ACS Medicinal Chemistry Letters

Subscriber access provided by Drexel University Libraries

Discovery of BNC375, a Potent, Selective, and Orally Available Type I Positive Allosteric Modulator of #7 nAChRs.

Andrew J. Harvey, Thomas D. Avery, Laurent Schaeffer, Christophe Joseph, Belinda C. Huff, Rajinder Singh, Christophe Morice, Bruno Giethlen, Anton A. Grishin, Carolyn J. Coles, Peter Kolesik, Stéphanie Wagner, Emile Andriambeloson, Bertrand Huyard, Etienne Poiraud, Dharam Paul, and Susan M. O'Connor

> ACS Med. Chem. Lett., Just Accepted Manuscript • Publication Date (Web): 25 Mar 2019 Downloaded from http://pubs.acs.org on March 25, 2019

Just Accepted

Letter

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9 10

11

12

13

14 15

16

17

18 19 20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Discovery of BNC375, a Potent, Selective, and Orally Available Type I Positive Allosteric Modulator of α7 nAChRs.

Andrew J. Harvey^{#ψ}, Thomas D. Avery^{#⊗}, Laurent Schaeffer^{\$}, Christophe Joseph^{\$}, Belinda C. Huff[#], Rajinder Singh^{#Ø}, Christophe Morice^{\$}, Bruno Giethlen^{\$}, Anton A. Grishin^{#Ω}, Carolyn J. Coles[#], Peter Kolesik[#], Stéphanie Wagner[†], Emile Andriambeloson[†], Bertrand Huyard[†], Etienne Poiraud[†], Dharam Paul^{*#}, Susan M. O'Connor[#]

Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia

[†] Neurofit, 850 Boulevard Sébastien Brant, Bioparc 1, Parc d'Innovation, 67400 Illkirch, France

[§] Prestwick Chemicals, 220 Boulevard Gonthier d'Andernach, Parc d'Innovation, 67400, Illkirch, France

Alpha 7 nicotinic acetylcholine receptor, positive allosteric modulators, memory, T-maze, Attention

ABSTRACT: Positive allosteric modulators (PAMs) of a7 nAChRs can have different properties with respect to their effects on

channel kinetics. Type I PAMs amplify peak channel response to acetycholine but do not appear to influence channel desensitization kinetics, whereas Type II PAMs both increase channel response and delay receptor desensitization. Both Type I and Type II PAMs are reported in literature, but there are limited reports describing their structure-kinetic profile relationships. Here we report a novel class of compounds with either Type I or Type II behavior, that can be tuned by the relative stereochemistry around the central cyclopropyl ring: for example, (R,R)-13 (BNC375) and its analogues with RR stereochemistry around the

central cyclopropyl ring are Type I PAMs, whereas compounds in the same series with SS stereochemistry (e.g. (S,S)-13) are Type II PAMs as measured using patch-clamp electrophysiology. Further fine control over the kinetics has been achieved by changing the substitutions on the aniline ring: generally the substitution of aniline with strong electron withdrawing groups reduces the Type II character of these compounds. Our structure-activity optimization efforts has led to the discovery of BNC375, a small molecule with good CNS-drug like properties and clinical candidate potential.

Activation of alpha 7 nicotinic acetylcholine receptors (α 7 nAChRs) improves cognitive function both in humans¹ and rodents^{1,2}, and thus represents a promising therapeutic approach for cognitive impairment in Alzheimer's disease³ and schizophrenia^{3,4}. The activity of α 7 nAChR can be enhanced through either orthosteric agonists or positive allosteric modulators (PAMs). In contrast to α 7 agonists, α 7 PAMs do not activate α 7 nAChRs by themselves and work by amplification of responses induced by endogenous agonists, hence preserving spatiotemporal signaling patterns. Furthermore, α 7 nAChR PAMs may allow for greater selectivity to be achieved as compared to orthosteric agonists, providing for a potentially cleaner side effect profile^{1,4}. Based on the functional property of modulation, α 7 PAMs can be broadly classified into two

categories: Type I and Type II⁵. Type I α 7 PAMs, such as AVL-3288⁶ (1), NS1738⁷ (2) and Lu AF58801⁸ (3, Figure 1), increase channel responses to acetylcholine without affecting receptor desensitization, whereas Type II α 7 PAMs, such as TQS⁹ (4), RO5126946¹⁰ (5), JNJ-1930942¹¹ (6), PNU-120596¹² (7) and A-867744¹³ (8), not only increase channel response but also delay receptor desensitization. The PAMs reported in the literature are structurally quite diverse and small structural changes have been reported to produce profound effects on the pharmacological profile. For example, in the work reported by Gill-Thind¹⁴, the cis-cis-diastereomers were all classified as allosteric agonists or Type II PAMs. In contrast, all of the cistrans-diastereomers were Type I PAMs,

Figure 1. Representative examples of reported α7 nAChRs PAMS.

negative allosteric modulators or silent allosteric modulators. Here we report a new class of compounds that can be tuned either to a Type I or Type II α 7 PAM, depending upon

the stereochemistry around the central cyclopropyl ring. Our synthetic methods have allowed us to access both enantiomers from the *trans*-racemates, and the structure-activity optimization of these enantiomers has led to the identification of a potential candidate for clinical development.

During the early days of the program, the knowledge about the structural requirements for $\alpha 7$ PAM activity was ambiguous because literature examples covered many diverse structural classes containing two terminal rings joined through linear, as well as more constrained cyclic linkers. Some examples contained one ring decorated with a highly polar sulfamyl group whereas others lacked such polar substituents. Therefore, the lack of understanding in this area persuaded us to design a small focused library of compounds belonging to different chemical classes to discover novel a7 PAMs with identifiable structural features crucial for biological activity. The primary in vitro screening assay was performed by electrophysiology using the Patchliner® (Nanion), an automatic planar patch clamp instrument. The potentiation of an EC₂₀ acetylcholine (ACh) response by 3µM of each PAM was determined. Secondary screening and more detailed characterisation of promising compounds was performed with conventional manual patchclamp recordings using a fast-application system (Dynaflow[®]), Cellectricon, Sweden). All experiments were performed in stable cell lines expressing human or rat α 7 nAChR in rat GH4C1 cells. The percent change in peak current produced by 3 µM of test compound plus acetylcholine versus acetylcholine alone was called P_3 (percent potentiation at 3 μ M). In vivo efficacy was measured using the mouse T-maze Continuous Alternation Task (T-maze) as the primary model and was reported as the doses that significantly reversed the scopolamine induced impairment of spontaneous alternation (for details see SI: In vitro and in vivo evaluation).

Nine hits were identified during the primary screen of a small focused library. Three of them (9, 10 and 11; Figure 2) were of particular interest¹⁵, exhibiting P₃ values of 660, 710 and 410 %, respectively. The activity of 9 and 10 was confirmed in the secondary screening assay where they exhibited P₃ values of 420% and 360%, respectively (Table 1).

The hits **9** & **10** significantly reversed scopolamine induced impairment of spontaneous alternation in the mouse T-maze at

Figure 2. Key compounds from the hit identification phase.

intraperitoneal (*ip*) doses of 3 mg/kg and 30 mg/kg. However, compounds **10** and **11** were found to be inactive in T-maze after oral doses of 3 and 30 mg/kg and compound **9** was not tested orally. In order to achieve oral efficacy, further modification of these hits to find a lead compound was carried out.

Table 1. Profile of hit compounds 9, 10 and 11

Compound	9	10	11	
Primary Screening P ₃ (%)	660	710	410	
Secondary Screening P ₃ (9)	420	360	NT	
Secondary Screening AU	5.6	5.6	NT	
logD _{7.4}	3.7	4.2	NT	
Sol _{6.5} (µg/mL)	3.1-6.3	1.6-3.1	NT	
Primary <i>in vivo</i> Assay: mouse T-maze Significant dose (mg/kg)	ip	3, 30	3, 30	NT
	ро	NT	NS	NS
			(3, 30)	(3, 30)

NT: Not tested; NS: Not significant

As shown in Figure 2, the hit molecules **9-11** have a modular structure, composed of three distinctive regions: RHS ring, LHS ring and central linker. So, we planned to explore SAR for these regions (a representative set of synthesized compounds is shown in Figure 3). As found in the primary hits, the sulfamyl group on the *para* position of LHS phenyl ring and 2-alkoxy-5-halo group on RHS aniline ring were essential features for in vitro α 7 PAM activity. The central linker was modified in a variety of ways and we found that compounds containing the secondary amides with a 3,3-dialkyl substituted 1,2-cyclopropyl (**12a**, **12b**) and 3,4-tetrahydrofuryl (**12m**) moieties between the carbonyl carbon and LHS phenyl ring exhibited good *in-vitro* activity. Removal of dimethyl group from cyclopropyl (**12c**) or its replacement with

Figure 3. Representative examples exploring the hit to lead SAR (green: active; orange: weakly active and red: inactive)

1 2

3

4

0	CI CI	
Primary Screening P ₃ (%)		7900
Secondary Screening P _{max} (%)		650
Secondary Screening EC ₅₀ (nM)		25
Solubility (µg/ml)	pH 2.0	1.6-3.1
	рН 6.5	>100
$\begin{array}{ll} \mbox{Microsomal} & \mbox{stability} \\ (E_{\rm H})^{\S} & \end{array}$	human	0.64
	mouse	0.82
Primary in vivo Mouse T-maze		3, 10
Oral significant dose (mg/kg)		

 $\$ Method to calculate the predicted in vivo hepatic extraction ratio (E_H) is described in SI

dihalo (12d, 12e) rendered the compared to the amide molecules 12m and 12n, was seen in the corresponding amines 12o and 12p, respectively. Hence, we compounds inactive. Interestingly, the modest gain in activity, reduced the amide functionality in the most active compounds 9 and 10 to their Table 2 Democratic amounts for SAD.

 Table 3. Representative examples for SAR on the RHS modifications

	X	RING	R ₁	R ₂	R ₃	P ₃ (%)	SEM (n)
13	SO ₂ NH ₂	А	OMe	Н	Cl	7900	3560 (2)
14	SO ₂ NH ₂	А	Н	Н	Н	2570	660 (3)
15	SO ₂ NH ₂	А	Me	Н	Cl	12310	3870 (3)
16	SO ₂ NH ₂	А	Me	F	Н	8660	4280 (3)
17	SO ₂ NH ₂	А	Me	F	Cl	9230	900 (3)
18	SO ₂ NH ₂	А	OMe	Н	CF ₃	8170	2060 (4)
19	SO ₂ NH ₂	А	OCHF ₂	F	Н	3360	1190 (3)
20	SO ₂ NH ₂	А	OCF ₃	Н	F	2440	660 (2)
21	SO ₂ NH ₂	В	OMe	Н	Н	2420	550 (4)
22	SO ₂ NH ₂	В	Н	Н	F	3000	400 (4)
32	SO ₂ NHNH ₂	А	OMe	Н	Cl	130	100 (3)
33	SO ₂ NHOH	А	OMe	Н	Cl	720	260 (6)
58	SO ₂ NH ₂	А	OMe	Н	SO ₂ NH ₂	<100	12 (2)
66	SO ₂ NH ₂	А	Н	morpholino	Н	<100	16 (3)
67	SO ₂ NH ₂	А	Н	Н	morpholino	460	12 (4)
69	SO ₂ NH ₂	В	Me	Н	Н	130	50 (2)
72	SO ₂ NH ₂	С	-	-	-	<100	8 (2)
74	SO ₂ NH ₂	D	-	-	-	<100	30 (6)

corresponding amines 13 and 14 and observed a significant enhancement in α 7 nAChR potentiation with P₃ values of 7900%, 9890%, respectively. In contrast, the corresponding amine of compound 11 was found to be inactive. The racemic compound 13 was selected for further evaluation due to its lower lipophilicity and the easy accessibility of its key intermediate. Compound 13 showed in vivo activity (T-maze) at the doses of 3 and 10 mg/kg when administered orally. To confirm the allosteric nature of compound 13, it was evaluated in the manual patch clamp assay in the absence of acetylcholine and failed to evoke currents in stable cell lines expressing $\alpha 7$ channels. However, 13 exhibited typical allosteric behavior by potentiating acetylcholine-evoked currents in a concentration dependent manner. In the manual patch clamp, 13 showed an EC₅₀ of 25 nM and peak current potentiation P_{max} of 650% relative to the peak current evoked by ACh at an EC_{20} concentration. Overall, racemate 13 exhibited a good lead profile (Table 2) and had a modular structure that enabled further lead optimization. The main aim of lead optimization was to improve the ADME properties of the compound. We focused on decreasing lipophilicity to improve the solubility and clearance while maintaining the potency. The initial attempts to reduce lipophilicity began with removal of the dimethyl group on the central cyclopropyl ring¹⁶. The obtained des-dimethylcyclopropyl analogue had reduced activity. Also, the replacement of the 1,2-cyclopropyl ring with more polar 3,4-tetrahydrofuryl ring reduced the activity. Synthetic attempts

to replace LHS p-sulfamovlphenyl ring with psulfamovlpvridvl proved unsuccessful. Replacement of psulfamyl group on LHS phenyl ring with more polar groups such as p-sulfonohydrazide (32) and N-hydroxysulfonamide (33) rendered the analogs inactive or very weakly active. Additionally, we attempted to replace the p-sulfamyl group with comparable or slightly more lithophilic groups such as Nalkylsulfonamides, saturated heterocycles, heteroaryl and aryl, to identify a more active LHS that could be combined later with a polar RHS to balance the lipophilicity of the molecule. However, all the attempts proved unsuccessful. The only change leading to the retention of activity was attachment of the methanesulfonamide group through the nitrogen to the aryl ring rather than the sulfur atom. However, the original lead compound 13 with a p-sulfamyl group was still the most active analog, indicating that the sulfamyl group was a critical feature of potent α 7 PAMs in the series (see the data in SI: SAR analysis tables). Having learned that the central part and the LHS phenyl ring could tolerate only limited modifications, we then sought to explore the RHS of the molecule and synthesized a set of 32 analogs (see the SI: SAR analysis tables). Representative compounds and their PAM activities are shown in Table 3. Some analogs with lower lipophilicity were achieved by replacing the RHS 5-chloro-2-methoxyphenyl ring in 13 with 2-methoxy-5-tert-butyl-3-oxazolyl (72), 2-methyl-3-pyridyl (69), 2-methoxy-3-pyridyl (21) 5-fluoro-3-pyridyl (22) or hexyl (74). These changes were found to be either inactive or relatively less active. Substitution on the phenyl with polar groups such as sulfamyl (58) or morpholino (66 or 67) also reduced the activity. In general, decreasing lipholicity to improve solubility and clearance failed to give an active compound. Efforts devoted to explore the alternatives for metabolically labile -OCH3 and Cl groups, and to protect the para-position on the RHS ring provided some active compounds (19, 26, 27, 28). This effort revealed that a 2,4- or 2,5-disubstitution pattern on the RHS phenyl ring retained good levels of activity.

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

57 58 59

60

34 All the compounds with chiral centers were prepared using 35 racemic building blocks and were a mixture of more than one diastereoisomer or enantiomer. Compound 13 and related active 36 analogs (shown in Table 3) that featured a cyclopropyl ring in 37 the linker were prepared from *trans* building block 23 and were 38 a mixture of two *trans* enantiomers with *R*,*R* stereochemistry in 39 one and S,S in the other, around the cyclopropane ring. In order 40 to profile both enantiomers, we prepared an enantiopure 41 building block by developing a method to separate the *trans* 42 enantiomeric pair of acid 23 (Scheme 1). The racemic mixture 43 of acid 23 was reacted with a chiral auxiliary (S)-4-isopropyl-44 2-oxazolidinone to prepare the mixture of two diastereoisomers, 45 24 and 25. The resulting diastereoisomers were separated by 46 repeated flash column chromatography.

47 The absolute stereochemistry of 24, the first eluting 48 diastereoisomer, was determined by X-ray crystallography to be R,R,S (cyclopropyl chiral centers were found to be R,R) and the 49 stereochemistry of the other, 25 was assigned to be S,S,S. These 50 two diastereoisomers were then separately hydrolyzed to 51 corresponding enantiopure trans acids (R,R)-23 and (S,S)-23. 52 The enantiopure acids were used to produce the enantiopure 53 final compounds and the enantiomeric-excess of trans 54 enantiomers of compound 13 was measured by analytical 55 HPLC and found to be >98%, demonstrating no racemization 56

in subsequent synthetic steps. The synthetic procedures and the analytical data of the representative compounds are presented in the supplementary information.

Scheme 1. Synthesis of enantiopure building block 23

Reagents and conditions: a) SOCl₂, DCM ; b) (S)-4-benzyl-2-oxazolidinone, nBuLi, THF; c) $H_2O/THF,\,H_2O_2,\,LiOH$

Both *trans* enantiomers of compound 13 were found to be active in the primary screening assay at 3 µM. On Patchliner®, the peak current potentiation by the enantiomer (R,R)-13 was 1160% which was considerably lower than the parent trans racemic mixture, however the peak potentiation of other enantiomer, (S,S)-13 was found to be 11840%, which was consistent with the parent trans racemic mixture. The shape of the current trace of (R,R)-13 was sharp and resembled a Type I PAM, whereas (S,S)-13 was like a Type II PAM (Patchliner®) current traces are shown in Table 4). It appeared that the R,Renantiomer was only moderately active compared to the parent racemic mixture and much less active than the S,S-enantiomer. Next, we confirmed the PAM activity by performing full dose responses using manual electrophysiology. Similar to the primary screening results, the enantiopure (R, R)-13 and (S, S)-13 exhibited dramatically different kinetics of desensitization on α7 nAChRs. Like the prototypical Type I PAM, AVL-3288 (1), (R,R)-13 significantly potentiated the acetylcholine signal without changing the rapid receptor desensitization. This was reflected in the AUC/P_{max} value of 1.7. In contrast, (S,S)-13, not only potentiated the signal but also significantly delayed the desensitization (AUC/ $P_{max} = 25$). This kinetic profile resembled that of PNU-120596 (7), a typical Type II PAM. This profound difference in channel modulation was further investigated by comparing the activity profile of enantiomers of related active compounds. The enantiomeric pairs of a range of analogues of 13 (Table 4) are shown in Table 4 with P₃ values and current traces measured at 3 µM using Patchliner®. In general, the S.Senantiomers had a greater effect on receptor desensitization (i.e. more Type II in nature) than their R,R-enantiomeric partners. Interestingly, it was possible to tune the compounds toward more Type I-like PAM activity by changing the substituents on the RHS aryl ring, as indicated by their current traces (Table 4). The electron withdrawing substituents on the RHS ring directed the enantiomers more towards Type I PAM character. The greatest impact in shifting the S,S-enantiomer towards Type I activity appeared to come from the nature of the ortho substituents, where electron-withdrawing substituents (CF₃ and OCF_2H) pushed the kinetics more towards Type I, however electron-donating substituents (methoxy and methyl) yielded compounds that had a greater effect on delaying desensitization (Type II). These results suggest that the electron density on the aniline ring may have a pivotal role in tuning desensitization

 kinetics. The discovery of different kinetics of the *trans*enantiomers provided an opportunity to make a

Table 4. Effect of RHS substituents on kinetics of α7 nAChR modulation

^ All current traces are plotted on same time scale (x-axis) but peak current amplitude (y-axis) is not drawn to scale

comparison between the efficacy and safety of Type I and II PAMs. The in vitro ADME and pharmacokinetics properties of the enantiomers of compound 13 (Table 5), showed that both (*R*,*R*)-13 and (*S*,*S*)-13 exhibited similar permeability in *in vitro* CACO-2 assay. In a human liver microsome stability assay, compound (S,S)-13 was slightly more stable (E_{H} = 0.59) than compound (R, R)-13 (E_H = 0.84), whereas the stability in mouse liver microsomes was very similar for both enantiomers ($E_{\rm H}$ = 0.79 and 0.71 for (*R*,*R*)-13 and (*S*,*S*)-13, respectively). These results were further supported by comparable in vivo plasma clearance and bioavailability in rats. Single dose IV (bolus, 4.0 mg/kg) PK in male Sprague Dawley rats of each compound, formulated as 1.1 mg/mL in saline-based vehicle containing 0.1M hydroxypropyl-β-cyclodextrin and 10% (v/v) DMSO, showed moderate plasma clearance and good exposure with dose normalized AUC of 1.2 and 1.0 h*µM, respectively. The oral bioavailability (BA) of these enantiomers in rat was found to be 62% for the R,R-enantiomer and 77% for the S,S-

enantiomer. The *in vivo* efficacy of (R,R)-13 and (S,S)-13 was tested in mouse T-maze model at

 Table 5. Profiling of enantiomers of compound 13

Compounds	-	(<i>R</i> , <i>R</i>)-13	(<i>S</i> , <i>S</i>)-13			
Primary Screening (rα7 GH4C1 planar patch clamp)						
P ₃ (%)		1160	11840			
AUC/P ₃		3.1	57			
Secondary scree	en: ra7 C	H4C1 manual patch clamp				
EC ₅₀		1.9 µM	0.063 µM			
P _{max}		1570%	1630%			
AUC/P _{max}		1.7	25			
Physicochemistry & in vitro ADME						
Solubility at pH 6.5		1.6-3.1 μg/mL				
Solubility at pH 2.0		>100 µg/mL				
logD7.4		4.2				
P _{app} (x10 ⁻⁶ CACO-2	cm/s)	11	14			
Microsomal stability (E _H)	h	0.84	0.59			
	m	0.79	0.71			
Rat PK						
Cl _p (mL/min/kg)		35	43			
V _{ss} (L/kg)		1.8	5.1			
BA (%)		62	77			
AUC _{0-inf} /Dose (h*µM)/mg		1.2	1.0			
Plasma half-life (hr)		1.2	3.9			

a range of 0.003-10.0 mg/kg dose (Table 6). The compounds were formulated in saline based vehicle containing 25% cremephor ELP and were administered orally. The significant difference between the group means were assessed by one-way analysis of variance (ANOVA) followed by Fisher's Protected Least Significant Difference using GraphPad Prism 7.0 (GraphPad Software Inc., San Diego, CA). A *p* value <0.05 was considered statistically significant. (*R*,*R*)-13 exhibited the MED of 0.03 mg/kg and full reversal of the scopolamine-induced impairment was achieved at 1.0 mg/kg. (*S*,*S*)-13 was found to be less potent with MED of 0.3 mg/kg and full reversal of the scopolamine-induced impairment was achieved at 3.0 mg/kg. Despite (*S*,*S*)-13 being more potent *in vitro*, the *in vivo* potency was lower and thus higher *in vitro* potency did not offer any clear advantage in this case.

Considering that a Type I PAM with an $EC_{50} \approx 1 \ \mu M$ can achieve comparable or even better *in vivo* efficacy to a Type II PAM with an $EC_{50} < 100 \ nM$, we compared the *in vivo* efficacy of modulators exhibiting similar potentiation profiles, but lower *in vitro* microsomal clearance. Compounds (*R*,*R*)-19, (*S*,*S*)-19, (*R*,*R*)-26, (*R*,*R*)-27, (*S*,*S*)-27, (*R*,*R*)-28 and (*S*,*S*)-28 were chosen because they all showed improved intrinsic clearance in

mouse and human microsomes relative to (R,R)-13 and (S,S)-13 (data not shown).

Table 6. *In vivo* efficacy of selected compound in mouse Tmaze

maze				
Comp.	Dose (mg/kg)	Significance of reversal*	Reversion (%)	n
	0.003	ns	-9	10
	0.03	***	51	10
(<i>R</i> , <i>R</i>)-13	0.3	***	62	10
	1.0	***	78	10
	3.0	***	78	10
	0.003	ns	-3	10
(C, C) = 12	0.03	ns	11	9
(3,3)-13	0.3	***	65	10
	3.0	***	90	10
	1.0	ns	28	10
(<i>R</i> , <i>R</i>)-19	3.0	ns	8	10
	10.0	**	41	10
	1.0	*	46	10
(<i>S,S</i>)-19	3.0	ns	16	10
	10.0	**	51	10
	1.0	ns	-9	10
(<i>R</i> , <i>R</i>)-26	3.0	ns	0	10
	10.0	ns	10	10
	1.0	ns	8	10
(R,R)-27	3.0	ns	31	10
	10.0	ns	15	10
	1.0	ns	-13	10
(<i>S</i> , <i>S</i>)-27	3.0	ns	-15	10
	10.0	ns	-5	10
	1.0	ns	-18	9
(<i>R</i> , <i>R</i>)-28	3.0	ns	38	10
	10.0	ns	-9	10
	1.0	*	40	10
(<i>S</i> , <i>S</i>)-28	3.0	*	39	9
	10.0	***	79	10

* ns: not significant; * *p* <0.05; ** *p* <0.01; *** *p* <0.001

Upon evaluation in the mouse T-maze at 1, 3 and 10 mg/kg doses, these compounds were found to be less potent than (R,R)-13 and (S,S)-13 (Table 6). Only (S,S)-28exhibited comparable efficacy but at higher dose of 10 mg/kg. The lower *in vivo* potency/efficacy of these compounds may have been due to other DMPK properties, which were not fully profiled for these compounds. Based upon its overall profile and superior potency in the mouse T-maze assay, we selected (R,R)-13 for further evaluation and profiling. In addition to being highly potent *in vivo*, (R,R)-13 possessed an excellent safety profile: no change in the spatial and temporal response of the receptor to endogenous ligand ACh, no activity on other related channels (data not disclosed) and no inhibition of major drug

metabolizing enzymes such as CYP3A4, CYP2C9, CYP2D6, CYP1A2 and CYP2C19 (IC₅₀ >10 μ M). It is worth mentioning that, although some of the related analogs have similar or improved solubility and *in vitro* microsomal clearance, the overall combination of properties of (*R*,*R*)-13 (BNC 375), including percent potentiation of the acetylcholine response, oral bioavailability, half-life and brain exposure, has provided a molecule with efficacy across a broad range of oral doses *in vivo*, that warrants further evaluation as a potential clinical candidate.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Synthetic procedures and analytical characterization data for key compounds, detailed SAR analysis tables, biological assay protocols and crystallography experimental (PDF). Author Information:

Corresponding Author

*E-mail: dpaul@bionomics.com.au

ORCID Dharam Paul: 0000-0001-9540-9455

Author Contributions: The manuscript was written by D.P. with editing support from S.O.C., A.J.H., T.D.A, C.M. and R.S. All authors have given approval to the final version of the manuscript.

Present address:

^vA.J.H.: UniQuest Pty Ltd, Level 7, General Purpose South Building, Staff House Road, Brisbane, QLD-4072, Australia

^ØR.S.: Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville VIC-3052, Australia

 $^{\Omega}\text{A.G.}$: Bigtincan, Level 20, 320 Pitt Street Sydney NSW 2000 Australia

[®]T.D.A: Centre for Nanoscale BioPhotonics, The University of Adelaide, North Terrace, Adelaide, SA-5000, Australia

Note: The authors declare the following competing financial interest(s): The authors are employees of Bionomics and its subsidiaries (Prestwick and Neurofit) and Bionomics has a commercial interest in positive allosteric modulation of nicotine acetylcholine receptors.

Acknowledgement: The authors gratefully thank Ian Bell, Jason Uslaner and Xiaohai Wang of MSD for their review and constructive comments, and Ben Harvey of Bionomics for providing the publication quality Patchliner® current trace figures.

Abbreviations: PAM, Positive allosteric modulator; nAChRs, nicotinic acetylcholine receptors; ACh, acetylcholine; SAR, structure-activity relationship; ADME, absorption, distribution, metabolism and excretion; $E_{\rm H}$, hepatic extraction ratio; BA, bioavailability; DMPK, drug metabolism and pharmacokinetics; CYP, cytochrome P450;

 Lewis, A.S.; Schalkwyk, G.I.; Bloch, M.H. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: A translational meta-analysis of rodent and human studies. *Prog. Neuropsychopharmacol. Biol. Psychiatry.* 2017, 75, 45–53.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

- (2) Potasiewicz, A.; Nikiforuk, A.; Hołuj, M.; Popik, P. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats. *J. Psychopharmacol.* **2017**, 31(2), 260-271.
- (3) Balázs Lendvaia, B.; Kassaia, F.; Szájli, Á.; Némethya, Z. α7 Nicotinic acetylcholine receptors and their role in cognition. *Brain Res. Bull.* **2013**, 93, 86–96
- (4) Yang, T.; Xiaoa, T.; Sun, Q.; Wang, K. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. *Acta Pharm. Sin. B.* 2017, 7(6), 611-622.
- (5) Uteshev, V.V. The therapeutic promise of positive allosteric modulation of nicotinic receptors. *Eur. J. Pharmacol.* **2014**, 727, 181–185.
- (6) Ng, H.J.; Whittemore, E.R.; Tran, M.B.; Hogenkamp, D.J.; Broide, R.S.; Johnstone, T.B.; Zheng, L.; Stevens, K.E.; Gee, K.W. Nootropic α7 nicotinic receptor allosteric modulator derived from GABA_A receptor modulators. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, 104(19), 8059-8064
- (7) Timmermann, D. B.; Grønlien, J. H.; Kohlhaas, K. L.; Nielsen, E. Ø.; Dam, E.; Jørgensen, T. D.; Ahring, P. K.; Peters, D.; Holst, D.; Chrsitensen, J. K.; Malysz, J.; Briggs, C. A.; Gopalakrishnan, M.; Olsen, G. M. An allosteric modulator of the α7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J. Pharmacol. Exp. Ther. 2007, 323(1), 294-307.
- (8) Eskildsen, J.; Redrobe, J.P.; Sams, A.G.; Dekermendjian, K.; Laursen, M.; Boll, J.B.; Papke, R.L.; Bundgaard, C.; Frederiksen, K.; Bastlund, J.F. Discovery and optimization of Lu AF58801, a novel, selective and brain penetrant positive allosteric modulator of alpha-7 nicotinic acetylcholine receptors: attenuation of subchronic phencyclidine (PCP)-induced cognitive deficits in rats following oral administration. *Bioorg. Med. Chem. Lett.* 2014, 24(1), 288-93
- (9) Grønlien, J.H.; Håkerud, M.; Ween, H.; Thorin-Hagene. K.; Briggs, C.A.; Gopalakrishnan, M.; Malysz, J. Distinct profiles of 7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. *Mol. Pharmacol.* 2007,72,715–724.
- (10) Sahdeo, S.; Wallace, T.; Hirakawa, R.; Knoflach, F.; Bertrand, D.; Maag, H.; Misner, D.; Tombaugh, G.C.; Santarelli, L.; Brameld, K.; Milla, M.E.; Button, D.C. Characterization of RO5126946, a novel α7 nicotinic acetylcholine receptor-positive allosteric modulator. *J. Pharmacol. Exp. Ther.* **2014**, 350(2),455-68
- (11) Dinklo, T.; Shaban, H.; Thuring, J.W.; Lavreysen, H.; Stevens, K.E.; Zheng, L.; Mackie, C.; Grantham, C.; Vandenberk, I.; Meulders, G.; Peeters, L.; Verachtert, H.; Prins, E.D.; Lesage A. S. J. Characterization of 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942), a novel positive allosteric modulator of the α7 nicotinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 2010, 336(2),560-74
- (12) Hurst, R.; Hajós, M.; Raggenbass, M.; Wall, T.; Higdon, N.; Lawson, J.; Rutherford-Root, K.; Berkenpas, M.; Hoffmann, W.; Piotrowski, D.; Groppi, V. E.; Allaman, G.; Ogier, R.; Bertrand, S.; Bertrand, D.; Arneric, S. P. "A

novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization". *J. Neurosci.* **2005**, 25 (17): 4396–4405

- (13) Malysz, J.; Grønlien, J. H.; Anderson, D. J.; Håkerud, M.; Thorin-Hagene, K.; Ween, H.; Wetterstrand, C.; Briggs, C. A.; Faghih, R.; Bunnelle, W. H.; Gopalakrishnan, M. In vitro pharmacological characterization of a novel allosteric modulator of α7 neuronal acetylcholine receptor, 4-(5-(4chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1yl)benzenesulfonamide (A-867744), exhibiting unique pharmacological profile. *J. Pharmacol. Exp.* **2009**, 330 (1), 257-267.
- (14) Gill-Thind, J.K.; Dhankher, Persis.; D'Oyley,J.M.; Sheppard, T.D.; Millar, N.S. Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. *J. Biol. Chem.* 2015, 290(6), 3552-3562.
- (15) Harvey, A.; Fluck, A.; Giethlen, B.; Paul, D.; Schaeffer, L. Positive allosteric modulators of the alpha 7 nicotine acetylcholine receptors and uses thereof. WO 2012103583.
- (16) Harvey, A..; Avery, T.; Paul, D.; Ripper, J.; Huff, B.; Singh, R.; Schaeffer, L.; Joseph, C.; Morice, C.; Giethlen, B. α7 Nicotine acetylcholine receptor modulators and uses thereof. WO 2014019023.

For Table of Contents Use Only

Discovery of BNC375, a Potent, Selective, and Orally Available Type I Positive Allosteric Modulator of α7 nAChRs.

Andrew J. Harvey[#], Thomas D. Avery[#], Laurent Schaeffer[§], Christophe Joseph[§], Belinda C. Huff[#], Rajinder Singh[#], Christophe Morice[§], Bruno Giethlen[§], Anton A. Grishin[#], Carolyn J. Coles[#], Peter Kolesik[#], Stéphanie Wagner[†], Emile Andriambeloson[†], Bertrand Huyard[†], Etienne Poiraud[†], Dharam Paul^{*}, Susan M. O'Connor[#]

