

ScienceDirect

Mendeleev Commun., 2019, 29, 638-639

Mendeleev Communications

Synthesis of uracil–coumarin conjugates as potential inhibitors of virus replication

Maria P. Paramonova,^{*a*} Alexander A. Ozerov,^{*a*} Alexander O. Chizhov,^{*b*} Robert Snoeck,^{*c*} Graciela Andrei,^{*c*} Anastasia L. Khandazhinskaya^{*d} and Mikhail S. Novikov^{*a*}

- ^a Department of Pharmaceutical and Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russian Federation
- ^b N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation

^c Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium

^d V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 499 135 1405; e-mail: khandazhinskaya@bk.ru

DOI: 10.1016/j.mencom.2019.11.010

A series of 1-[(bromophenoxy)alkyl]uracil–coumarin conjugates has been obtained through the preparation of starting 1-[(bromophenoxy)alkyl]uracil derivatives, followed by their treatment with 7-(ω -bromoalkoxy)-4-methyl-2*H*-chromen-2-ones. Two of the synthesized uracil–coumarin conjugates demonstrated a pronounced inhibitory activity against HCMV and VZV replication *in vitro*.

Coumarins are a large family of heterocyclic compounds found in higher plants and localized in their roots, bark and fruits. Natural and synthetic coumarin derivatives are known as antidepressants,¹ antimicrobials,² antioxidants,³ as well as anti-inflammatory,⁴ antiasthmatic⁵ and antitumor⁶ agents. Coumarins were also found to exhibit inhibitory activity against HIV-1,⁷ HCV,⁸ and herpesvirus.⁹ As well, antiviral effect was shown for the conjugates of coumarin with nucleic bases¹⁰ and nucleosides.¹¹

As an example of antiviral nucleic base conjugates, we synthesized 1-[$(\omega$ -(aryloxy)alkyl]-3-[(4-phenoxyphenyl)aminocarbonylmethyl]uracil derivatives and demonstrated their inhibitory effect towards HCMV, VZV^{12,13} and HCV¹⁴ replication. In this work, we synthesized and tested a series of new uracil conjugates bearing coumarin moiety.

The synthesis of starting 1-[5-(4-bromophenoxy)pentyl]uracil 1a was described.¹⁵ 1-[5-(3-Bromophenoxy)pentyl]uracil 1b and 1-[5-(2-bromophenoxy)pentyl]uracil 1c precursors were obtained in 82 and 70% yields, respectively, by condensation of 2,4-bis(trimethylsilyloxy)pyrimidine with 1-bromo-3-[(5-bromopentyl)oxy]benzene or 1-bromo-2-[(5-bromopentyl)oxy]benzene in equimolar amounts by heating without solvent under dry conditions as described.^{15,16} 1-{2-[2-(4-Bromophenoxy)ethoxy]ethyl}uracil 1d could not be obtained by this way, because bromotrimethylsilane, released during interaction of 2,4-bis(trimethylsilyloxy)pyrimidine with 1-bromo-4-[2-(2-bromoethoxy)ethoxy]benzene, cleaved the dialkyl ether moiety under the conditions employed. For this reason, the synthesis of uracil derivative 1d was carried out by treatment of the latter with a fourfold molar excess of uracil in DMF in the presence of potassium carbonate. This alternative process led to 1-substituted uracil 1d in 56% yield. Details of the synthesis and properties for precursors 1b-d are given in Online Supplementary Materials.

Preparation of 7-(ω -bromoalkoxy)-4-methyl-2*H*-chromen-2-ones **2a–e** is well documented,^{17–19} they were obtained by reaction

of 7-hydroxy-4-methyl-2*H*-chromen-2-one with an excess of the corresponding α, ω -dibromoalkane in acetone in the presence of K₂CO₃. 7-(2-Bromoethoxy)-3,4-dimethyl-2*H*-chromen-2-one **2f** was synthesized in 72.5% yield by treatment of 7-hydroxy-3,4-dimethyl-2*H*-chromen-2-one with a fourfold molar excess of 1,2-dibromoethane under similar conditions.

Scheme 1 Reagents and conditions: i, DMF, K₂CO₃, 80 °C, 18 h.

Table 1 Anti-HCMV and anti-VZV activity of uracil–coumarin conjugates 3a–i in HEL cell culture.

Compound	Antiviral activity, $EC_{50}/\mu M^a$				Cytotoxicity	
	HCMV AD-169	HCMV Davis	VZV Oka (TK ⁺)	VZV 07-1 (TK ⁻)	Cell morphology MCC/µM ^b	Cell y growth CC ₅₀ /µM ^c
3a	>20	>20	>20	>20	100	_d
3b	0.39	0.51	0.52	0.6	4	_
3c	>0.8	>0.8	1.37	>0.8	4	-
3d	>4	>4	>4	>4	20	-
3e	0.44	0.44	0.16	0.47	4	4.95
3f	>100	>100	>100	>100	>100	-
3g	>4	4	>100	>100	20	-
3h	>20	>20	>100	>100	100	-
3i	>0.8	>0.8	11.7	5.72	<0.8	-
Ganciclovir	2.4	2.01	-	-	350	196.41
Cidofovir	0.38	0.38	-	-	300	129.43
Acyclovir	_	_	0.44	2.89	>100	>100
Brivudine	-	_	0.022	12.01	100	>100

^{*a*} Concentration required to reduce virus plaque formation by 50%; virus load was 100 plaque forming units (PFU). ^{*b*} Concentration that caused a microscopically detectable alteration of cell morphology. ^{*c*} Concentration required to reduce cell growth by 50%. ^{*d*} Not determined.

The synthesis of the target uracil–coumarin conjugates was carried out in 74–86% yields by the treatment of 1-substituted uracil derivatives 1a-d with an equimolar amount of bromides 2a-f in DMF in the presence of K_2CO_3 (Scheme 1). Details of the synthesis and properties for the resulting compounds 3a-i are given in Online Supplementary Materials.

Activity of the obtained uracil–coumarin conjugates against HCMV strains AD-169 and Davis as well as against VZV strains Oka and 07-1 was tested in HEL cell culture (Table 1). Compounds **3b** and **3e** have been found to inhibit HCMV replication with EC_{50} 0.39–0.51 μ M, which is more effective than ganciclovir and comparable with cidofovir, though the test compounds are much more cytotoxic than both ganciclovir and cidofovir. The uracil–coumarin conjugates **3b** and **3e** have also been found to effectively block VZV replication with EC_{50} 0.16–0.52 μ M. Note that, unlike acyclovir or brivudine, these two compounds demonstrate a similar inhibitory effect on both VZV strains tested, namely the wild type Oka strain and the thymidine kinase-deficient (TK⁻) mutant 07-1 strain. This allows us to suggest, that conjugates **3b** and **3e** do not interact with viral thymidine kinase, and the mechanism of their anti-VZV effect differs from that for acyclovir or brivudine.

In summary, we have synthesized a number of new uracilcoumarin conjugates, and some of them have demonstrated activity against HCMV and VZV *in vitro*. These results open a possibility for a further search for potent antiviral agents based on $1-[\omega-(aryloxy)alkyl]$ uracil structure.

This work was supported by the Russian Foundation for Basic Research (project no. 17-54-30016 NIH_a). The biological part of this work was supported by KU Leuven. The authors are grateful to Mrs. Ellen De Waegenaere for her excellent technical assistance.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2019.11.010.

References

- 1 K. V. Sashidhara, A. Kumar, M. Chatterjee, K. B. Rao, S. Singh, A. K. Verma and G. Palit, *Bioorg. Med. Chem. Lett.*, 2011, 21, 1937.
- 2 B. Li, R. Pai, M. Di, D. Aiello, M. H. Barnes, M. M. Butler, T. F. Tashjian, N. P. Peet, T. L. Bowlin and D. T. Moir, *J. Med. Chem.*, 2012, **55**, 10896.
- 3 G.-L. Xi and Z.-Q. Liu, J. Agric. Food Chem., 2015, 63, 3516.
- 4 S. Bua, L. Di Cesare Mannelli, D. Vullo, C. Ghelardini, G. Bartolucci, A. Scozzafava, C. T. Supuran and F. Carta, J. Med. Chem., 2017, 60, 1159.
- 5 A. Sánchez-Recillas, G. Navarrete-Vázquez, S. Hidalgo-Figueroa, M. Y. Rios, M. Ibarra-Barajas and S. Estrada-Soto, *Eur. J. Med. Chem.*, 2014, 77, 400.
- 6 M.-M. Liu, X.-Y. Chen, Y.-Q. Huang, P. Feng, Y.-L. Guo, G. Yang and Y. Chen, J. Med. Chem., 2014, 57, 9343.
- 7 H. Xue, X. Lu, P. Zheng, L. Liu, C. Han, J. Hu, Z. Liu, T. Ma, Y. Li, L. Wang, Z. Chen and G. Liu, *J. Med. Chem.*, 2010, **53**, 1397.
- 8 H.-K. Peng, W.-C. Chen, J.-C. Lee, S.-Y. Yang, C.-C. Tzeng, Y.-T. Lin and S.-C. Yang, *Org. Biomol. Chem.*, 2013, **11**, 1858.
- 9 B. Xu, L. Wang, L. González-Molleda, Y. Wang, J. Xu and Y. Yuan, Antimicrob. Agents Chemother, 2014, 58, 563.
- 10 J. R. Hwu, M. Kapoor, S.-C. Tsay, C.-C. Lin, K. C. Hwang, J.-C. Horng, I.-C. Chen, F.-K. Shieh, P. Leyssen and J. Neyts, *Antiviral Res.*, 2015, 118, 103.
- 11 J. R. Hwu, S.-Y. Lin, S.-C. Tsay, E. De Clercq, P. Leyssen and J. Neyts, J. Med. Chem., 2011, 54, 2114.
- 12 D. A. Babkov, A. L. Khandazhinskaya, A. O. Chizhov, G. Andrei, R. Snoeck, K. L. Seley-Radtke and M. S. Novikov, *Bioorg. Med. Chem.*, 2015, 23, 7035.
- 13 M. P. Paramonova, A. L. Khandazhinskaya, K. L. Seley-Radtke and M. S. Novikov, *Mendeleev Commun.*, 2017, 27, 85.
- 14 A. Magri, A. A. Ozerov, V. L. Tunitskaya, V. T. Valuev-Elliston, A. Wahid, M. Pirisi, P. Simmonds, A. V. Ivanov, M. S. Novikov and A. H. Patel, *Sci. Rep.*, 2016, 6, 29487.
- 15 M. S. Novikov, D. A. Babkov, M. P. Paramonova, A. L. Khandazhinskaya, A. A. Ozerov, A. O. Chizhov, G. Andrei, R. Snoeck, J. Balzarini and K. L. Seley-Radtke, *Bioorg. Med. Chem.*, 2013, 21, 4151.
- 16 M. S. Novikov and A. A. Ozerov, Chem. Heterocycl. Compd., 2005, 41, 905 (Khim. Geterotsikl. Soedin., 2005, 1071).
- 17 S.-S. Xie, X.-B. Wang, J.-Y. Li, L. Yang and L.-Y. Kong, *Eur. J. Med. Chem.*, 2013, 64, 540.
- 18 R. Farina, L. Pisani, M. Catto, O. Nicolotti, D. Gadaleta, N. Denora, R. Soto-Otero, E. Mendez-Alvarez, C. S. Passos, G. Muncipinto, C. D. Altomare, A. Nurisso, P.-A. Carrupt and A. Carotti, *J. Med. Chem.*, 2015, 58, 5561.
- 19 S.-S. Xie, X. Wang, N. Jiang, W. Yu, K. D. G. Wang, J.-S. Lan, Z.-R. Li and L.-Y. Kong, *Eur. J. Med. Chem.*, 2015, **95**, 153.

Received: 15th April 2019; Com. 19/5884