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Abstract: Structural modifications of nicotinamide, a form of vitamin B3, gave rise to 

a series of compounds (8aa−8ce) that exhibit activities as type I positive allosteric 

modulators (PAMs) of human α7 nAChR expressed in Xenopus ooctyes in 

two-electrode voltage clamp assay. The compound 8ai was a potent and efficacious 

PAM with an EC50 = 3.34 ± 1.13 μM and the maximum activation effect of α7 current 

over 1474 ± 246% in the presence of acetylcholine (100 μM). It is highly specific to 

α7 nAChR over other subtypes of nAChR and 5-HT3A receptors. The 

structure−activity relationship analysis identified a key skeleton of nicotinamide 

nucleus critical for biological activity. Taken together, the 8ai as a type I PAM of α7 

nAChR may be beneficial for improvement of cognitive deficit.  

 

Keywords: Nicotinamide; α7 nAChR; Positive allosteric modulators; Cognitive 

impairment; Alzheimer’s disease 

 

The α7-subtype of nicotinic acetylcholine receptors (α7 nAChR) has been well 

recognized as a potential target in the central nervous system (CNS) for treatment of 

neuropsychiatric disorders, such as Alzheimer’s disease (AD).1 Several studies have 

shown that coincident compromises in cholinergic activity and cognition in early AD 

may be mediated by the α7 nAChR, suggesting that the activation of α7 nAChR may 

represent an effective treatment strategy for the cognitive impairments associated with 

early AD.2 The α7 homomeric receptor demonstrates a wide-spread localization in the 

brain and is characterized by a high calcium ion permeability and a fast 
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desensitization rate.3 Clinical studies have shown that targeting α7 nAChR with 

selective agonists or partial agonists can effectively improve the cognitive deficits in 

Alzheimer’s disease.4 Positive allosteric modulators (PAMs) have been demonstrated 

numerous advantages over agonists for their maintenance of the normal temporal and 

spatial patterns of neurotransmission and high selectivity. 5 They can also improve the 

safety compared with orthosteric drugs.6 For instance, MDL-800 was reported to be a 

well-characterized allosteric activator with good selectivity and high activity of 

SIRT6.7 Based on their channel kinetics and desensitization characteristics, the PAMs 

of nicotinic receptors are classified into types I and II.8 Both types of PAMs have 

been found with in vivo efficacy in animal models of cognition deficit,9 whereas type I 

PAMs can maintain the rapid channel kinetics, which may be more beneficial than 

type II PAMs at minimizing potential Ca2+-induced cytotoxicity.10 α7 nAChR and 

other subtypes including α4β2 and α3β4 of nAChR are also expressed in the cortex, 

hippocampus, and cerebellum,11 whose functions can be activated by acetylcholine or 

enhanced by α7 nAChR PAMs. Therefore, the design and synthesis of novel selective 

α7 nAChR PAMs with high potency and efficacy are expected to achieve desired 

therapeutic indexes with little side effects. 

The chemical structures of representative type I PAMs includes acrylamide 1 

(AVL-3288, CCMI, Figure 1),12 ureas 2 (NS-1738, Figure 1)13 and 

(2-amino-5-keto)thiazole compound 3 (LY-2087101, Figure 1).14 Among these type I 

PAMs, only AVL-3288 is currently in the clinical phase I development stage. 

Therefore, it is necessary to discover and develop more potent type I PAMs with high 

selectivity. 
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Figure 1. Representative type I α7 nAChR PAMs. 

Nicotinamide is amide form of vitamin B3, which has recently been shown to be 
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effective in restoring cognition and memory. Nicotinamide can prevent necrosis and 

apoptosis in the brains of MPTP-treated mice and promote learning and memory.15 

Nicotinamide improves sevoflurane-induced cognitive impairment and has an 

anti-inflammatory and anti-apoptotic effect against sevoflrane-induced damages.16 It 

has also been shown that nicotinamide can forestall the pathology and cognitive 

decline in mice.17 Therefore, rational use and modification of nicotinamide structure 

may lead to discovering novel α7 nAChR PAMs compounds that can better improve 

cognitive impairment. 

We have previously synthesized a series of thiazolo[4,5-d]pyrimidin-7(6H)-ones 

(Figure 2) that as type I PAMs exhibit good activity on α7 nAChR expressed in 

Xenopus oocytes in two-electrode voltage clamp assay.18 Among them, compound 4 

shows as a potent PAM with the maximum activation effect of α7 current over 1622 ± 

106% in the presence of acetylcholine (100 μM) and an EC50 = 8.45 ± 0.078 μM. 

Compound 5 exhibits the type I PAM activity on α7 nAChR with an EC50 of 1.26 ± 

0.18 μM (n = 6) and enhancement rate of 1633 ± 87% (10 μM) in the presence of 100 

μM ACh. A series of 3H-quinazolin-4-one derivatives 6 were designed and 

synthesized on the basis of compound 4 and 5 (Figure 2). However, they show a weak 

negative activity (6a: enhancement rate of 76% at 10 μM; 6b: 65%) rather than 

activating effect. 19 
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Figure 2. The representative structures reported by our research work. 

 

In this work, we envisaged that more efficient compounds could be produced by 

introducing the structure of nicotinamide to molecular 6.20 To test this hypothesis, we 

started unclosing the pyrimidinone ring of 6 to obtain the compound 7 with a weak 
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positive activity (136%, Figure 3). Then, further modification of 7 was performed 

with nicotinamide instead of benzamide to provide compound 8aa that showed a 

5-fold improvement of activity (604%, Figure 3). Herein, we report the synthesis of a 

new series of nicotinamides 8ac‒8ce and evaluation of their biological activities as 

novel PAMs of α7 nAChRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The optimization of α7 nAChR modulators 

The synthesis route of benzamide derivative 7 is outlined in Scheme 1. The key 

intermediate 10 was obtained via one pot reaction of 2-amino-5-iodo-benzoic acid 9a, 

2-chloro-6-methyl-phenylamine and trimethoxymethane in toluene in the presence of 

catalytic acetic acid at 110 ºC for 24h.21 Then palladium-catalyzed Suzuki coupling 

reaction of 10 with 4-fluro-phenylboronic acid provided 11 in the presence of 0.05 

equiv Pd(PPh3)4 and 2 equiv K2CO3 with good yield.22 Finally, 11 was dissolved in 

absolute ethyl alcohol in the presence of 5N NaOH at 73 ºC for 2 h to produce 

benzamide derivative product 7. 

 

 

 

 

Scheme 1. 
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Reagents and conditions: a) AcOH(cat.), Toluene, 110 oC (yield: 65%); b) Pd(PPh3)4, K2CO3,THF, 

90 oC (yield: 75%); c) 5N NaOH, C2H5OH, 73 oC (yield: 66%). 

The nicotinamide derivatives 8aa‒8ce were synthesized from the commercially 

available nicotinic acid derivatives 9b and 9c as outlined in Scheme 2. 9b and 9c 

reacted with SOCl2 in toluene at 110 ºC for 2 h gave two nicotinoyl chloride 

intermediates. The nicotinoyl chlorides were stirred with corresponding anilines in 

THF at 0 ºC for 0.5 h, then reflux at 90 ºC for another 4 h produced 12a‒12d, which 

were treated with corresponding boronic acids in the presence of 0.05 equiv Pd(PPh3)4 

and 2 equiv K2CO3 in THF at 90 ºC to afford target nicotinamide derivatives 8aa‒8ce 

with 18‒68 % yields. 
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Scheme 2. Reagents and conditions: a) SOCl2, Toluene, 110 oC; Corresponding anilines R2NH2, 

THF, 0 oC‒90 oC(38 %‒43 %); b) R3B(OH)2, K2CO3, Pd(PPh3)4, THF, 90 oC (18 %‒68 %). 

The target compounds were tested for the in vitro activities in Xenopus laevis 

oocytes expressing human α7 nAChR with method described in our previous work.23 

Those compounds were inactive in eliciting α7 current in the absence of direct 

agonists, then adding acetylcholine (ACh, 100 μM) to 10 μM test compounds resulted 

in the activation of α7 currents, suggesting that the compounds were positive 

allosteric modulators of α7 nAChR. The maximum modulation (at 10 μM) and EC50 

(max effect > 400%) were determined and listed in Tables 1–3. 

Table 1. In vitro activities of compounds 7 and 8aa−8aw for enhancement of human 

α7 nAChRa 

X NH2

N
H

O
R

Cl
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Compd. R X 
EC50 

(μM) 

Max effect 

(%, at 10 μM) 

7 4-F CH ND 136 ± 36 

8aa 4-F N 4.57 ± 1.43 604 ± 110 

8ab 3-F N ND 86 ± 3 

8ac 2-F N ND 119 ± 7 

8ad 4-Cl N ND 278 ± 47 

8ae 4-CF3 N ND 164 ± 7 

8af 4-OCF3 N ND 153 ± 22 

8ag 4-NO2 N ND 135 ± 2 

8ah 4-F-2-Me N ND 225 ± 67 

8ai 4-F-3-Me N 3.34 ± 1.13 1474 ± 246 

8aj 2-Cl-4-F N ND 186 ± 5 

8ak 3-Cl-4-F N 5.49 ± 0.45 495 ± 88 

8al 4-Cl-3-F N ND 229 ± 82 

8am 3-F-4-Me N 3.31 ± 1.22 609 ± 123 

8an 2-F-4-Me N ND 372 ± 14 

8ao 4-OMe N 8.50 ± 2.59 531 ± 96 

8ap 3-OMe N ND 212 ± 8 

8aq 2-OMe N 4.32 ± 0.84 1008 ± 85 

8ar 4-SMe N 4.96 ± 2.57 774 ± 183 

8as 4-OH N ND 257 ± 28 

8at 4-Me N 3.19 ± 1.77 539 ± 105 

8au 4-Et N 1.35 ± 0.18 455 ± 101 

8av 4-NHCOCH3 N ND 109 ± 9 

8aw 4-H N ND 273 ± 39 

aData were collected from 2–5 individual oocytes expressing 7 current recorded by 

two-electrode voltage clamp. EC50 is the compound concentration where the half of maximum 

activation effect (max effect) was achieved. ND: not determined. 

 

The substitution of the benzamide with nicotinamide (8aa, Table 1) resulted in an 
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obvious increase in activity. This result indicates that nicotinamide may be beneficial 

for allosteric modulation activity of α7 nAChR. Based on the in vitro activities of 7 

and 8aa as shown in Table 1, we examined the effects of the substitutes (8ab−8aw) on 

the phenyl group in R. Moving the fluorine atom of 8aa to the 3-positon (8ab) and 

2-position (8ac) dramatically reduced the activity. The substitutions of R in 8aa with 

4-Cl, 4-CF3, 4-OCF3, 4-NO2 (8ad‒8ag) reduced the activity. Based on the maximum 

effects acquired from 4-fluoro, we envisaged that the introduction of methyl or 

chlorine to the ortho- and meta-positions of phenyl group may improve the activity. 

Therefore, compounds 8ah−8ak were designed and synthesized and provided the 

maximum effects ranging from 186% to 1474%. Among them, 8ai (maximum effect 

of 1474% and EC50 = 3.34 ± 1.13 μM) exhibited the highest activity. Not surprisingly, 

when we exchanged the 4-fluoro with the 3- or 2-position substituents, the activity of 

two compounds decreased (maximum effect: 1474% for 8ai vs 609% for 8am, 495% 

for 8ak vs 229% for 8al) with one compound increased slightly ( maximum effect: 

225% for 8ah vs 372% for 8an). Changing the 4-F of 8aa (604%) to 4-OMe (8ao, 

531%), 3-OMe (8ap, 212%), 4-OH (8as, 257%), 4-Me (8at, 539%), 4-Et (8au, 455%), 

4-NHCOCH3 (8av, 109%), 4-H (8aw, 273%) did not obviously improve activities. 

However, Changing the 4-F of 8aa (604%) to 2-OMe (8aq, 1008%), 4-SMe (8ar, 

774%) can achieve better activities. 

Table 2. In vitro activities of compounds 8ba−8bc for enhancement of human α7 

nAChRa 

N NH2

N
H

O

Cl

R

 

Compd. R 

EC50 

(μM) 

Max effect 

(%, at 10 μM) 

8ba Thiophen-3-yl ND 153 ± 12 

8bb Furan-3-yl ND 111 ± 6 

8bc Pyridin-3-yl ND 138 ± 12 

aSame as that in Table 1. 
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The modifications of the 4-fluorophenyl group in 8aa to aromatic heterocycle 

substituents (8ba−8bc) led to dramatic reduction of activity or even complete loss of 

the effect (Table 2), indicating that the substituted phenyl group was the key 

pharmacophore for this novel series of compounds. 

 

Table 3. In vitro activities of compounds 8ca−8ce for enhancement of human α7 

nAChRa 

N R3

N
H

O
R1

R2

 

 

Compd. R1
 R2 R3 

EC50 

(μM) 

Max effect 

(%, at 10 μM) 

8ca 4-F-3-Me 4-H -NH2 ND 94 ± 10 

8cb 4-F-3-Me 2-Me -NH2 ND 156 ± 22 

8cc 4-F 2-Cl-6-Me -H ND 248 ± 31 

8cd 4-Me 2-Cl-6-Me -H 1.97 ± 0.96 603 ± 191 

8ce 4-Cl 2-Cl-6-Me -H ND 150 ± 18 

aSame as that in Table 1. 

Changing the 2-chloro-6-methyl group (8ai, 1474%) in R2 to 4-H (8ca, 94%) or 

2-Me (8cb, 156%) remarkably reduced the activity, indicating that the 

2-chloro-6-methyl group was important for the activity. When we changed the –NH2 

to –H in R3, the activity of two compounds decreased (maximum effect: 604% for 8aa 

vs 248% for 8cc, 278% for 8ad vs 150% for 8ce) with one compound increased 

(maximum effect: 539% for 8at vs 603% for 8cd).  

A 

A 
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Figure 4. Selective enhancement of human α7 nAChR current by 8ai over other subtypes of nAChRs 

and 5-HT3A expressed in Xenopus oocytes. (A) 7 currents were recorded by TEVC in response to 100 

μM ACh alone (first trace) or in the presence of 8ai (second trace). The currents activated by 8ai were 

recorded in the absence (third trace) and presence (fourth trace) of 10 nM MLA (right). (B) 

Fold-increases of α7 nAChR (evoked by 100 μM ACh, n = 5), α3β4 nAChR (100 μM ACh, n = 5), 

α4β2 nAChR (100 μM ACh, n = 5), and 5-HT3A receptors (10 μM 5-HT, n = 5) after incubation with 10 

μM 8ai. (C) Superimposition of scaled α7 current traces evoked with 100 μM ACh in the absence 

(black trace) and presence (red trace) of 10 μM 8ai. (D) Comparison between the desensitization time 

constants (τdesensitization) in the absence and presence of 8ai (ACh, τdesensitization = 6.37 ± 2.56; ACh + 8ai, 

τdesensitization = 3.49 ± 0.50; p = 0.1092 > 0.05, n = 5). 

 

Based on the results presented above, it can be concluded that, among the 

synthesized analogs, 8ai is the optimal PAM of α7 nAChR. A preincubation of 8ai for 

2 min before application of 100 μM ACh remarkably increased the peak current of α7 

nAChR (Figure 4A). The examination of the channel desensitization kinetics showed 

that 8ai had a little effect the desensitization of α7 nAChR, causing a minor decrease 

in τdesensitization(Figure 4C, D). 
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Figure 5. Concentration-dependent enhancement of α7 current by 8ai. (A) Representative α7 currents 

were evoked by 100 μM ACh in the absence and presence of 8ai at various concentrations. Xenopus 

oocytes were preincubated with 8ai for 2 min, followed by the coapplication with 100 μM ACh (10 s). 

(B) Relationship between 8ai concentration and activity of α7 nAChR. Xenopus oocytes expressing α7 

nAChR were stimulated with 100 μM ACh in the absence and presence of increasing concentrations of 

8ai. Peak currents were measured and normalized with the amplitude of currents elicited by 100 μM 

ACh alone. The maximum efficacy of 8ai for enhancement of 7 current was 1474 ± 246% with an 

EC50 of 3.34 ± 1.13 μM, and Hill coefficient (nH) of 1.67 ± 0.67 (n = 5 for all data points). (C) ACh 

concentration−response curves in the absence and presence of 10 μM 8ai. Peak currents were measured 

and normalized with the amplitude of currents elicited by 100 μM ACh alone. The curve parameters 

were determined as follows: ACh alone: Emax = 339 ± 0%, EC50 = 231.8 ± 2 μM, nH = 2.00 ± 0.00. ACh 

+ 8ai: Emax = 2167 ± 577%, EC50 = 257.6 ± 162.2 μM, nH = 0.82 ± 0.12 (n =4 for each data point). 

 

The activation of α7 nAChR by 100 μM ACh alone was first recorded as a control 

before different concentrations (0.1~30 µM) of compound 8ai were co-applied with 

100 μM ACh after 2 min preincubation. As shown in Figure 5A, 8ai enhanced α7 

currents in dose-dependent manner in the presence of 100 μM ACh. Fitting the 

concentration-dependent activation of α7 current by 8ai gave rise to an EC50 = 3.34 ± 

1.13 μM, Emax = 1474 ± 246%, and Hill coefficient (nH) =1.67 ± 0.37 (Figure 5B). To 

further confirm the activity of 8ai, concentration-dependent activation of α7 by ACh 

was generated in the absence or presence of 10 μM 8ai. Preincubation of 8ai for 2 min 

increased α7 current about 7-fold from 339 ± 0% to 2167 ± 577%, without significant 

alteration of the EC50 value of ACh from 231.8 ± 2 μM to 257.6 ± 162.2 μM (Figure 

5C). 

In conclusion, our chemical modifications of nicotinamide identified a novel 
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compound 8ai that functions as type I PAM of α7 nAChR. The structure−activity 

relationship (SAR) analysis revealed that the substitutions of phenyl group at the 

5-position and the 2-chloro-6-methylcarbamoyl at the 3-position of the pyridine ring 

are important for the activity of these compounds. The compound 8ai may serve as a 

lead compound for further development of potential candidate for improving 

cognitive function.   
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