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ABSTRACT A small library of psoralen carboxylic acids and their corresponding benzenesulfonamide derivatives were de-
signed and synthetized to evaluate their activity and selectivity toward tumor associated human Carbonic Anhydrase (hCA) 
isoforms IX and XII. Both psoralen acids and sulfonamides exhibited potent inhibition of IX and XII isozymes in the nanomo-
lar concentration range. However, psoralen acids resulted as the most selective in comparison with the corresponding ben-
zenesulfonamide derivatives. Our data indicate that the psoralen scaffold is a promising starting point for the design of high-
ly selective tumor associated hCA inhibitors. 

Coumarins are a class of heterocyclic compounds widely 
distributed in nature with a wide variety of biological ac-
tivity such as antiviral,1, 2 glucose-lowering agents,3, 4 anti-
mycotic,5 and antitumor.6-10  

Calanolides A and B extract from Calophyllum lanigerum 
showed anti-HIV-1 activity.11 Furthermore imperatorin has 
been reported to have anti-inflammatory, antibacterial, an-
tifungal, antiviral, and anticancer activity and might have 
future clinical application.12 Noteworthy, other derivatives 
such as psoralen, bergapten, marmesin, rutaretin are 
known antitubercular agents.13 In particular the 7H-
furo[3,2-g]chromen-7-one derivatives, commonly known 
as psoralens, have been investigated for their ability to 
suppress proliferation and angiogenesis in human colon 

cancer cells by targeting HIF-1α via the 
mTOR/p70S6K/4E-BP1 and MAPK pathways7 and to re-
verse multidrug resistance in both lung cancer A549/D16 
and breast cancer MCF-7/ADR cells.14, 15  

Moreover, the ability of coumarin derivatives to inhibit 
human Carbonic Anhydrase isozymes IX and XII (hCA IX 
and XII) has also been reported.16-19 

Noteworthy, the chemical accessibility and the ease of 
functionalization of the coumarin nucleus, allows for syn-
thesizing diverse compounds’ libraries.  

The trans-membrane hCA IX and hCA XII isoforms have 
been associated with tumor progression and invasion.20-28 
In normal conditions, CA IX is expressed in the stomach 
and few other tissues while it is ectopically induced and 
highly overexpressed in many hypoxic solid tumors, by a 
direct transcriptional activation of the CA9 gene via HIF-

1α. Therefore the design of new and isozyme selective hCA 
inhibitors is an attractive challenge for medicinal chemists.  

In this respect, the design of new psoralen derivatives as 
hCA IX and XII inhibitors could be advantageous and may 
lead to the identification of multi-target agents since other 
cancer related enzymes and pathways could also be hit by 
such derivatives.6, 7, 9, 14, 15, 29, 30  

Pursuing on our efforts in the design and synthesis of 
hCA inhibitors,31, 32 we have designed and synthesized a 
small library of coumarin (EMAC10151 A-D) and psoralen 
(EMAC10152 A-D) derivatives with the aim to target the 
hCA IX and XII isoforms. To achieve a deeper insight in the 
inhibitory potential of such derivatives we have also syn-
thesized EMAC10152 A-D corresponding benzenesulfon-
amide hybrids EMAC10153 A-D. The new compounds 
were synthesized by a versatile multistep synthetic ap-
proach (Scheme 1). Methyl 2-(7-hydroxy-4-methyl-2-oxo-
2H-chromen-3-yl)acetate EMAC10150 was obtained by 
Pechmann condensation of resorcinol with dimethyla-
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cetylsuccinate in 98% sulfuric acid. EMAC10150 was con-
verted into methyl 2-(4-methyl-2-oxo-7-aryloxy-2H-
chromen-3-yl)acetate derivatives EMAC10151 A-D by 
Williamson reaction with the appropriate α–haloketone, in 
the presence of dry acetone and using potassium car-
bonate to generate the in situ alkoxide ion.  

By heating EMAC10151 A-D in sodium hydroxide 1M 
solution, the simultaneous intramolecular condensation 
and ester saponification took place to give 2-(5-methyl-7-
oxo-3-aryl-7H-furo[3,2-g]chromen-6-yl)acetic acid 
EMAC10152 A-D. 

The formation of the 2H-furo[2,3-h]chromen-2-one iso-
mers was not observed, as confirmed by 1H-NMR spectros-
copy (Figure S1 SI). Benzenesulfonamide hybrids 
EMAC10153 A-D were obtained via acyl chloride for-
mation and subsequent reaction with 4-
aminobenzenesulfonamide. All compounds were charac-
terized by means of both analytical and spectroscopic 
methods (Figure S2-S25) and finally evaluated for the in-
hibition of four hCA isoforms I, II, IX, and XII (Table 1). 

 

Scheme 1. Synthetic pathway to compounds 

EMAC10151 A-D, EMAC10152 A-D, and EMAC10153 A-

D. 
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Reagents and conditions (i) dimethylacetylsuccinate, H2SO4 
98%, RT; (ii) dry acetone, K2CO3, α-haloketone, reflux,1-5 h.; 
(iii) propan-2-ol, NaOH 1 N, reflux, 4 h; (iv) SOCl2, RT, dry ace-
tone, 4-aminobenzenesulfonamide, dry pyridine. 

Table 1. Inhibition data towards hCA I, II, IX, and XII of 

compounds EMAC10151 A-D, EMAC10152 A-D, and 

EMAC10153 A-D. 
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Ki (nM) 

Compound 
EMAC 

R hCAI hCAII hCAIX hCAXII 

10151 A Cl >10000 >10000 23.6 446.6 

10151 B CH3 >10000 >10000 122.8 56.6 

10151 C H >10000 >10000 89.7 72.5 

10151 D F >10000 >10000 84.7 250.0 

10152 A Cl >10000 >10000 94.7 9.3 

10152 B CH3 >10000 >10000 23.0 9.1 

10152 C H >10000 >10000 17.5 9.4 

10152 D F >10000 >10000 17.7 7.4 

10153 A Cl 6829.7 55.1 17.8 2.4 

10153 B CH3 7069.0 560.0 91.6 3.4 

10153 C H 7016.1 46.6 16.5 3.6 

10153 D F 7148.1 79.5 108.4 49.9 

AAZ // 250 12.1 25.8 5.7 

Most of EMAC compounds possess, although with some 
distinction, selective activity toward the IX and XII 
isoforms. However, when the benzenesulfonamide moiety 
is present, a strong reduction of the selectivity becomes 
evident. In particular, in the case of compound 
EMAC10153 D, the complete loss of selectivity was ob-
served.  

On the contrary both EMAC10151 A-D and 

EMAC10152 A-D are generally potent and selective inhibi-
tors of the tumor associated hCA IX and XII isoforms. 
Nevertheless, some considerations should be reported. Re-
garding the methyl 2-(4-methyl-2-oxo-7-aryloxy-2H-
chromen-3-yl)acetate derivatives, EMAC10151 A-D a dif-
ferent activity profile could be observed, according to the 
substitution of the phenyl ring. Thus, the introduction of a 
halogen atom (Cl or F, EMAC10151 A and EMAC10151 D) 
in the position 4 of the phenyl substituent, oriented the ac-
tivity and selectivity toward the IX isozyme. On the 
contrary, the unsubstituted phenyl or the 4-CH3-phenyl 
moieties led to an increase of the activity toward the hCA 
XII isoform. Indeed, a reduction of the activity toward hCA 
IX was observed for compound EMAC10151 B. However, 
although weaker (Ki = 122.8 nM), this derivative exhibited 
a high selectivity toward the hCA IX and XII isozymes. A 
similar behavior could be observed for all the psoralen 
carboxylic acid derivatives EMAC10152 A-D. All these 
compounds were potent and selective tumor associated 
isoforms IX and XII hCAIs. Their Ki values toward hCA IX 
and XII ranged from 94.7 to 7.4 nM, while no inhibition 
could be observed up to 10000 nM concentration toward 
the off target hCA I and hCA II isozymes. More in detail it 
could be pointed out that, in the case of hCA IX inhibition, 
the biological activity is more influenced by the size of the 
substituent on the phenyl ring rather than by its nature. 
Thus the introduction of a chlorine atom (EMAC10152 A) 
led to the less potent compound within the 10152 series. 
On the contrary compounds EMAC10152 C and 
EMAC10152 D, bearing an unsubstituted phenyl and a 
fluoro phenyl moieties respectively, resulted as the most 
potent inhibitors. Interestingly, hCA XII is inhibited at low 
nanomolar concentrations, regardless of the nature of the 
substitution. As mentioned above, in the case of the pso-
ralen-benzenesulfonamide hybrids (EMAC10153 A-D), a 
potent activity toward the hCA XII was observed for most 
of the tested derivatives. The inhibition of the XII isozyme 
could still be observed at concentrations ranging from na-
nomolar to low nanomolar, but a lower selectivity is gen-
erally measured toward the off-target isozyme hCA II with 
respect to EMAC10151 and EMAC10152 series. Only in 
the case of compound EMAC10153 B, bearing a 
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methylphenyl moiety on the furan ring, a good selectivity 
toward hCA IX and XII versus hCA I and II was found. 

Computational methods have been applied in order to 
explain the selectivity of the synthesized coumarins deriv-
atives towards hCA IX and hCA XII isoforms and their ina-
bility to inhibit the II isoform, which, in our intent, repre-
sents an off-target. To perform our studies we chose the 
two compounds that showed the highest potency and se-
lectivity toward hCA IX and XII: the acid derivative 
EMAC10152 D and the sulfonamide derivative 
EMAC10153 B. Indeed, these compounds have been 
docked inside the three crystal structures II (3f8e), IX 
(5fl4) and XII (4ww8).33, 34 The previously validated 
QMPL35 protocol was applied.32 Both coumarins deriva-
tives have been prepared considering the possibility that 
the coumarin moiety can be hydrolyzed by the Zn2+ acti-
vated water molecule of the enzyme cavity, which acts as a 
very potent nucleophile.33 Therefore, the compounds were 
ionized at pH 7.4. However, sulfonamide group was con-
sidered both unionized, at pH 7.4, and ionized taking into 
account the micro basic pH inside the binding pocket (Fig-
ure S26 SI). All molecules were subjected to conformation-
al analysis and the global minimum of each was selected 
for carrying out docking experiments. The putative binding 
mode suggested by docking simulations well explain the 
selectivity of our compounds. In fact, both compounds are 
not able to enter in deep in the active site of hCA II because 
of the steric hindrance of Phe 131 (Figure1 and Figure 
S27). On the contrary, they perfectly fit into the active site 
of hCA IX and hCA XII, where Phe 131 is substituted by Val 
130 and Ala 129 respectively (Figure 1). In particular the 
suggested binding mode shows that the coumarin moiety 
of compound EMAC10152 D can reach the catalytic site 
and be hydrolyzed. Conversely, like most of sulfonamide 
derivatives, EMAC10153 B acts by interacting with the 
sulfonamide moiety, while the coumarin portion, oriented 
outside the pocket, cannot be hydrolyzed (Figure 1). Ac-
cording to the above suggested mechanism, only the com-
plexes with hydrolyzed EMAC10152 D and closed 
EMAC10153 B were subjected to a post-docking proce-
dure based on energy minimization in order to take into 

account the induced fit phenomena that occur upon ligand 
binding.36 The docking results are in agreement with ex-
perimental data regarding the isoform selectivity. In fact, 
EMAC compounds bound to hCA IX and XII showed lower 
G-score compared to the complex with II-isoform (Table 
S1), indicating a major stability of the complexes with hCA 
IX and XII in agreement with the experimental results (Ta-
ble 1).  

 

 

Figure 1. 3D representation of docking results of a) 
EMAC10152 D in cyan and b) EMAC10153 B in pink with 
the three hCA isoforms represented as surface: in grey hCA 
II, in beige hCA IX and in light-blue hCA XII. The active site 
is highlighted in pale yellow. 

The analysis of the interaction mode with isoform IX and 
XII (Figure 2) shows that EMAC10152 D and EMAC10153 

B are able to establish a wide array of hydrogen bonds 
with crucial residues of the binding site and several hy-
drophobic interactions. More in details, the carboxylic 
function of EMAC10152 D interacts as a bidentate chela-
tor with the Zn2+. Conversely, in the case of EMAC10153 A, 
the sulfonamide group plays a key role by interacting with 
Zn2+ and Thr residues, as it has been generally observed 
for this class of compounds. 37, 38  
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Figure 2. 3D representation of the putative binding mode obtained by docking experiment of EMAC10152 D and 
EMAC10153 B into a) hCA IX (beige) and b) hCA XII (light blue) and the relative 2D representation of the complexes stabi-
lizing interactions with the residues of the binding site. 

Therefore, putative binding mode seems to confirm the 
importance of the coumarin moiety in both closed and hy-
drolyzed conformation, although the different functionali-
zation of EMAC compounds with respect to previously re-
ported coumarins,33 led to a different target recognition 
that involves the interaction with the zinc ion. Hence, this 
could represent an innovative mode of action. In addition, 
it was confirmed that a bulky moiety, linked to the catalytic 
site binding scaffold, allows selectivity over the off-target II 
isoform. In fact, in the case of the II isoform, the steric hin-
drance of Phe131 prevents the ligands-target interaction.  

According to these results both psoralen and the hybrid 
compounds could be considered as promising scaffolds for 
the design of high selective inhibitors of the hCAs IX and 
XII isoforms. However, while very high selectivity was al-
ways achieved by coumarin (EMAC10151) and psoralen 
(EMAC10152) derivatives, the same behavior was not ob-
served in the case of the hybrid compounds EMAC10153. 
Probably, this is mainly due to the presence of the strong 
Zn2+ binder benzenesulfonamide which, on the one hand, 
may lead to very potent compounds, but, on the other, 
could affect selectivity. 

Conversely, hydrolyzed coumarin EMAC10151 and pso-
ralen EMAC10152 most likely act as bidentate Zn2+ chela-
tors, while hybrid compounds EMAC10153 may preferen-
tially act as traditional Zn2+-binders. These results were 
very encouraging and pushed us to further investigate the-
se derivatives in order to identify potential candidates for 
the treatment of hypoxic tumors. 
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