

Article

Room Temperature, Metal-catalyzed Oxidative Acylation of Electrondeficient Heteroarenes with Alkynes, its Mechanism and Application Studies

Shweta Sharma, Mukesh Kumar, Ram A. Vishwakarma, Mahendra K. Verma, and Parvinder Pal Singh

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01475 • Publication Date (Web): 21 Sep 2018

Downloaded from http://pubs.acs.org on September 21, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Room Temperature, Metal-catalyzed Oxidative Acylation of Electron-
deficient Heteroarenes with Alkynes, its Mechanism and Application
Studies

Shweta Sharma,¹ Mukesh Kumar,¹ Ram A. Vishwakarma,¹Mahendra K. Verma²and Parvinder Pal Singh^{1,*}

¹Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

²Analytical Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

Abstract:

Herein, we report an original one-step, simple, room-temperature, regio-selective Minisci reaction for the acylation of electron-deficient heteroarenes with alkynes. The method has broad functional group compatibility and gives exclusively mono-acylated products in good to excellent yields. The mechanistic pathway has been analyzed based on a series of experiments confirming the involvement of a radical pathway. The ¹⁸O-labeling experiment suggested that water is a source of oxygen in the acylated product and head space GC-MS experiment shows the C-C cleavage occurs *via* release as CO₂.

Introduction:

Minisci's reaction presents an attractive approach for the C-H functionalization of electrondeficient heteroarenes. Over the last decade, this approach has been studied in depth with mechanism and application.^{1,2} Minisci's reaction has been respect to its diversity. successfully employed for the acylation, alkylation, arylation, carbamoylation, amidoalkylation, etc. of electron-deficient heteroarenes.^{3,4} Among these, acylation and alkylation reactions are considered the most important because of the wide occurrence of the produced structures in natural products^{5,6} and bio-active compounds.^{7, 2a,8} The synthesis of acylated and alkylated heteroarenes has been achieved using several donor compounds. Acylation has been performed with oxo-acid, aldehyde, methylarene, and selenoester groups, ^{1a,9,10,11,12} while alkylation has been achieved with acids, alcohols, alkyl boronic acids and their salts, xanthates, acetals, and alkyl halides (Figure 1).^{3,13} Under oxidative conditions, these donors are converted into nucleophilic carbon-centered radicals and subsequently react with electrophilic heteroarenes to furnish the corresponding coupled products. In spite of the wide diversity of products that can be produced, use of these methods includes several drawbacks, such as high reaction temperatures, requirement of a stoichiometric amount of catalysts and poor regio-selectivity. Consequently, the development of an effective alternative method with a wide substrate scope and an ambient reaction temperature is highly desired. It has also been documented that heteroatom (O, N, P, and S)-based radicals can behave electrophilically, and many examples have been reported wherein radicals of this type were coupled with electron-rich nucleophiles, such as alkenes, alkynes, and heteroarenes.¹⁴ Two notable examples are the difunctionalization of olefinic and acetylenic compounds and related reactions^{14a} and the coupling of the α -C(sp³)-H of amides with azoles.^{14b} Considering our interest in radical-based reactions,^{5b,14b,15} we proposed that if readily prepared heteroarene N-oxides can be converted in situ into corresponding electrophilic N-oxide radicals under oxidative reaction conditions, this electrophilic radical can then react with electron-rich species such as acetylenic derivatives and provide a complementary approach for the regio-selective generation of 2-substituted heteroarenes (Figure 1).

For this synthetic approach, a new chemical reaction method has been successfully developed for the simple acylation of electron-deficient heteroarenes. The present approach uses the Minisci reaction with reverse (umpolung) reactivity of coupling partners, deviating from the classical mechanism. This new synthetic pathway allows for the preparation of heteroarenes with high regio-selectivity and good to excellent yields

	+	Catalyst,oxidant		
N O		Solvent, rt, 2-12 h	N	\int
- 1	2		3	a
Entry	Catalyst (eq)	Oxidant (equiv.)	Solvent Pr	0
1	AgNO ₃ (0.2)	TBHP (3)	DCM:H ₂ O (1:3)	
2	AgNO ₃ (0.2)	K ₂ S ₂ O ₈ (3)	DCM:H ₂ O (1:3)	
3	AgNO ₃ (0.2)	K ₂ S ₂ O ₈ (3)	Toluene:H ₂ O (1:3)
4	AgNO ₃ (0.2)	K2S2O8 (3)	DCE:H ₂ O (1:3)	Ĺ
5	AgNO ₃ (0.2)	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
6	AgNO ₃ (0.2)	$K_2S_2O_8(3)$	DCM (3 ml)	
7	AgNO ₃ (0.2)	K ₂ S ₂ O ₈ (3)	ACN (3 ml)	
8	Ag ₂ O (0.2)	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
9	AgF(II) (0.2)	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
10	AgF(I) (0.2)	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
11	Ag ₂ CO ₃ (0.2)	$K_2S_2O_8(3)$	H ₂ O (3 ml)	
12	Ag ₂ C ₂ H ₃ O ₂ (0.2)	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
13	AgNO ₃ (0.2)	$K_2S_2O_8(1)$	H ₂ O (3 ml)	
14	AgNO ₃ (0.2)	K ₂ S ₂ O ₈ (2)	H ₂ O (3 ml)	
15	AgNO ₃ (0.2)	-	H ₂ O (3 ml)	
16	-	K ₂ S ₂ O ₈ (3)	DCM:H ₂ O (1:3)	
17	-	K ₂ S ₂ O ₈ (3)	H ₂ O (3 ml)	
18	-	K ₂ S ₂ O ₈ (5)	H ₂ O (3 ml)	

Conditions^a

Product (% yield)

NR

NR

NR

NR

NR

^aReaction conditions (unless otherwise noted): 1 (0.5 mmol), 2. (0.6 mmol), AgNO₃ (0.1 mmol) and K₂S₂O₈ (1.5 mmol), solvent (4 ml).

Results and discussion:

We selected pyridine-N-oxide and phenylacetylene as the coupling partners to test the proposed method (Table 1). The study beganwith treatment of the selected substrates with silver nitrate (0.2 eq.) as a catalyst and TBHP (3 eq.) as an oxidant in a dichloromethane:water (DCM:H₂O) solvent system at room temperature. Unfortunately, no coupling was observed under these reaction conditions. In the next experiment, the oxidant was replacedby potassium persulfate (K₂S₂O_{8,} 3eq.) and coupling was observed with the isolated product identified as 2-acylated pyridine **3a** (entry 2). The coupled product **3a** was isolated in 84% yield. Under other solvent systems, such as toluene:water and 1,2dichloroethane:water (DCE:H₂O), the reaction proceeded but with comparatively lower yields (entries 3-4). When the reaction was attempted in water alone, coupling also proceeded efficiently (entry 5), similarly to that observed in the DCM:water system. However, when the

reaction was performed in DCM and acetonitrile (ACN), no coupling was observed (entries 6-7). In an attempt to further refine the process, AgNO₃ was changed to Ag₂O, AgF(II), AgF(I), Ag₂CO₃ and Ag₂C₂H₃O₂, but no advantage was observed with the use of these alternative catalysts (entries 8-12). When the amount of K₂S₂O₈ added was changed, the formation of the coupled product was however affected (entries 13-14). No coupling was observed when K₂S₂O₈ was removed from the reaction mixture entirely (entry 15). When the reaction was conducted in the presence of the oxidant alone, coupling was observed, but with a lower yield of 18% (entry 16), which suggested that K₂S₂O₈ and different solvent systems, but all of these experimental reaction conditions afforded the final product in low yields (entries 17-18). From the screening studies, the best coupling conditions were identified as 0.2 eq. of AgNO₃ and 3 eq. of K₂S₂O₈ in a water or DCM:water system at room temperature (entries 2 and 5).

Equipped with a set of standard conditions, we then explored its diversity by conducting reaction using various pyridine-*N*-oxides and acetylenes. Interestingly, the scope of this approach was found to be very broad. Various aliphatic and aromatic acetylenes, including those with both electron-donating and electron-withdrawing substituents, can be successfully used (Scheme 1). According to Scheme 1, pyridine-*N*-oxides underwent a smooth coupling reaction with electron-donating phenylacetylenes such as 4-ethynyltoluene, 4-ethynylanisole and 4-ethynyl biphenyl to afford the corresponding coupled products **3b**, **3c** and **3d** in yields of 74, 76 and 46%, respectively. Similarly, electron-withdrawing phenyl acetylenes such as 1-ethynyl-4-fluorobenzene, 1-chloro-4-ethynylbenzene, 1-ethynyl-4-(trifluoromethyl)benzene and 1-ethynyl-4-(nitro)benzene also underwent reaction with pyridine-*N*-oxide **1** and furnished the corresponding acylated products **3e**, **3f**, **3g** and **3h** in good to moderate yields (45-77%). When pyridine-*N*-oxide **1** was treated with 1-ethynyl-4-phenoxybenzene, the

 corresponding 2-acylated product **3i** was obtained in a 59% yield. Pyridine-*N*-oxide **1** also reacted well with *ortho*-substituted and bisubstituted phenylacetylenes such as 1-ethynyl-2-nitrobenzene and 1-ethynyl-4-fluoro-3-methylbenzene, and the respective products **3j** and **3k** were obtained in yields of 50 and 56%, respectively. The observed smooth reaction of acetylenes containing electron-withdrawing substituents are considered to be one of the major advantages of the proposed method.

Scheme 1. Substrate scope

Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), AgNO₃ (0.1 mmol) and $K_2S_2O_8$ (1.5 mmol) in H₂O (3 ml) at room temperature for 3-4 hrs. 5eq of acetylene,[#] 1ml of DCM,[#]Time of reaction 12 hrs.[#]

Similarly, the reaction of pyridine-*N*-oxide **1** with aliphatic acetylenes such as 1-Hexyne and 1-octyne was tested under the optimized conditions, resulting in production of the corresponding coupled products **31** and **3m** but at comparatively lower yields (~38%). Substituted pyridine-*N*-oxides were also used to examine the further potential diversification of the method applications. Reaction of 4-methyl, 2-methyl and 2-methoxy pyridine-*N*-oxides

with substituted and unsubstituted phenylacetylenes afforded the corresponding products (**3n**, **3o**, **3u**, **3v** and **3w**) in good to excellent yields (71-78%). Pyridine-*N*-oxides with electronwithdrawing substituents, such as 4-nitro, 4-(trifluoromethyl) and 4-cyno groups, were also analyzed and afforded the corresponding 2-acylated products **3p-3t** in low to moderate yields (23-55%). When 3-methyl pyridine-*N*-oxide was treated with phenylacetylene and 1-ethynyl-4-fluorobenzene, however, it afforded a separable mixture of the 2-substituted products **3x**, **3y** and **3z** in a moderate yield of 38, 41 and 47% respectively along with traces of the 6substituted products **3x**, **3y**'and **3z**'. Reaction of 2,2'-bipyridyl-*N*-oxide was also found to furnish the coupled product **3aa** in 35% yield. Treatments of pyrazine, diazine, with phenylacetylene produced are the action that generated the acylated product **3ab** in a yield of 30%. In the case of lutidine-*N*-oxide, where both the 2nd and 6th positions were blocked, coupling was not detected, suggesting that a free C-H bond on the heteroatom adjacent to the nitrogen is necessary for the successful coupling reaction.

Scheme 2. Substrate scope

Reaction conditions: **4,6** (0.5 mmol), **2** (0.6 mmol), AgNO₃ (0.1 mmol) and K₂S₂O₈ (1.5 mmol) in H₂O (3 ml) at room temperature for 3-6 hrs; Addition of 1 ml of DCM*

After investigating the scope of pyridine-*N*-oxides and acetylenes suitable for application in the oxidative acylation, we focused our attention on the determination of the scope of fused

heteroarenes (Scheme 2) that could be successfully used. Pleasingly, a variety of fused heteroarenes were found to react smoothly with the acetylenes. Reaction of quinoline *N*-oxide with substituted and unsubstituted phenylacetylenes provided 2-acylated products **5a-5e** in good yields (61-70%). Under the same optimized reaction conditions, quinoxaline *N*-oxide was also found to react with acetylene to produce the acylated product **5f** in a 25% yield. Isoquinoline *N*-oxide also reacted smoothly with substituted and unsubstituted acetylenes under the optimized conditions (Scheme 2). These reactions occurred in the presence of both electron-withdrawing and electron-donating containing substituents on the phenylacetylenes to gave the C-1 arylated coupled products **7a-7f** but at comparatively lower yields (35-63%) than those obtained with quinoline *N*-oxide.

Scheme 3. Substrate scope

Reaction conditions: 8a (0.5 mmol), 2 (0.6 mmol), AgNO₃ (0.1 mmol) and $K_2S_2O_8$ (1.5 mmol) in H₂O (3 ml) at room temperature for 4 hrs.

A notable potential application for the present method is the acylation of the well-known natural product quinine, an anti-malarial drug. Under the optimized reaction conditions, when quinine analogue **8a** was reacted with phenylacetylene (Scheme 3), the reaction proceeded and the corresponding coupled product **9a** was obtained in a moderate yield of 34%. The successful acylation of quinine-based functional molecules further widen its utility towards functionalization and diversification of this type of heterocycle, opening new avenues for the functionalization of compounds like quinine to decrease side effects.¹⁶

Figure 2. Isotope experiment

To gain insight into the reaction mechanism, a series of control experiments were performed (eq. 1-10, Scheme 4) When the reactions were performed in the presence of free radical scavengers such as TEMPO, the formation of the product 3a, was significantly suppressed (eq. 1), confirming the involvement of a radical pathway. The pathway for the conversion of phenylacetylenes into glycoxal/glyoxylic acid **10a/b** and subsequent coupling with heteroarenes via decarboxylation was ruled out by performing the reaction with phenylacetylene underoxidative conditions and looking for the formation of glycoxal/glyoxylic acid **10a/b** (eq. 2-3). Under these conditions, no glycoxal/glycoxylic acid **10a/b** formation was observed, suggesting that the present reaction proceeded through an alternative pathway. When the reaction was performed with pyridine and its salt, no coupled product was observed, again ruling out the possibility of the formation of glycoxal/glycoxylic acid 10a/b and its involvement (eq. 4-5). The reaction under a nitrogen atmosphere preceded smoothly, suggested that atmosphere oxygen does not play any role in the reaction (eq. 6).

Page 13 of 32

Next, we conducted the reaction in the presence of ¹⁸O-labelled water, wherein LC-MS analysis showed a 70% presence of 18 O in the product 17 (Figure 2) suggested that water is the source of oxygen atom in acylated product. The phenyl acetylene is known to form silver acetylide on reaction with silver salt and its existence in the present conditions was also confirmed. When the heteroarene N-oxide 1 was treated with preformed silver acetylide 10 (prepared by known procedure),¹⁸ the corresponding coupled product was obtained (eq. 7) suggested its role in the present reaction. The reaction of pyridine salt when tried with silver acetylide, no product formation was seen, again suggested that N-oxide is important for the reaction (eq. 8). In another attempt, the intermolecular competition experiment was also carried out (eq. 9), indicating that electron density on the phenyl rings plays an important role in reaction rate, also explaining the reason for lower yield in case of electron-withdrawing group containing substrates. A kinetic isotope effect (KIE) experiment was conducted with pyridine N-oxide 1 and its deuterated analogue (eq. 10 and Figure S1 of Supporting Information(SI)) and K_H/K_D ratio was found to be 2.1 suggested that the C–H bond cleavage may also be involved in the rate-limiting step although it is not conclusive at the present stage (need further investigation). The reaction involves the C-C bond cleavage and release of CO_2 was understood by carrying out the reaction in a specialized head space sealed bottle and analyzed the volatiles in GC-MS instrument. Samples were collected after regular interval of times has shown two peaks in the chromatogram at the retention time of 2.3 and 6.8 with m/zof 44 and 102 Da which correspond to CO_2 and phenyl acetylene 2 (Figure 3 and S2 of SI). Figure 3 shows the percentage of CO_2 and phenyl acetylene at different interval of time, where CO₂ concentration constantly increased with time, suggested the C-C cleavage involved the release of CO_2 under present oxidative conditions. On the basis of literature precedents^{14b,19-21} and our experiments, the following cascade is proposed for the present method (Figure 4). First, a persulfate radical anion (SO4⁻) generated through the reaction of silver nitrate and persulfate abstracts an electron from the N-oxide 1 to generate the radical intermediate I_{1} ^{21c} which acts as an electrophile and react with *in situ* generated silver acetylide (Figure S3b of SI) to furnish the intermediate I_2 (*path a*) which is confirmed by LC-MS (Fig S4a-b of SI). The possibility of path b, similar to Cu-catalyzed Miura method²⁰ couldn't be ruled out but reaction between two electron rich species is energetically less favourable, however, the formation of radical I_1 will converts 1 into electrophilic species which easily facilitate the reaction. No reaction in the absence of persulfate (entry 15, Table 1) as well as in the presence of TEMPO also suggested the involvement of radical pathway. The intermediate I_2 may proceed further by either ketene based intermediate I_3 or metalloketene based intermediate I4.19 During intermediate capturing experiment, ketene based intermediate I_3 was observed (Figure S5b of SI) suggested the involvement of ketene based intermediate I_3 in the present method. The intermediate I_3 will further undergo reaction with water and generate intermediate I_4 , similar to Wolf-rearrangement,²¹ which will isomerize into more stable acid-based intermediate I_6 . The intermediate I_6 will form silver carboxylate I_7 (captured in LC-MS study (Figure S5a of SI), which undergoes decarboxylation in the presence of Ag^{2+} . Then I₇ undergoes decarboxylation (release of CO₂) is confirmed by GC-MS, Figure S2 of SI) followed by electron-loss and water attack (confirmed by $H_2^{18}O$ experiment) to give final 2-acylated product 3.

Figure 3: Headspace GC-MS analysis for the release of CO₂

Figure 4. Plausible reaction mechanism

In summary, we have developed an original regio-selective acylation method for electrondeficient heteroarenes using various types of alkynes. The optimized method presents a unique and powerful approach for the functionalization of the C-H bond of heteroarenes. The room temperature, open-atmosphere operation and regio-selectivity of the present method are its main advantages over previously reported methods. The optimized method has worked with wide range of substrates. Additionally, direct acylation of functional molecules such as 2,2'-bipyridine and quinine was also achieved using the proposed method.

Experimental section:

General Information

All the reactions were performed at room temperature in air and monitored by using pre-coated silica gel TLC (60 F254, 20 × 20 cm). TLC plates were visualized by exposing UV spectrometry at 254 nm or by iodine vapors or by charring in Dragendorff reagent. Buchi rotavapor was used for concentration of organic solvents. Compounds were purified by flash column chromatography on flash silica gel 230–400 mesh size. All the ¹H NMR spectra were recorded with 400 and 500 MHz NMR instruments. Chemical data for protons are given in parts per million (ppm, scale) relative to TMS and referenced to the residual proton in the NMR solvent (CDCl₃: δ 7.26, or other solvents as mentioned). MestReNova software was used to process NMR spectra. The coupling constant (*J*) are in Hz. Mass spectra were obtained by using Q-TOF-LC/MS spectrometer, using electron spray ionization. All the heteroarene *N*-oxides were synthesized in the lab by following reported procedures.²²⁻²⁵

General Procedure for oxidative acylated reaction:

In a 10 ml Round bottom flask, to a solution of 1 or 4 or 6 or 8a (0.5mmol, 1eq) in H₂O (3 ml) were added 2 (0.6 mmol), AgNO₃ (0.1 mmol), K₂S₂O₈ (1.5 mmol). The resulting solution was stirred at room for several hours (Schemes 2-5). After completion, the reaction mixture was transferred to separation funnel, 20 ml of bicarbonate solution were added, and reaction mixture was extracted with dichloromethane (3x20ml). The combined organic layers were dried over NaSO₄, filtered and concentrated. The crude material was purified by column chromatography using ethylacetate/ hexane as eluent to afford 3 or 5 or 7 or 9.

Phenyl(pyridin-2-yl)methanone²⁶ (3a, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 85% (77.8 mg); Light yellow solid, m.p. 42-44 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 4.7 Hz, 1H), 8.12 – 8.02 (m, 3H), 7.91 (td, J = 7.7, 1.7 Hz, 1H), 7.59 (dd, J = 10.6, 4.2 Hz, 1H), 7.49 (dd, J = 10.5, 4.4 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 193.8, 193.5, 155.1, 148.5, 137.0, 136.3, 132.9, 130.9, 128.1, 126.1, 124.61; HRMS (ESI+) calcd. for: C₁₂H₁₀NO 184.0757 (M+ H), found 184.0751.

(4-Methoxyphenyl)(pyridin-2-yl)methanone²⁶ (3b, Scheme 1)

TLC $R_f = 0.5$ (10 % EtOAc/Hexane); Yield 74% (78.8 mg); White solid, mp. 95-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.7 Hz, 1H), 8.12 (d, J = 8.9 Hz, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.86 (td, J = 7.7, 1.6 Hz, 1H), 7.46 – 7.43 (m, 1H), 6.96 (t, J = 5.8 Hz, 2H), 3.87 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 192.2, 163.6, 155.8, 148.3, 136.9, 133.5, 129.0, 125.7, 124.5, 113.5, 55.4; MS (ESI+) found for: C₁₃H₁₂NO₂ 214.10 (M+H).

Pyridin-2-yl(*p*-tolyl)methanone²⁶ (3c, Scheme 1) TLC $R_f = 0.5$ (10 % EtOAc/Hexane); Yield 76% (74.8 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 4.7 Hz, 1H), 7.99 (dd, J = 13.2, 8.0 Hz, 3H), 7.89 (td, J = 7.7, 1.7 Hz, 1H), 7.47 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 155.5, 148.5, 143.7, 136.9, 133.7, 131.1, 128.8, 125.9, 124.4, 21.6; HRMS (ESI+) calcd. for: C₁₃H₁₂NO 198.0913 (M+ H), found 198.0909.

[1,1'-Biphenyl]-4-yl(pyridin-2-yl)methanone (3d, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 46% (59.5 mg); yellow crystalline solid; m.p. 87.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 4.7 Hz, 1H), 8.20 – 8.13 (m, 2H), 8.07 (d, J = 7.8 Hz, 1H), 7.92 (td, J = 7.7, 1.7 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.65 (dd, J = 5.2, 3.3 Hz, 2H), 7.53 – 7.44 (m, 3H), 7.44 – 7.36 (m, J = 8.4, 6.3 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 193.3, 155.3, 148.5, 145.6, 140.2, 137.0, 135.0, 131.6, 128.9, 128.1, 127.3, 126.9, 126.1, 124.6; HRMS (ESI+) calcd. for: C₁₈H₁₄NO 260.1070. (M+H), found 260.1067.

(4-Fluorophenyl)(pyridin-2-yl)methanone²⁶(3e, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 77% (77 mg); White solid; m.p. 80 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 4.7 Hz, 1H), 8.23 – 8.13 (m, 2H), 8.05 (d, J = 7.9 Hz, 1H), 7.90 (td, J = 7.7, 1.7 Hz, 1H), 7.48 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.19 – 7.09 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 192.0 165.7 (d, J = 255.53 Hz), 155.0, 146.4, 137.1,133.8 (d, J = 10.1 Hz), 132.5 (d, J = 3.03 Hz), 126.2, 124.6, 115.2 (d, J = 22.22 Hz); HRMS (ESI+) calcd. for: C₁₂H₉FNO 202.0663.(M+H), found 202.0674.

(4-Chlorophenyl)(pyridin-2-yl)methanone²⁶ (3f, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 62% (67.2 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 4.6 Hz, 1H), 8.11 – 8.03 (m, 3H), 7.90 (td, J = 7.7, 1.6 Hz, 1H), 7.54 – 7.40 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 154.7, 148.5, 139.4, 137.1, 134.6, 132.5, 128.4, 126.4, 124.6; HRMS (ESI+) cald. for C₁₂H₉ClNO 218.0373 found 218.0367 (M+H).

Pyridin-2-yl(4-(trifluoromethyl)phenyl)methanone²⁶ (3g, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 48% (60.2 mg); yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 4.7 Hz, 1H), 8.19 (d, J = 8.2 Hz, 2H), 8.13 (d, J = 7.9 Hz, 1H), 7.93 (td, J = 7.7, 1.7 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.52 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H); ¹³C NMR (101MHz, CDCl₃) δ 192.6, 154.2, 148.6, 139.4, 137.2, 133.9 (d, J = 33.33Hz) 131.2, 126.7, 125.0 (q, J = 4.04Hz), 124.7, 122.4; HRMS (ESI+) calcd. for: C₁₃H₉F₃NO 252.0631. (M+ H), found 252.0634.

(4-Nitrophenyl)(pyridin-2-yl)methanone²⁷ (3h, Scheme 1)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 45% (51.3 mg); pale yellow solid; m.p. 98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.7 Hz, 1H), 8.26 (d, J = 8.9 Hz, 2H), 8.22 – 8.16 (m, 2H), 8.10 (d, J = 7.9 Hz, 1H), 7.89 (td, J = 7.7, 1.7 Hz, 1H), 7.52 – 7.45 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 153.7, 149.9, 148.8, 141.6, 137.4, 132.4, 126.9, 125.2; HRMS (ESI+) calcd. for: C₁₂H₉N₂O₃ 229.0608. (M+ H), found 229.0611.

(4-Phenoxyphenyl)(pyridin-2-yl)methanone (3i, Scheme 1)

TLC $R_f = 0.6$ (10% EtOAc/Hexane); Yield 59% (81.1 mg); pale brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.73 – 8.69 (m, 1H), 8.14 – 8.09 (m, 2H), 8.03 (d, J = 7.8 Hz, 1H), 7.90 (td, J = 7.7, 1.7 Hz, 1H), 7.48 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.09 (dt, J = 9.0, 1.8 Hz, 2H), 7.05 – 7.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 162.0, 155.5, 155.4, 154.1, 148.4, 137.1, 133.5, 130.6, 130.0, 126.0, 124.6, 124.6, 120.3, 117.0; HRMS (ESI+) calcd. For: C₁₈H₁₄NO₂ 276.1019. (M+ H), found 276.1029.

(2-Nitrophenyl)(pyridin-2-yl)methanone²⁸ (3j, Scheme 1)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 50% (57 mg); light red solid; m.p. 115 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 4.7 Hz, 1H), 8.29 (d, J = 7.9 Hz, 1H), 8.20 (dd, J = 8.2, 0.8 Hz, 1H), 7.92 (td, J = 7.7, 1.7 Hz, 1H), 7.80 (td, J = 7.5, 1.1 Hz, 1H), 7.69 (td, J = 8.1, 1.4 Hz, 1H), 7.61 (dd, J = 7.5, 1.4 Hz, 1H), 7.44 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 152.6, 149.2, 137.1, 135.6, 134.1, 130.7, 129.4, 127.1, 123.5, 122.6; HRMS (ESI+) calcd. for: C₁₂H₉N₂O₃ 229.0608. (M+ H), found 229.0598

(4-Fluoro-3-methylphenyl)(pyridin-2-yl)methanone (3k, Scheme 1)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 56% (60.2 mg); cream solid; m.p. 56.7 ^oC; ¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.66 (m, 1H), 8.02 (d, J = 7.8 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.89 (td, J = 7.7, 1.7 Hz, 1H), 7.48 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.09 (t, J = 8.9 Hz, 1H), 2.33 (d, J = 1.8 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 192.4, 164.4 (d, J = 254.52Hz), 155.2, 148.4, 137.0, 134.7 (d, J = 7.07Hz), 132.3 (d, J = 3.03Hz), 132.2 (d, J = 10.1 Hz), 126.1, 124.5, 124.9 (d, J = 18.18 Hz), 114.8 (d, J = 23.23 Hz), 14.5 (d, J = 4.04 Hz); HRMS (ESI+) calcd. for: C₁₃H₁₁FNO 216.0819. (M+ H), found 216.0795.

1-(Pyridin-2-yl)pentan-1-one²⁹ (3l, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 21% (17.1 mg); Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 4.4 Hz, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.6 Hz, 1H), 7.54 – 7.37 (m, 1H), 3.22 (dd, J = 14.8, 7.4 Hz, 2H), 1.72 (dt, J = 15.1, 7.5 Hz, 2H), 1.42 (dd, J = 15.0, 7.4 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 153.4, 148.9, 136.8, 126.9, 121.8, 37.4, 26.1, 22.4, 13.9; HRMS (ESI+) calcd. for: C₁₀H₁₄NO 164.1070. (M+ H), found 164.1052.

1-(pyridin-2-yl)heptan-1-one (3m, Scheme 1)

TLC $R_f = 0.2$ (10% EtOAc/Hexane); Yield 20% (20.5 mg); Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.71 – 8.63 (m, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.46 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 3.21 (t, J = 7.5 Hz, 2H), 1.75 – 1.69 (m, 2H), 1.45 – 1.29 (m, 6H), 0.89 – 0.86 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 153.6, 148.9, 136.8, 126.9, 121.7, 37.7, 31.7, 29.0, 23.9, 22.5, 14.0; HRMS (ESI+) calcd. for: C₁₂H₁₈NO 192.1383 (M+ H), found 192.1384.

(4-Methylpyridin-2-yl)(phenyl)methanone³⁰ (3n, Scheme 1)

TLC $R_f = 0.5(10\% \text{ EtOAc/Hexane})$; Yield 78% (77.1 mg); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 5.0 Hz, 1H), 8.03 (d, J = 7.2 Hz, 2H), 7.84 (s, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.31 – 7.25 (m, 1H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 194.2, 155.0, 148.3, 136.5, 132.8, 130.9, 128.1, 126.9, 125.3, 21.1; HRMS (ESI+) calcd. for: C₁₃H₁₂NO 198.0913. (M+ H), found 198.0936.

(4-Fluorophenyl)(4-methylpyridin-2-yl)methanone³¹ (30, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 73% (78.4 mg); White solid; m.p. 95.1 ^oC; ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 4.9 Hz, 1H), 8.19 – 8.12 (m, 2H), 7.87 (d, J = 0.6 Hz, 1H), 7.31 (d, J = 4.9 Hz, 1H), 7.19 – 7.10 (m, 2H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 165.7 (d, J = 255.53 Hz), 154.8, 148.5, 148.3,133.7 (d, J = 9.09Hz), 132.7 (d, J = 4.04 Hz), 127.1, 125.4, 115.2 (d, J = 22.22 Hz), 21.1; MS (ESI+) found for: C₁₃H₁₁FNO 216.15.

(4-Nitropyridin-2-yl)(phenyl)methanone (3p, Scheme 1)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 55% (62.7 mg); light orange oil; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 5.3 Hz, 1H), 8.79 (d, J = 2.1 Hz, 1H), 8.29 – 8.20 (m, 3H), 7.26 – 7.18 (m, 2H); ¹³C NMR (101MHz, CDCl₃) δ 191.2, 157.9, 154.9, 150.8, 135.2, 133.6, 131.0, 128.4, 118.2; HRMS (ESI+) calcd. for: C₁₂H₉N₂O₃ 229.0608 (M+ H), found 229.0608.

(4-Fluorophenyl)(4-nitropyridin-2-yl)methanone (3q, Scheme 1)

TLC $R_f = 0.2$ (10% EtOAc/Hexane); Yield 44% (54.1 mg); brown oil; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 5.3 Hz, 1H), 8.79 (d, J = 2.1 Hz, 1H), 8.29 – 8.20 (m, 3H), 7.26 – 7.18 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.3, 166.1 (d, J = 257.55 Hz), 157.7, 155.0, 150.7, 133.9 (d, J = 9.09 Hz), 131.5 (d, J = 3.03 Hz), 118.3, 117.5, 115.6 (d, J = 22.22 Hz); HRMS (ESI+) calcd. for: C₁₂H₈FN₂O₃ 247.0513. (M+ H), found 247.0506.

Phenyl(4-(trifluoromethyl)pyridin-2-yl)methanone³² (3r, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 30% (37.6 mg); brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 5.0 Hz, 1H), 8.29 (s, 1H), 8.14 – 8.05 (m, 2H), 7.72 (dd, J = 5.0, 1.0 Hz, 1H), 7.63 (ddd, J = 8.7, 2.5, 1.2 Hz, 1H), 7.51 (dd, J = 10.7, 4.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 156.3, 149.5, 139.7 (d, J = 35.35 Hz), 135.5, 133.4, 131.0, 128.3, 123.8, 121.6 (q, J = 3.03 Hz), 120.5 (q, J = 3.03 Hz); MS (ESI+) found for: C₁₃H₉F₃NO 252.0631 (M+H).

(4-Fluorophenyl)(4-(trifluoromethyl)pyridin-2-yl)methanone(3s, Scheme 1)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 24% (32.2 mg); brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 5.0 Hz, 1H), 8.30 (s, 1H), 8.26 – 8.13 (m, 1H), 7.73 (d, J = 4.9 Hz, 1H), 7.24 – 7.12 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 166.0 (d, J = 256.54 Hz), 156.18, 149.4, 133.9 (d, J = 9.09 Hz), 131.8 (d, J = 3.03 Hz), 123.7, 121.6 (d, J = 3.03 Hz), 120.5 (d, J = 4.04 Hz) 115.5 (d, J = 22.22 Hz); HRMS (ESI+) calcd. for: C₁₃H₈F₄NO 270.0537. (M+H), found 270.0526.

2-Benzoylisonicotinonitrile³³ (3t, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 23% (23.9mg); brown solid; m.p. 93 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 4.9 Hz, 1H), 8.28 (s, 1H), 8.11 – 8.05 (m, 2H), 7.71 (dd, J = 4.9, 1.5 Hz, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 156.1, 149.4, 135.1, 133.6, 131.0, 128.4, 127.3, 126.4, 121.9, 115.9; HRMS (ESI+) calcd. for: C₁₃H₉N₂O 209.0709, (M+ H), found 209.0699.

(6-Methylpyridin-2-yl)(phenyl)methanone²⁶ (3u, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 74% (72.8 mg); Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.05 (m, 1H), 7.80 – 7.70 (m, 1H), 7.62 – 7.54 (m, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.33 (dd, J = 6.8, 1.8 Hz, 1H), 2.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 157.7, 154.7, 137.0, 136.3, 132.8, 131.2, 128.0, 125.7, 121.6, 24.5; HRMS (ESI+) calcd. for: C₁₃H₁₂NO 198.0913, (M+ H), found 198.0935.

(4-Fluorophenyl)(6-methylpyridin-2-yl)methanone (3v, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 72% (77.4 mg); White crystals; m.p. 55 ^{\Box}C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.15 (m, 2H), 7.80 (dt, J = 15.1, 7.4 Hz, 2H), 7.36 (d, J =

7.4 Hz, 1H), 7.21 – 7.11 (m, 2H), 2.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 165.7 (d, J = 255.53 Hz), 157.6, 154.6, 137.1, 133.9 (d, J = 9.09 Hz), 132.6 (d, J = 3.03 Hz), 125.8, 121.6, 115.1 (d, J = 22.22 Hz), 24.4; HRMS (ESI+) calcd. for: C₁₃H₁₁FNO 216.0819. (M+H), found 216.0818.

(6-Methoxypyridin-2-yl)(phenyl)methanone (3w, Scheme 1)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 71% (75.6 mg); light brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.7 Hz, 1H), 8.12 (d, J = 8.9 Hz, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.86 (td, J = 7.7, 1.6 Hz, 1H), 7.51 – 7.39 (m, 1H), 6.96 (t, J = 5.8 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 163.6, 155.8, 148.3, 136.9, 133.5, 129.0, 125.7, 124.5, 113.5, 55.4; HRMS (ESI+) calcd. for: C₁₃H₁₂NO₂ 214.0863. (M+H), found 214.0861.

(3-Methylpyridin-2-yl)(phenyl)methanone (3x, Scheme 1)

TLC $R_f = 0.3(10\% \text{ EtOAc/Hexane})$; Yield 28% (27 mg); brown liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 4.6 Hz, 1H), 7.96 – 7.75 (m, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.33 (dd, J = 7.8, 4.7 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 155.1, 145.9, 138.9, 136.5, 133.3, 132.8, 130.4, 128.4, 124.5, 18.35; HRMS (ESI+) calcd. for: C₁₃H₁₂NO 198.0913. (M+H), found 198.0925.

(4-Fluorophenyl)(3-methylpyridin-2-yl)methanone (3y, Scheme 1)

TLC $R_f = 0.3(10\% \text{ EtOAc/Hexane})$; Yield 41% (44 mg); brown liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 3.9 Hz, 1H), 7.95 – 7.84 (m, 2H), 7.64 (d, J = 7.8 Hz, 1H), 7.32 (dd, J = 7.8, 4.7 Hz, 1H), 7.16 – 7.06 (m, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 165.9 (d, J = 296.94 Hz), 154.7, 145.9, 139.1, 133.2 (d, J = 10.1 Hz), 133.0, 132.9 (d, J = 3.03 Hz) 124.7, 115.5 (d, J = 22.22 Hz), 18.4; HRMS (ESI+) calcd. for: C₁₃H₁₁FNO 216.0819. (M+H), found 216.0847.

(3-Bromopyridin-2-yl)(phenyl)methanone³⁴ (3z, Scheme 1)

TLC $R_f = 0.2$ (10% EtOAc/Hexane); Yield 37% (48.5 mg); yellow gum; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, J = 4.7, 1.3 Hz, 1H), 8.02 (dd, J = 8.2, 1.3 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.61 (dd, J = 10.5, 4.3 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.32 (dd, J = 8.2, 4.7 Hz, 1H); MS (ESI+) calcd. for: C₁₇H₁₃N₂O 262.10 (M+H).

[2,2'-Bipyridin]-6-yl(phenyl)methanone³⁵ (3aa, Scheme 1)

TLC $R_f = 0.3$ (20% EtOAc/Hexane); Yield 35% (45.5 mg); light yellow gum; ¹H NMR (400 MHz, CDCl₃) δ 8.71 – 8.67 (m, 1H), 8.65 (dd, J = 7.7, 1.2 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.22 – 8.16 (m, 2H), 8.08 (dd, J = 7.7, 1.3 Hz, 1H), 8.03 (t, J = 7.7 Hz, 1H), 7.78 (td, J = 7.8, 1.8 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.51 (dd, J = 10.5, 4.7 Hz, 2H), 7.35 – 7.30 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 155.4, 154.9, 154.2, 149.2, 137.9, 137.0, 136.4, 132.8,

131.2, 128.0, 124.4, 124.1, 123.3, 121.3; HRMS (ESI+) calcd. for: C₁₇H₁₃N₂O 261.1022. (M+H), found 261.1025.

Phenyl(pyrazin-2-yl)methanone³⁶ (3ab, Scheme 1)

TLC $R_f = 0.2$ (10% EtOAc/Hexane); Yield 30% (13.6 mg); brown gum; ¹H NMR (400 MHz, CDCl₃) δ 9.25 (d, J = 1.4 Hz, 1H), 8.78 (d, J = 2.5 Hz, 1H), 8.69 (dd, J = 2.4, 1.5 Hz, 1H), 8.10 – 8.06 (m, 2H), 7.67 – 7.61 (m, 1H), 7.51 (dd, J = 10.7, 4.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 150.0, 146.8, 146.1, 142.9, 135.5, 133.5, 130.1, 128.4; MS (ESI+) found for: C₁₁H₉N₂O 185.30 (M+H).

Phenyl(quinolin-2-yl)methanone³⁷ (5a, Scheme 2)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 70% (81.5 mg); red solid; m.p. 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.5 Hz, 1H), 8.26 – 8.16 (m, 3H), 8.09 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.77 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.49 (dd, J = 10.6, 4.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 154.8, 146.8, 137.0, 136.2, 133.0, 131.4, 130.6, 130.0, 128.9, 128.4, 128.1, 127.6, 120.7; HRMS (ESI+) calcd. for: C₁₆H₁₂NO 234.0913. (M+ H), found 234.0916.

Quinolin-2-yl(*p*-tolyl)methanone³⁸ (5b, Scheme 2)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 68% (83.9 mg); brown solid; m.p. 62-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.78 (t, J = 4.2 Hz, 1H), 7.71 – 7.58 (m, 1H), 7.32 (d, J = 8.1 Hz, 1H), 2.46 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 193.2, 155.1, 146.7, 143.9, 136.9, 133.6, 131.5, 130.5, 129.9, 128.8, 128.8, 128.2, 127.6, 120.7, 21.7; HRMS (ESI+) calcd. for: C₁₇H₁₄NO 248.1070. (M+ H), found 248.1060.

(4-Methoxyphenyl)(quinolin-2-yl)methanone³⁸ (5c, Scheme 2)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 61% (80.2 mg); White solid; m.p. 65-68 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.24 (m, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.85 – 7.72 (m, 1H), 7.66 (dd, J = 11.0, 4.0 Hz, 1H), 7.07 – 6.91 (m, 1H), 3.91 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 192.1, 163.7, 155.4, 146.7, 136.9, 133.9, 130.4, 130.0, 129.0, 128.8, 128.1, 127.6, 120.9, 113.5, 55.5; HRMS (ESI+) calcd. for: C₁₇H₁₄NO₂ 264.1019 (M+ H), found 264.1013.

(4-Fluorophenyl)(quinolin-2-yl)methanone³⁹ (5d, Scheme 2)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 67% (84 mg); white solid; m.p. 131 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dq, J = 5.0, 2.7 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.80 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.23 – 7.15 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 165.8 (d, J = 255.5), 154.5, 146.6,

137.2, 134.2 (d, J = 10.1Hz), 132.5 (d, J = 3.03 Hz) 130.5, 130.1, 128.9, 128.53, 127.6, 120.7, 115.2 (d, J = 22.22 Hz); HRMS (ESI+) calcd. for: C₁₆H₁₁FNO 252.0819. (M+ H), found 252.0812.

(4-Fluoro-3-methylphenyl)(quinolin-2-yl)methanone (5e, Scheme 2)

TLC $R_f = 0.5$ (10% EtOAc/Hexane); Yield 65% (85.8mg); creamish solid; m.p. 103.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.18 – 8.06 (m, 3H), 7.91 (d, J = 8.0 Hz, 1H), 7.84 – 7.76 (m, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 8.8 Hz, 1H), 2.36 (d, J = 1.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 164.5 (d, J = 254 Hz), 154.7, 146.7, 137.1, 135.1 (d, J = 6.6 Hz), 132.2 (d, J = 4.04 Hz), 131.7 (d, J = 9.3 Hz), 130.5, 130.1, 128.9, 128.4, 127.6, 125.0 (d, J = 17.7 Hz), 120.8, 114.8 (d, J = 23.23 Hz), 14.6(d, J = 3.5 Hz); HRMS (ESI+) calcd. for: C₁₇H₁₃FNO 266.0976. (M+ H), found 266.0980.

(3-Methylquinoxalin-2-yl)(phenyl)methanone (5f, Scheme 2)

TLC $R_f = 0.2$ (10% EtOAc/Hexane); Yield 25% (31mg); light brown solid; m.p. 75.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.5 Hz, 2H), 7.96 (dd, J = 8.3, 1.2 Hz, 2H), 7.87 – 7.80 (m, 1H), 7.79 – 7.73 (m, 1H), 7.65 (dd, J = 10.6, 4.3 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 2.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 152.3, 150.8, 142.1, 139.4, 135.6, 134.1, 131.2, 130.7, 129.7, 129.5, 128.7, 128.6, 22.7; HRMS (ESI+) calcd. for: C₁₆H₁₃N₂O 249.1022. (M+ H), found 249.1026.

Isoquinolin-1-yl(phenyl)methanone³⁹(7a, Scheme 2)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 63% (73.3 mg); Brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 5.6 Hz, 1H), 8.27 – 8.19 (m, 1H), 7.96 (dt, J = 10.4, 5.1 Hz, 3H), 7.82 (d, J = 5.6 Hz, 1H), 7.80 – 7.72 (m, 1H), 7.63 (ddd, J = 12.0, 7.1, 1.2 Hz, 2H), 7.48 (dd, J = 10.6, 4.8 Hz, 2H); HRMS (ESI+) calcd. for: C₁₆H₁₂NO 234.0913 (M+ H), found 234.0911.

Isoquinolin-1-yl(*p*-tolyl)methanone³⁹(7b, Scheme 2)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 48% (58.8 mg); Brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 5.6 Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.78 (d, J = 5.6 Hz, 1H), 7.72 (t, J = 7.3 Hz, 1H), 7.59 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 156.9, 144.6, 141.2, 136.7, 134.2, 130.8, 130.6, 129.2, 128.1, 127.0, 126.4, 126.2, 122.3, 21.7; HRMS (ESI+) calcd. for: C₁₇H₁₄NO 248.1070 (M+ H), found 248.1066.

Isoquinolin-1-yl(4-methoxyphenyl)methanone³⁹(7c, Scheme 2)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 45% (59.1 mg); Brown solid; m.p. 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.7 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.97 – 7.88 (m,

1 2	
3 ⊿	
5	
6 7	
8 0	
9 10	
11 12	
13	
14	
16 17	
18 10	
20	
21 22	
23 24	
25	
26 27	
28 29	
30	
31 32	
33 34	
35	
30 37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60	

3H), 7.79 (d, J = 5.6 Hz, 1H), 7.76 – 7.71 (m, 1H), 7.63 – 7.58 (m, 1H), 6.99 – 6.91 (m, 2H), 3.88 (s, 3H); HRMS (ESI+) calcd. for: C₁₇H₁₄NO₂ 264.1019 (M+ H), found 264.0987.

(4-Fluorophenyl)(isoquinolin-1-yl)methanone³⁹(7d, Scheme 2)

TLC $R_f = 0.3$ (10% EtOAc/Hexane); Yield 59% (74 mg); Brown solid; m.p. 94-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J= 5.6 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.06 – 7.97 (m, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.19 – 7.10 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 166.1 (d, J = 257.5 Hz), 156.0, 141.1, 136.8, 133.5 (d, J = 9.09 Hz), 133.1 (d, J= 2.02 Hz), 130.8, 128.4, 127.15, 126.4, 126.1, 122.7, 115.6 (d, J = 22.22 Hz); HRMS (ESI+) calcd. for: C₁₆H₁₁FNO 252.0819. (M+ H), found 252.0817.

Isoquinolin-1-yl(4-(trifluoromethyl)phenyl)methanone³⁸(7e, Scheme 2)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 35% (52.7mg); White solid; m.p. 96 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 5.6 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.1 Hz, 2H), 7.96 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 5.6 Hz, 1H), 7.82 – 7.72 (m, 3H), 7.71 – 7.65 (m, 1H); HRMS (ESI+) calcd. for: C₁₇H₁₁F₃NO 302.0787. (M+ H), found 302.0788.

(4-Fluoro-3-methylphenyl)(isoquinolin-1-yl)methanone (7f, Scheme 2)

TLC $R_f = 0.4$ (10% EtOAc/Hexane); Yield 44% (58.3 mg); White solid; m.p. 81.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.6 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.88 – 7.71 (m, 4H), 7.63 (t, J = 7.7 Hz, 1H), 7.08 (t, J = 8.9 Hz, 1H), 2.30 (d, J = 1.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 164.8 (d, J = 255.53 Hz), 156.3, 141.1, 136.7, 134.4 (d, J = 7.07Hz), 132.8 (d, J = 4.04 Hz), 130.9 (d, J = 5.05 Hz), 130.7, 128.3, 127.1, 126.4, 126.1, 125.4 (d, J = 18.18 Hz), 122.6, 115.2 (d, J = 24.24 Hz) 14.5 (d, J = 3.03 Hz); HRMS (ESI+) calcd. for: C₁₇H₁₃FNO 266.0976. (M+ H), found 266.0982.

(4-((1S)-(Benzyloxy)((1S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-6-methoxyquinolin-2yl)(phenyl)methanone (9a, Scheme3)

TLC $R_f = 0.3$ (5% MeOH/DCM); Yield 34% (108.5 mg); brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.29 – 8.22 (m, 2H), 8.14 (d, J = 9.2 Hz, 1H), 7.82 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.54 – 7.47 (m, 3H), 7.41 – 7.33 (m, 5H), 5.61 (ddd, J = 17.2, 10.3, 6.7 Hz, 1H), 5.09 – 5.03 (m, 2H), 4.63 (dd, J = 38.3, 10.7 Hz, 2H), 4.19 (s, 3H), 3.49 – 3.36 (m, 2H), 3.20 – 3.08 (m, 2H), 2.69 (s, 2H), 2.09 (s, 1H), 1.66 – 1.48 (m, 3H), 0.87 (t, J = 6.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.3, 161.0, 151.5, 143.3, 136.6, 136.3, 133.0, 132.9, 131.4, 129.7, 128.7, 128.3, 128.2, 128.1, 124.1, 118.3, 117.3, 101.0, 77.3, 77.2, 77.0, 76.7, 72.0, 59.6, 54.6, 43.7, 37.1, 31.9, 27.0, 24.5, 18.9; HRMS (ESI+) calcd. for: C₃₄H₃₅N₂O₃ 519.2642. (M+ H), found 519.2649.

ASSOCIATED CONTENT:

Supporting Information Copies of NMR, HRMS, LCMS and GCMS spectra are provided.

This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION:

Corresponding Author

* E-mail: ppsingh@iiim.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS:

Authors thank CSIR for the financial support through research grants BSC 0108 and HCP-

0008. S.S.and M. K. thank CSIR and UGC respectively for the award of the fellowship.

REFERENCES:

- (a) Fontana, F.; Minisci, F.; Claudia, Maria.; Barbosa, N.; Vismara, E. Homolytic Acylation of Protonated Pyridines and Pyrazines with a-Keto Acids: The Problem of Monoacylation. *J. Org. Chem.* 1991, *56*, 2866-2869; (b) Minisci, F.; Citterio, A.; Giordano, C. Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. *Acc. Chem. Res.* 1983, *16*, 27-32.
- (a) Duncton, M. A. J. Minisci reactions: Versatile C-H-functionalizations for medicinal chemists. *Chem. Commun.* 2011, *2*, 1135-1161; (b) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive Intermediates with Translational Potential. *J. Am. Chem. Soc.* 2016, *138*, 12692–12714.
- Matcha, K.; Antonchick, A. P. Metal-Free Cross-Dehydrogenative Coupling of Heterocycles with Aldehydes. *Angew. Chem. Int. Ed.* 2013, *52*, 2082-2086.

- Bonin, H.; Sauthier, M.; Felpin, F. X. Transition Metal-Mediated Direct C-H Arylation of Heteroarenes Involving Aryl Radicals. *Adv. Synth. Catal.* 2014, 356, 645-671.
- (a) Duran, R.; Zubia, E.; Ortega, M. J.; Naranjo, S.; Salva, J. Novel alkaloids from the red ascidian *botryllus leachi. Tetrahedron* 1999, *55*, 13225-13232; (b) Singh, P. P.; Aithagani, S. K.; Yadav, M.; Singh, V. P.; Vishwakarma, R. A. Iron-catalyzed Cross-Coupling of Electron-Deficient Heterocycles and Quinone with Organoboron Species via Innate C–H Functionalization: Application in Total Synthesis of Pyrazine Alkaloid Botryllazine A. *J. Org. Chem.* 2013, *78*, 2639-2648; (c) Pudjiastuti, P.; Mukhtar, M. R.; Hadi, A. H. A.; Nurdin, S.; Morita, H.; Marc, L.; Awang, K. (6,7-Dimethoxy-4methylisoquinolinyl)-(4'-methoxyphenyl)-methanone, a New Benzylisoquinoline Alkaloid from *Beilschmiedia brevipes. Molecules.* 2010, *15*, 2339-2346.
- Khalil, S. A.; Schiff, P. L. The Synthesis of Thalmicrinone, a Confirmation of Structure. J. Nat. Prod. 1985, 48, 989-991.
- 7. (a) Rao, G. V.; Swamy, B. N.; Kumar, P. H.; Reddy, G. C. A Simple and Convenient Synthesis of Triprolidine. *Org. Prep. and Proc. Int.* 2009, *41*, 168-171; (b) Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H. M.; Lin, C. M.; Hamel, E. J. Med. Chem. 1992, *35*, 2293-2306.
- (a) Baser, K. H. C. Isolation and Identification of Anisaldehyde and Three Alkaloids From Leaves of Thalictrum minus var. microphyllum. *J. Nat. Prod.* 1982, 45, 704-706; (b) Slavík, J.; Slavíková, L. Alkaloids from *Papaver setigerum* DC. *Collect. Czech. Chem. Commun.* 1996, 61, 1047-1052.
- (a) Chen, J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. TBHP/TFA mediated oxidative cross-dehydrogenative coupling of *N*-heterocycles with aldehydes. *Org. Biomol. Chem.* 2015, *13*, 11561-11566; (b) Suresh, R.; Kumaran, R. S.; Senthilkumar, V.;

Muthusubramanian, S. Silver catalyzed decarboxylative acylation of pyridine-*N*-oxides using α -oxocarboxylic acids. *RSC Adv.* **2014**, *4*, 31685-31688.

- 10. Zou, Y.; Xiao, J.; Peng, Z.; Dong, W.; An, D. Transition metal-free aroylation of *NH*-sulfoximines with methyl arenes. *Chem. Commun.* **2015**, *51*, 14889-14892.
- Li, J.I.; Li, W.; Wang, Y.; Ren, Q.; Wang, H.; Pan, Y. Palladium(II)-catalyzed C–C and C–O bond formation for the synthesis of C1-benzoyl isoquinolines from isoquinoline *N*-oxides and nitroalkenes. *Chem. Commun.* **2016**, *52*, 10028-10031.
- Jin, W.; Zheng, P.; Wong, W. T.; Law, G. L. Efficient Selenium-Catalyzed Selective C(sp³)-H Oxidation of Benzylpyridines with Molecular Oxygen. *Adv. Synth. Catal.* 2017, *359*, 1588–1593.
- 13. (a) Scriven, E. F. V.; Pyridines: from lab to production, *Elsevier*, Academic press 1st edition, 2013, pp. 459-496; (b) Houwer, D.; Maes, B. U. W. Synthesis of Aryl(di)azinylmethanes and Bis(di)azinylmethanes via Transition-Metal-Catalyzed Cross-Coupling Reactions.*Synthesis* 2014, *46*, 2533-2550; (c) Genovino, J.; Lütz, S.; Sames, D.; Touré, B. B.Complementation of Biotransformations with Chemical C–H Oxidation: Copper-Catalyzed Oxidation of Tertiary Amines in Complex Pharmaceuticals. *J. Am. Chem. Soc.* 2013, *135*, 12346-12352.
- 14. (a) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.; Lei, A. Chem. Rev.
 2017, 117, 9016-9085; (b) Aruri, H.; Singh, U.; Kumar, M.; Sharma, S.; Aithagani, S.
 K.; Gupta, V. K., Mignani, S.; Vishwakarma, R. A.; Singh, P. P. J. Org.
 Chem. 2017, 82, 1000-1012. (c) Zou, Y.; Xiao, J.; Peng, Z.; Dong, W.; An, D.; Chem.
 Commun. 2015, 51, 14889-14892.
- 15. (a) Thatikonda, T.; Singh, U.; Ambala, S.; Vishwakarma, R. A.; Singh, P. P. Metal freeC–H functionalization of diazines and related heteroarenes with organoboron speciesand its application in the synthesis of a CDK inhibitor, meriolin 1. *Org. Biomol.*

Chem. **2016**, *14*, 4312-4320; (b) Ambala, S.; Thatikonda, T.; Sharma, S.; Munagala, G.; Yempalla, K. R.; Vishwakarma, R. A.; Singh, P. P. Cross-dehydrogenative coupling of α -C(sp³)–H of ethers/alkanes with C(sp²)–H of heteroarenes under metal-free conditions. *Org. Biomol. Chem.* **2015**, *13*, 11341-11350; (c) Aithagani, S.; Kumar, M.; Yadav, M.; Vishwakarma, R. A.; Singh, P. P. Metal-Free, Phosphonium Salt-Mediated Sulfoximination of Azine *N*-Oxides: Approach for the Synthesis of $N\Box$ Azine Sulfoximines. *J. Org. Chem.* **2016**, *81*, 5886-5894.

- 16. Boland, M. E.; Brennand Roper, S. M.; Henry, J. A. The Lancet. 1985, 325, 384-385.
- 17. (a) Zheng, X.; Ding, J.; Chen, J.; Gao, W.; Liu, M.; Wu, H.The Coupling of Arylboronic Acids with Nitroarenes Catalyzed by Rhodium. *Org. Lett.* 2011, 7, 1726-1729; (b) Zhang,J.; Chen,H.; Wang, B.; Liu, Z.; Zhang, Y. Copper-Mediated Aryloxylation and Vinyloxylation of β-C(sp³)-H Bond of Propionamides with Organosilanes. *Org. Lett.* 2015, *17*, 2768-2771; (c) Zhao, Y.; Huang, B.; Yang, C.; Chen, Q.; Xia, W. Sunlight-Driven Forging of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates. *Org. Lett.* 2016, *18*, 5572-5575; (d) Aruri, H.; Singh, U.; Kumar, S.; Kushwaha, M.; Gupta, A. P.; Vishwakarma, R. A.; Singh, P. P. I₂/Aqueous TBHP-Catalyzed Coupling of Amides with Methylarenes/Aldehydes/Alcohols: Metal-Free Synthesis of Imides. *Org. Lett.* 2016, *18*, 3638-3641.
- 18. Teo, B. K.; Xu, Y. H.; Chen, H, Y.; He, Y. K.; Zhong, B. Y.; Zou, Y. H.; Qian, W.; A Comparative Study of Third-Order Nonlinear Optical Properties of Silver Phenylacetylide and Related Compounds via Ultrafast Optical Kerr Effect Measurements. *Inorg. Chem.* 2001, 40, 6794-6801.
- 19. (a) Kim, I.; Roh, S. W.; Lee, D. G.; Lee, C. Rhodium-Catalyzed Oxygenative [2 + 2]Cycloaddition of Terminal Alkynes and Imines for the Synthesis of β -Lactams. *Org.*

Lett. **2014**, *16*, 2482–2485; (b) Ye, L.; He, W.; Zhang, L.Gold-Catalyzed One-Step Practical Synthesis of Oxetan-3-ones from Readily Available Propargylic Alcohols. *J. Am. Chem. Soc.* **2010**, *132*, 8550-8551

- Miura, M.; Enna, M.; Okuro, K.; Nomura, M.Copper-Catalyzed Reaction of Terminal Alkynes with Nitrones. Selective Synthesis of 1-Aza-1-buten-3-yne and 2-Azetidinone Derivatives. J. Org. Chem. 1995, 60, 4999-5004.
- 21. (a) Kirmse, W. 100 Years of the Wolff Rearrangement. *Eur. J. Org. Chem.* 2002, *14*, 2193-2256; (b) Gill, G. B. The wolff rearrangement. *Comp. Org. Synth.* 1991, *3*, 887-912; (c) Clerici, A., Minisci, F.; Ogawa, K.; Surzur, J-M. Intra- and intermolecular free radical reactions of alcohols and olefines with peroxydisulphate. New homolytic aromatic alkylations. *Tetrahedron Lett.* 1978, *13*, 1149-1152.
- Wengryniuk, S. E.; Weickgenannt, A.; Reiher, C.; Strotman, N. A.; Chen, K.; Eastgate, M. D.; Baran, P. S. Regioselective Bromination of Fused Heterocyclic *N*-Oxides. *Org. Lett.* 2013, *15*, 792-795.
- Young, M. C.; Liew, E.; Ashby, J.; McCoy, K. E.; Hooley, R. J. Spin state modulation of iron spin crossover complexes *via* hydrogen-bonding self-assembly. *Chem. Commun.* 2013, 49, 6331-6333.
- 24. Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng. A. Stereocontrolled Creation of Adjacent Quaternary and Tertiary Stereocenters by a Catalytic Conjugate Addition. *Angew. Chem. Int. Ed.* **2004**, *44*, 105-108.
- 25. Wu, Y.; Singh, R. P.; Deng, L. Asymmetric Olefin Isomerization of Butenolides via Proton Transfer Catalysis by an Organic Molecule. J. Am. Chem. Soc. 2011, 133, 12458-12461.

- 26. Jin, W.; Zheng, P.; Wong, W.T.; Law, G. L. Efficient Selenium□Catalyzed Selective C(sp³)-H Oxidation of Benzylpyridines with Molecular Oxygen. *Adv. Synth. Catal.*2017, 359, 1588-1593.
 - Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskin, L. S. Ketone Synthesis under Neutral Conditions. Cu(I) Diphenylphosphinate-Mediated, Palladium-Catalyzed Coupling of Thiol Esters and Organostannanes. *Org. Lett.* 2003, *5*, 3033-3033.
 - 28. Liang, Y. F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. Aerobic Oxidation of Pd^{II} to Pd^{IV} by Active Radical Reactants: Direct C–H Nitration and Acylation of Arenes via Oxygenation Process with Molecular Oxygen. ACS Catal. 2015, 5, 1956-1963.
 - 29. Yang, H.; Huo, N.; Yang, P.; Pei, H.; Lv, H.; Zhang, X. Rhodium Catalyzed Asymmetric Hydrogenation of 2-Pyridine Ketones. *Org. Lett.* **2015**, *17*, 4144-4147.
 - 30. Chaubey, N. R.; Singh, K. N. Metal-free decarboxylative acylation of isoquinolines using a-keto acids in water. *Tetrahedron Lett.* **2017**, *58*, 2347-2350.
- Seto, M.; Aramaki, Y.; Okawa, T.; Miyamoto, N.; Aikawa, K.; Kanzaki, N.; Niwa, S.; Iizawa, Y.; Baba, M.; Shiraishi, M. Orally Active CCR5 Antagonists as Anti-HIV-1 Agents: Synthesis and Biological Activity of 1-Benzothiepine 1,1-Dioxide and 1-Benzazepine Derivatives Containing a Tertiary Amine Moiety. *Chem. Pharm. Bull.* 2004, *52*, 577-590.
- 32. Sterckx, H.; Sambiagio, C.; Navarrete, V. M.; Maes, B. U. W. Copper-Catalyzed Aerobic Oxygenation of Benzylpyridine N-Oxides and Subsequent Post-Functionalization. Adv. Synth. Catal. 2017, 359, 3226-3236.
- 33. Minisci, F.; Recupero, F.; Cecchetto, A.; Punta, C.; Gambarotti, C. Polar Effects in Free-Radical Reactions. A Novel Homolytic Acylation of Heteroaromatic Bases by Aerobic Oxidation of Aldehydes, Catalysed by *N*-Hydroxyphthalimide and Co Salts. *J. Heterocyclic Chem.* 2003, 40, 325-328.

- Gros, P. C.; Elaachbouni, F.Bromine–lithium exchange under non-cryogenic conditions: TMSCH₂Li-LiDMAE promoted C-2 lithiation of 2,3-dibromopyridine. *Chem. Commun.* 2008, 0, 4813-4815.
- 35. Carroll, J.; Woolard, H. G.; Mroz, R.; Nason, C. A.; Huo, S. Regiospecific Acylation of Cycloplatinated Complexes: Scope, Limitations, and Mechanistic Implications. *Organometallics* 2016, 35, 1313-1322.
- 36. Meng, G.; Shi, S.; Szostak, M. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis. ACS Catal. 2016, 6, 7335-7339.
- 37. Ali, W.; Behera, A.; Guin, S.; Patel, B. K. Regiospecific Benzoylation of Electron-Deficient N□Heterocycles with Methylbenzenes via a Minisci-Type Reaction. J. Org. Chem. 2015, 80, 5625-5632.
- Reux, B.; Nevalainen. T.; Raitio. K. H.; Koskinen, A. M. P. Synthesis of quinolinyl and isoquinolinyl phenyl ketones as novel agonists for the cannabinoid CB2 receptor. *Bioorg. Med. Chem.* 2009, 17, 4441-4447
- Li, J.; Li, W.; Wang, Y.; Ren, Q.; Wang, H.; Pan, Y. Palladium(II)-catalyzed C–C and C–O bondformation for the synthesis of C1-benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes. *Chem. Commun.* 2016, *52*, 10028-10031.