HETEROAROMATIC N-OXIDE REARRANGEMENTS. REINVESTIGATION OF 1,3 TOSYLOXY MIGRATION IN THE REACTION OF ISOOUINOLINE N-OXIDE WITH TOSYL CHLORIDE

Bruce E. Maryanoff,* Han-Cheng Zhang, Allen B. Reitz, Gregory C. Leo, and William J. Jones Medicinal Chemistry Department, R. W. Johnson Pharmaceutical Research Institute Spring House, Pennsylvania 19477 USA

Summary: Isoquinoline N-oxide (2) reacts with ¹⁸O-enriched tosyl chloride to furnish ¹⁸O-labeled 4-tosyloxyisoquinoline (4), which was assessed for oxygen isotopic enrichment by NMR and mass spectrometry. The 30-45% ¹⁸O incorporation at the bridging oxygen is inconsistent with a high level of the intramolecular tightion-pair ("sliding") mechanism. A combination of two intramolecular mechanisms is probably operative.

Acylation and sulfonylation of heteroaromatic N-oxides, in the absence of an added base, result in rearrangement products, which formally arise via oxygen migration from nitrogen to carbon.¹ Thus, N-oxides of pyridine (1), isoquinoline (2), and acridine (3) generate C-acyloxy-derived or C-sulfonyloxy compounds, as depicted in Schemes 1-3.

This type of rearrangement has attracted mechanistic attention.¹ For example, reactions of pyridine Noxides with Ac₂O were determined to involve an intermolecular rearrangement mechanism by kinetics and oxygen-labeling studies.^{1a,1b} However, oxygen isotope-tracer experiments with acridine N-oxide (3) indicated a more complex situation, in which two types of intramolecular rearrangement pathways occurred depending on concentration and solvent:^{1a,1b,2} (1) a tight-ion-pair ("sliding") mechanism that *retained* the original oxygen atom attached to the heterocycle during rearrangement and (2) a "cyclic" mechanism that *completely exchanged* the originally attached oxygen atom. A representative sulfonylation example was the reaction of isoquinoline N-oxide (2) with *p*-toluenesulfonyl chloride (tosyl chloride; TsCl), which gives 4tosyloxyisoquinoline (4) in a reasonably good yield.³ The rearrangement was postulated to proceed almost exclusively by a "sliding" mechanism, on the basis of ¹⁸O-labeling, kinetics, and crossover studies.^{1a,3}

We had occasion to conduct the synthesis of 4 from 2, and thereby became interested in the rearrangement mechanism. Oae and coworkers reacted 2 with ¹⁸O-enriched TsCl and found that the bridging oxygen in product 4 lacked ¹⁸O incorporation.³ The oxygen isotopic composition of 4 was obtained by an indirect method requiring hydrolysis of 4 to 4-hydroxyisoquinoline (5) with aqueous sulfuric acid. To address the possibility of oxygen exchange in 5, which would dilute any potential ¹⁸O content derived from the rearrangement, Oae and coworkers performed a control experiment. Thus, they treated 5 with ¹⁸O-labeled water and sulfuric acid and found that ¹⁸O was not incorporated, in support of the "sliding" mechanism.

A weakness of the control experiment is that it only tested the isotopic fate of product 5 after it had been formed. We wondered what would happen if the control experiment were expanded in scope, by applying it to the hydrolytic conversion of 4 to 5. In fact, hydrolysis of 4 with ¹⁸O-enriched water (20 atom % ¹⁸O) and sulfuric acid provided 5 with a significant incorporation of the the heavy isotope, reflective of 55% exchange (based on CI-MS, CH₄). Since this outcome casts doubt on the quantitative results for the earlier mechanistic conclusion, we decided to reinvestigate the reaction of 2 with heavy oxygen-enriched TsCl and determine the isotope composition of 4 directly, by NMR and MS.

We hoped at first to use ¹⁷O NMR to approach this problem, but the signals for the bridging and sulfonyl oxygens of 4, and its HCl salt, were not resolvable; also, there was no resolution under the influence of a dysprosium NMR shift reagent.⁴ Consequently, we switched to ¹³C NMR, capitalizing on the ¹⁸O isotopeinduced shift of the attached carbon resonance.⁵ Compound 2 was treated with TsCl-¹⁸O₂⁶ in CHCl₃ at 0-5 °C, then warmed to 25 °C (1 h) and 45 °C (1 h); product 4 was isolated in 53% yield by flash chromatography (silica gel; hexane-EtOAc, 2:1): mp 91-92 °C; ¹³C NMR (CDCl₃, 100.6 MHz) δ 151.19 (C₁), 145.90 (4'), 141.94 (C₄), 135.81 (C₃), 131.95 (1'), 131.11 (C₆), 130.38 (C_{4a}), 129.90 (3'), 129.70 (C_{8a}), 128.53 (2'), 128.11 (C₇), 127.17 (C₈), 121.06 (C₅), 21.68 (Me).⁷ Incorporation of ¹⁸O at the bridging position in some, but not all, of the molecules of 4 doubled the C₄ resonance, with an isotope-induced shift of 2.9 Hz (Fig. 1). Spectral deconvolution and integration provided an ¹⁶O/¹⁸O ratio for the bridging oxygen of 73:27.

Further substantiation of the isotopic content was obtained by mass spectrometry. Under negative-ion CI (CH₄), 4 produces two key fragments by cleavage of the bridging S-O bond (Fig. 2). Analysis of one of these fragments, m/z 144/146, afforded an $^{16}O/^{18}O$ ratio for the bridging oxygen of 69.2:30.8, which is reasonably consistent with the NMR-derived value.⁸

The conversion of 2 to 4 first involves the formation of N-tosyloxylsoquinolinium (6) chloride, which has been isolated as a perchlorate salt by addition of LiClO₄ to the reaction.^{3b} Salt 6 undergoes chloride addition at C-1 and subsequent 1,3 rearrangement to give 7. This chemistry can be simulated by addition of

chloride to the perchlorate of 6. The rearrangement can proceed by three possible pathways: (1) intramolecular tight ion-pair ("sliding") mechanism, (2) intramolecular [3,3] sigmatropic migration, and (3) intermolecular, solvent-separated ion-pair mechanism. By using TsCl-¹⁸O₂ and assaying the bridging oxygen in 4, the isotope-tracer results for these individual processes would be: (1) 100% ¹⁶O, (2) 0% ¹⁶O, and (3) 33% ¹⁶O (scrambling). The reported³ results of 85-100% ¹⁶O are consistent with a high level of mechanism 1; however, this is not an accurate picture. Our reinvestigation (CHCl₃ data) indicates 70% ¹⁶O retention, which requires a combination of mechanism 1 with mechanism 2 (30%) or 3 (45%), or a mixture of all three.

The rearrangement was studied in different solvents. Thus, ¹⁸O incorporation increased in small steps from CHCl₃ (30.8%) to benzene (33.6%) to HMPA (34.2%) to MeCN (37.6%) to MeCN-water (44.6%).⁹ Polar solvents would be expected to enhance the contribution of mechanism 3; however, the effect of polar solvent on the amount of ¹⁸O incorporation is minimal. These data suggest that mechanism 3 is insignificant.

To clarify the mechanism further, we can refer to the reported kinetics and crossover experiments.^{1a} Rate studies involving solvent, substituent, and hydrogen isotope effects indicate cleavage of the N-O bond in the rate-determining step. An activation entropy (ΔS^{\star}) of -40.2 eu points to a highly ordered transition state. Also, negligible oxygen isotope scrambling in a doping experiment with unlabeled TsO⁻ rules out intermolecular exchange. Since no original data were published for this crossover result, we performed crossover experiments with NaOTs. For example, a solution of TsCl-¹⁸O₂ (1 mol equiv) in HMPA was added dropwise to a solution of NaOTs (1 mol equiv) and 2 (1.6 mol equiv) in HMPA at 0 °C, followed by warming (25 °C, 1 h;

45 °C, 1 h), to give 4 with 33.2% ¹⁸O incorporation (vs. 34.2% without NaOTs present).¹⁰ This reflects a very low level of crossover. Standard EI-MS analysis of the product mixture revealed 2.3% of the $4-16O_3$ species. The product from the non-crossover ¹⁸O-labeling reaction showed 0.7% of 4-¹⁶O₃, resulting in an actual amount of $4^{-16}O_3$ from crossover of 1.6% (out of a maximum of ca. 50%). Thus, in the crossover experiment mechanism 3 is quite minor (ca. 3%), even though excess NaOTs was present during the reaction.

Three by-products, 8¹¹ (11%), 9¹¹ (13%), and 10 (8%), were isolated directly from the rearrangement mixture in CHCl₃ (no aqueous work-up; assigned by ¹H NMR, MS, IR, mp). No ¹⁸O was found in either 8 or 10 by MS analysis. The ratio of by-products varied according to solvent employed, with 62% of 8 being formed with MeCN-water.

In conclusion, the rearrangement of isoquinoline N-oxide (2) with tosyl chloride to 4 does not occur almost exclusively by an intramolecular tight-ion-pair ("sliding") mechanism, as indicated previously.^{1a,3} The rearrangement proceeds in CHCl3 by a combination of two mechanistic pathways, a significant component of which is the intramolecular tight-ion-pair mechanism (ca. 70% mechanism 1 and ca. 30% mechanism 2). It is interesting that heterocyclic N-oxide rearrangements can proceed by any of the three mechanistic pathways, or a combination thereof, depending on the system, electrophilic reagent, or reaction conditions.

References and Notes

- 1. Reviews: (a) Oae, S. Heterocycles 1977, 6, 583-675. (b) Traynelis, V. J. in Mechanisms of Molecular Migrations, Vol. 2, Thygarajan, B. S., Ed., John Wiley & Sons: New York, 1969, pp 1-42. (c) Scriven, E. F. V. in Comprehensive Heterocyclic Chemistry, Vol. 2, Boulton, A. J.; McKillop, A, Eds., Pergamon Press: Oxford, 1984, pp 224-229. (d) Uff, B. C. in Comprehensive Heterocyclic Chemistry, Vol. 2, Boulton, A. J.; McKillop, A., Eds., Pergamon Press: Oxford, 1984, p 355. (e) Dyke, S. F.; Kinsman, R. G. in Chemistry of Heterocyclic Compounds -- Isoquinolines, Part 1, Grethe, G., Ed., John Wiley & Sons: New York, 1981, pp 89-92.
- Oae, S.; Kozuka, S.; Sakaguchi, Y.; Hiramatsu, K. Tetrahedron 1966, 22, 3143.
 (a) Oae, S.; Kitao, T.; Kitaoka, Y. Tetrahedron 1963, 19, 827. (b) Oae, S.; Ogino, K.; Tamagaki, S.; Kozuka, S. Ibid. 1969, 25, 5761.
- 4. Dahn, H.; Toan, V. V.; Ung-Truong, M.-N. Magn. Reson. Chem. 1991, 29, 897. The ratios of 4/Dy reagent used were 100:1, 25:1, and 4:1.
- 5. Fujio, M.; Sanematsu, F.; Tsuno, Y.; Sawada, M.; Takai, Y. Tetrahedron Lett. 1988, 29, 93. An ¹⁸O atom in the bridging position should cause a 3-4 Hz upfield shift of the directly bonded ¹³C nucleus.
- 6. Prepared from toluenethiol and 97-98 atom % H₂¹⁸O (ref 3a and Dietze, P. E.; Wojciechowski, M. J. Am. Chem. Soc. 1990, 112, 5240). The ¹⁸O-enriched TsCl had mp 67-68 °C; CI-MS (CH₄) analysis indicated 96% ¹⁸O content.
- 7. (a) Signal assignments are based on connectivities obtained from an HMBC experiment (60-ms evolution delay). See: Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093. (b) Primes are for Ts.
- 8. Analysis of the companion fragment, m/z 157/159, was less reliable for quantitation. Under the negativeion CI conditions, the molecular ion was miniscule.
- 9. From MS analysis. Corresponding isolated yields of 4: 53%, 44%, 47%, 38%, 20% (based on TsCl).
- 10. From MS analysis. A control experiment indicated that the rate of formation of Ts₂O was very slow.
- 11. Ochiai, E.; Ikehara, M. Pharm. Bull. (Tokyo) 1955, 3, 454.

(Received in USA 16 July 1993; accepted 10 September 1993)