and 6a–b displayed similar biphasic 

concentration-response curves at the receptors as the bicyclic analogs 4a–b.  

In vivo evaluation. Since the compounds (R)-5c and (R)-6c displayed the highest antagonist potencies 

at the α4β2 nAChR in vitro, and given the fact that a similar ligand has been found to possess 

antidepressant-like activity,25 these two analogs were selected for preliminary in vivo evaluations 

(Figure 5). (R)-5c and (R)-6c were tested in the mouse forced swim test,51 showing that both compounds 

significantly increased swimming activity. Ligand (R)-5c showed the most pronounced effect 

(ANCOVA: significant main effect of treatment (F3,32=5.98; p<0.01)), showing a dose-dependent 

increase in swimming behavior. Pairwise comparisons revealed a near-significant effect of 1 (p=0.08) 

and 3 mg/kg (p=0.06) and a significant effect of 10 mg/kg (p<0.001). For compound (R)-6c, there was 

no significant main effect of treatment (F3,32=1.87; p=0.154), but pairwise comparisons revealed that 

swimming was significantly increased by 10 mg/kg (p<0.05). Compound 1, previously shown to exhibit 
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antidepressant-like properties in the mFST, albeit at higher doses, is included in Fig. 5 for comparison 

(Crestey et al., 2013).  

These findings are in line with several previous studies showing antidepressant-like effects in mice 

following antagonism of nAChRs,52,53 and the antidepressant-like effect of mecamylamine was revealed 

to depend on both β2- and α7- subunit containing nAChRs.53 Female NMRI mice similar to those used 

in the present study have previously shown antidepressant-like responses to the non-selective nAChR 

antagonist mecamylamine as well as α4β2- and α7-selective nAChR antagonists.54 Although the α7 

nAChR agonist PNU-282987 by itself did not affect swimming in the mFST, it enhanced the effects 

mediated by the selective serotonin reuptake inhibitor citalopram and of the selective norepinephrine 

reuptake inhibitor reboxetine.51,54,55 Therefore, it is possible that α7 nAChR agonism counteracts the 

antidepressant-like effect of α4β2 nAChR antagonism, causing the combined α4β2 antagonism/α7 

agonism profile of (R)-6c to be less efficacious than the more selective α4β2 nAChR antagonist (R)-5c. 

Another explanation could be that the fixed positive charge on (R)-6c inhibits transport across the 

blood-brain barrier.  

 

CONCLUSIONS 

We have investigated the effects of quaternizing several series of tetrahydroisoquinoline derivatives in 

the search of new nAChR ligands. We found that the N-methylation of O-methylcorypalline (1) was 

well tolerated whereas quaternization with larger substituents led to reduced activity at the α4β2 

nAChR. Subsequent quaternization of similar ligands with methyl iodide provided compounds 

displaying increased binding affinities and antagonist potencies at the α4β2 nAChR. The most potent 

compound (6c) was resolved and we found that the pharmacological activity at the α4β2 nAChR resides 

solely in the (R)-enantiomer. The in vitro data at the α4β2 nAChR were in good agreement with the 

results arising from the docking studies, providing an excellent starting point for the design and 

synthesis of new ligands. Preliminary in vivo evaluations indicated antidepressant-like effect of (R)-5c 
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 12

and (R)-6c in the mouse forced swim test which were consistent with previous reports of antidepressant 

action of nAChR antagonists. 

The 40 ligands investigated in this study revealed new compounds with interesting profiles at the 

nAChRs. We identified potent and selective α4β2 nAChR antagonists displaying negligible activities at 

the other major neuronal nAChRs and several dual α4β2/α7 nAChR ligands displaying potent α4β2 

antagonism and potent α7 agonism. With α4β2 being the only β2-containing nAChRs included in this 

study, it remains to be clarified whether the compounds, analogously to DHβE, also possess activity at 

other β2-containing subtypes.  
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EXPERIMENTAL SECTION 

Chemistry – Material and Methods. Reagents were obtained from commercial suppliers and used 

without further purifications. Syringes which were used to transfer anhydrous solvents or reagents were 

purged with nitrogen prior to use. Other solvents were analytical or HPLC grade and were used as 

received. Yields refer to isolated compounds estimated to be > 95 % pure as determined by HPLC and 

LC-MS. Thin-layer chromatography (TLC) was carried out on silica gel 60 F254 plates from Merck 

(Germany). Visualization was accomplished under UV lamp (254 nm). Flash column chromatography 

was performed on chromatography grade, silica gel 60 Å particle size 35–70 micron from Fisher 

Scientific using the solvent system as stated. Microwave-assisted synthesis was carried out in a Biotage 

Initiator apparatus operating in single mode; the microwave cavity producing controlled irradiation at 

2.45 GHz (Biotage AB, Uppsala, Sweden). The reactions were run in sealed vessels. These experiments 

were performed by employing magnetic stirring and a fixed hold time using variable power to reach 

(during 1–2 min) and then maintain the desired temperature in the vessel for the programmed time 

period. The temperature was monitored by an IR sensor focused on a point on the reactor vial glass. The 

IR sensor was calibrated to internal solution reaction temperature by the manufacturer. 1H and 13C NMR 

spectra were recorded on Varian 300 (Mercury and Gemini instruments) or on Bruker (400 and 600 

MHz) instruments, using CDCl3 or DMSO-d6 as deuterated solvents and with the residual solvent as the 

internal reference. For all NMR experiments the deuterated solvent signal was used as the internal lock. 

Coupling constants (J values) are given in Hertz (Hz). Multiplicities of 1H NMR signals are reported as 

follows: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; t, triplet; q, quartet; m, 

multiplet; br, broad signal. Melting points (mp) were determined using an MPA100 Optimelt melting 

point apparatus and are uncorrected. High-resolution mass spectra (HRMS) were obtained using a 

Bruker Daltonics MicroTOF instrument.  

Synthesis and Analytical Data of Representative Compounds. 

6,7-Methylenedioxy-2,2-dimethyl-1,2,3,4-tetrahydroisoquinolin-2-ium iodide (4c). To a solution of 

6,7-methylenedioxy-2-methyl-1,2,3,4-tetrahydroisoquinoline 3c (191 mg, 1 mmol, 1 equiv) in dry 
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acetone (3 mL) was added methyl iodide (623 µL, 10 mmol, 10 equiv) at room temperature. The 

mixture was stirred for 12 h in the dark and then filtered. The resulting solid was washed with dry 

acetone to lead to pure 4c as a white solid (297 mg, 96 %); dec 216 °C; 1H NMR (300 MHz, DMSO-d6): 

δ 6.85 (s, 1H), 6.75 (s, 1H), 6.00 (s, 2H), 4.45 (s, 2H), 3.57−3.68 (m, 2H), 3.12 (s, 6H), 2.98−3.08 (m, 

2H); 13C NMR (75 MHz, DMSO-d6): δ 147.9, 147.1, 123.5, 120.5, 109.1, 107.2, 102.0, 63.0, 59.0, 51.3 

(2C), 24.2; HRMS (APPI): M+ found 206.1176. C12H16NO2 requires 206.1182. 

8,9-Methylenedioxy-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline (5c).
25 To a MW vial were 

successively added compound 8a (1.51 g, 6.01 mmol, 1 equiv), acetonitrile (13.2 mL) and POCl3 (4.61 

g, 30.05 mmol, 5 equiv) at room temperature. The MW vial was sealed and heated under MW 

conditions for 15 min at 150 °C. Volatiles were removed under reduced pressure and the resulting 

material was dissolved in an AcOH–MeOH (1:12, 13 mL) mixture prior to addition of NaBH4 (0.91 g, 

24.04 mmol, 4 equiv) portionwise at 0 °C with resulting gas evolution. Once the effervescence 

vanished, the resulting mixture was transferred into a new MW vial which was sealed and heated under 

MW conditions for 15 min at 90 °C. The reaction mixture was quenched with water (25 mL) and 

volatiles were removed under reduced pressure. The aqueous layer was extracted with DCM (2 x 40 

mL) then the combined organic layers were successively washed with a saturated aqueous solution of 

sodium bicarbonate and brine, dried over MgSO4, filtered and concentrated under reduced pressure. The 

resulting crude material was purified by column chromatography on silica gel using EtOAc–MeOH–

TEA (40:10:1) as eluent to provide 5c as a pale yellow oil which slowly solidified (0.68 g, 52%); 1H 

NMR (600 MHz, CDCl3): δ 6.58 (s, 1H), 6.55 (s, 1H), 5.88 (s, 2H), 3.34 (br t, J = 8.4, 1H), 3.14−3.18 

(m, 1H), 3.06−3.10 (m, 1H), 2.97−3.04 (m, 1H), 2.72 (br dt, J = 16.3 and J = 3.8, 1H), 2.52 (q, J = 8.7, 

1H), 2.25−2.32 (m, 1H), 1.88−1.97 (m, 1H), 1.81−1.86 (m, 1H), 1.65−1.73 (m, 1H). 

In Vivo Pharmacology – Methods and Data Analysis. 

Methods: Mice (n = 9−10) were individually placed in a beaker (16 cm in diameter) filled to a height of 

20 cm of water maintained at 23.5−24.5 °C. Total swim distance during the 6 min test period was 
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automatically recorded by a camera mounted above the cylinders and stored on a computer equipped 

with Ethovision (Noldus, The Netherlands). Twenty-four hours prior to drug testing a pre-test was 

performed to establish baseline swim distance for each mouse. Compounds (R)-5c and (R)-6c were 

dissolved in saline (0.9% NaCl) and given subcutaneously 15 min prior to testing in an injection volume 

of 10 mL/kg. Data analysis: The first minute was omitted from the data before statistical analysis. This 

is because animals generally swim extensively for the first minute, irrespective of treatment; hence, any 

true treatment effect only becomes apparent after one minute. Swim distance was analyzed using a one-

way analysis of covariance (ANCOVA) and followed by pairwise comparisons of the predicted means 

using the Planned Comparisons procedure. To ensure variance homogeneity and normality, data were 

log-transformed before statistical analysis. Differences were considered significant for p < 0.05.  
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FIGURES, SCHEMES AND TABLES TITLES  

Scheme 1. Synthesis of tetrahydroisoquinolinium derivatives 2a–e, 4a–f and 6a–g. Reagents and 

conditions: (i) RX (10 equiv), acetone, rt or 35 °C, 12 h, 67–96% for 2a–e, 65–96% for 4a–f, 63–81% 

for 6a–g. dMBn = 3,4-dimethoxybenzyl; Bn = benzyl. 

Scheme 2. Synthesis of racemic derivatives 5c and 5d and tetrahydroisoquinolinium derivatives (S)-6c, 

(R)-6c, (S)-6d and (R)-6d. Reagents and conditions: (i) γ-butyrolactone (1.1 equiv), MW, 150 °C, 15 

min, 76% for 8a, 70% for 8b; (ii) a) POCl3 (5 equiv), CH3CN, MW, 150 °C, 15 min; b) NaBH4 (4 

equiv), MeOH–AcOH (12:1), MW, 90 °C, 15 min, 52% for 5c, 30% for 5d (within 2 steps); (iii) CH3I 

(15 equiv), acetone, rt, 2 h, 60% for (S)-6c, 54% for (R)-6c, 42% for (S)-6d, 44% for (R)-6d. 

Table 1. Pharmacological properties of bicyclic compounds 1, 2, 3 and 4 at nAChRs. 

Table 2. Pharmacological properties of tricyclic compounds 5 and 6 at nAChRs. 

Table 3. Pharmacological properties of enantiopure tricyclic compounds 5 and 6 at nAChRs.  

Figure 1. (A) Structures of DHβE,26 erysodine,12 erysotrine12 and O-methylcorypalline (1).25 In 

parentheses are the Ki values of the compounds at α4β2 nAChR subtype determined in a 

[3H]epibatidine (for DHβE and 1) or [3H]cytisine (for erysotrine and erysodine) binding assay. (B) 

Retrosynthetic strategy towards tetrahydrosioquinolinium salts 2, 4 and 6 from derivatives 1, 3 and 5, 

respectively. 

Figure 2. GlideXP docking of ligands 2a (green), 2b (orange) and 2c (red) explaining the order of 

affinity of the three ligands as a consequence of the limited space in the binding pocket. Docking 

experiments are based on the X-ray structure of the human α4β2 nicotinic receptors (PDB ID: 5KXI).44 

Figure 3. GlideXP docking of (R)-6c (green) and (S)-6c (purple) seen from two different perspectives: 

(A) Here the interactions with three residues in the binding pocket are higligted. Hydrogen-bonds are 

shown in yellow dashed line while π-cation interactions are shown in green dashed lines. (B) Here the 

interactions with the water molecule and the size of the binding pocket are highligted. Hydrogen-bonds 
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are shown in yellow dashed line while π-cation interactions are shown in green dashed lines. Docking 

experiments are based on the X-ray structure of the human α4β2 nicotinic receptors (PDB ID: 5KXI).44 

Figure 4. In vitro pharmacological properties of tetrahydroisoquinolines and tetrahydroisoquinolinium 

salts at the nAChRs. (A) Pharmacological properties of the tetrahydroisoquinolines and 

tetrahydroisoquinolinium derivatives at the α4β2 nAChR in the [3H]epibatidine binding and FMP 

assays. Left and middle: Comparison between the binding affinities (pKi ± S.E.M., left) and antagonist 

potencies (pIC50 ± S.E.M., middle) displayed by the tetrahydroisoquinolines 1, 3a–f, 5a–g, (R)-5c, (S)-

5c, (R)-5d and (S)-5d and the corresponding tetrahydroisoquinolinium salts 2a, 4a–f, 6a–g, (R)-6c, (S)-

6c, (R)-6d and (S)-6d at the α4β2 nAChR. Right: Correlation between the binding affinities (pKi ± 

S.E.M.) and antagonist potencies (pIC50 ± S.E.M.) displayed by all active tetrahydroisoquinolines and 

tetrahydroisoquinolinium salts the α4β2 nAChR. (B) Binding properties of DHβE, (R)-5c and (R)-6c at 

nAChRs. Concentration-inhibition curves for DHβE, (R)-5c and (R)-6c at α4β2, α3β4 and α4β4 in the 

[3H]epibatidine binding assay. (C) Functional properties of DHβE, (R)-5c and (R)-6c at nAChRs. Left: 

Concentration-inhibition curves for DHβE, (R)-5c and (R)-6c at α4β2 and α3β4 in the FMP assay and 

for DHβE at α7 in the Ca2+/Fluo-4 assay. Right: Concentration-response curves for ACh, (R)-5c and 

(R)-6c at α7 in the Ca2+/Fluo-4 assay (obtained in the presence of 3 µM PNU-120596). Figures B and C 

depict data from single representative experiment performed as described in the Supporting Information 

and error bars are omitted for clarity. 

Figure 5. Effects of (R)-5c (A) and (R)-6c (B) in the mouse forced swim test. The effect of the 

previously published25 compound 1  is included for comparison (C). *p<0.05; ***p<0.001 (n=9-10).   
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Table 1a 

 Binding Ki (µM) Functional (µM) 

Compound α4β2 α4β4 α3β4 α4β2 (IC50) α3β4 (IC50) α7 (IC50) α7 (EC50) 

DHβE 0.65 ~25 ~100 0.60 ~100 ~100 - 

1 0.87 ~300 ~300 12 ~100 >100 >100 

2a 0.63 ~50 ~100 11 >300 - 9.0 

2b 9.7 >300 >300 11 >300 - weak agonistb 

2c 14 ~300 ~300 ~30 >300 >100 >100 

2d ~30 ~300 >300 ~30 >300 >100 >100 

2e ~30 >300 ~300 ~30 >300 2.0 - 

3a 2.9 ~300 ~300 24 ~100 ~30 - 

3b 15 ~300 ~300 23 >300 ~30 - 

3c 17 ~50 ~300 2.6 ~300 >100 >100 

3d ~100 >100 >100 >100 >100 >100 >100 

3e 1.7 ~100 ~100 4.4 ~100 >100 >100 

3f 2.6 ~25 ~100 6.2 >100 >100 >100 

4a 0.47 ~50 ~30 7.2 >300 - agonist (biphasic)d 

4b 4.5 17 ~30 ~30 >300 - agonist (biphasic)d 
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4c 0.38 ~30 ~50 12 >300 - 2.6 

4d >100 >100 >100 >100 >100 - weak agonistc 

4e 0.40 8.9 ~25 1.2 >100 - 0.99 

4f 0.68 1.5 9.3 1.4 >100 - 4.4 

a The binding properties of the compounds were determined with membranes from the stable rα3β4-, rα4β4- and rα4β2-

HEK293 cell lines in a [3H]epibatidine binding assay, while the functional properties of the compounds were determined 

using the mα4β2-HEK293T- and rα3β4-HEK293-cell lines in the FMP assay. The functional characterization of selected 

ligands at the human α7 nAChR was performed at the stable hα7Ric-3/NACHO-HEK293 cell line in the Ca2+/Fluo-4 assay in the 

presence of 3 µM PNU-120596. The data were the means of 3–5 individual experiments performed in duplicate. The 

complete data set for this table (i.e., Ki [pKi ± S.E.M.] values from the binding experiments, IC50 [pIC50 ± S.E.M.], EC50 

[pEC50 ± S.E.M.] and Rmax ± S.E.M. values from the functional experiments are given in the Supporting information. b,c 

Agonist-concentration response curves not complete within the tested concentration range. Significant agonist responses 

observed at concentrations of 30 µMb or 10 µMc. d Agonist-concentration response curves were biphasic. The compounds 

elicited significant and concentration-dependent agonist responses at lower concentrations, whereas higher concentrations 

elicited smaller responses. Significant agonist responses that increased with increasing concentrations were observed for 1 

and 3 µM (compound 4a) and for 0.3, 1 and 3 µM (compound 4b). At 10 µM and higher concentrations, the agonist-induced 

responses decreased substantially. 
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Table 2a 

 Binding Ki (µM) Functional (µM) 

Compound α4β2 α4β4 α3β4 α4β2 (IC50) α3β4 (IC50) α7 (IC50) α7 (EC50) 

DHβE 0.65 ~25 ~100 0.60 ~100 ~100 - 

5a 6.3 ~300 ~100 ~30 ~100 5.7 - 

5b ~50 ~300 ~300 ~50 >100 11 - 

5c 0.50 9.3 >100 2.3 ~100 - weak agonistb 

5d 4.6 ~100 ~100 ~30 ~100 >100 >100 

5e 1.4 3.3 ~100 9.1 >100 - weak agonistb 

5f ~25 ~100 >100 ~100 >100 >100 >100 

5g 8.5 ~100 ~100 15 >100 ~100 >100 

6a 2.1 ~300 ~300 3.1 ~300 - agonist (biphasic)c 

6b 11 ~300 ~300 5.7 ~300 - agonist (biphasic)c 

6c 0.14 ~50 ~30 0.52 ~30 - 2.6 

6d 2.4 ~30 ~50 ~30 ~100 - 7.5 

6e 0.23 0.92 9.3 1.8 ~50 - 1.2 

6f 3.6 12 ~25 ~30 ~100 - 5.2 

6g 17 ~25 ~50 ~50 >100 - 2.2 
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a The binding properties of the compounds were determined with membranes from the stable rα3β4-, rα4β4- and rα4β2-

HEK293 cell lines in a [3H]epibatidine binding assay while the functional properties of the compounds were determined 

using the mα4β2-HEK293T- and rα3β4-HEK293-cell lines in the FMP assay. The functional characterization of selected 

ligands at the human α7 nAChR was performed at the stable hα7Ric-3/NACHO-HEK293 cell line in the Ca2+/Fluo-4 assay in the 

presence of 3 µM PNU-120596. The data were the means of 3–5 individual experiments performed in duplicate. The 

complete data set for this table (i.e., Ki [pKi ± S.E.M.] values from the binding experiments, IC50 [pIC50 ± S.E.M.], EC50 

[pEC50 ± S.E.M.] and Rmax ± S.E.M. values from the functional experiments are given in the Supporting information. b 

Agonist-concentration response curves not complete within the tested concentration range. Significant agonist responses 

observed at concentrations of 30 µM. c Agonist-concentration response curves were biphasic. The compounds elicited 

significant and concentration-dependent agonist responses at lower concentrations, whereas higher concentrations elicited 

smaller responses. Significant agonist responses that increased with increasing concentrations were observed for 0.3, 1 and 3 

µM. At 10 µM and higher concentrations, the agonist-induced responses decreased substantially. 
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Table 3a 

 Binding Ki (µM) Functional (µM) 

Compound α4β2 α4β4 α3β4 α4β2 (IC50) α3β4 (IC50) α7 (IC50) α7 (EC50) 

DHβE 0.65 ~25 ~100 0.60 ~100 ~100 - 

(S)-5c 4.5 ~100 >100 ~30 >100 - weak agonistb 

(R)-5c 0.17 6.6 ~100 1.3 >100 - weak agonistc 

(S)-5d >100 >100 >100 >100 >100 >100 >100 

(R)-5d 2.5 ~100 ~100 16 >100 >100 >100 

(S)-6c ~25 ~25 ~25 >100 >100 - 5.4 

(R)-6c 0.045 2.7 11 0.22 ~50 - 1.6 

(S)-6d ~25 7.5 ~25 >100 >100 - 6.5 

(R)-6d 2.4 ~25 ~25 7.2 >100 - 5.1 

a The binding properties of the compounds were determined with membranes from the stable rα3β4-, rα4β4- and rα4β2-

HEK293 cell lines in a [3H]epibatidine binding assay while the functional properties of the compounds were determined 

using the mα4β2-HEK293T- and rα3β4-HEK293-cell lines in the FMP assay. The functional characterization of selected 

ligands at the human α7 nAChR was performed at the stable hα7Ric-3/NACHO-HEK293 cell line in the Ca2+/Fluo-4 assay in the 

presence of 3 µM PNU-120596. The data were the means of 3–5 individual experiments performed in duplicate. The 

complete data set for this table (i.e., Ki [pKi ± S.E.M.] values from the binding experiments, IC50 [pIC50 ± S.E.M.], EC50 

[pEC50 ± S.E.M.] and Rmax ± S.E.M. values from the functional experiments are given in the Supporting information. b,c 

Agonist-concentration response curves not complete within the tested concentration range. Significant agonist responses 

observed at concentrations of 30 µMb or 10 µMc. 
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Scheme 1 

 

Scheme 2 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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