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Abstract 10 

A new fluorophore 7-(diphenylamino)coumarin-4-yl pivalate (DPACP) with solvatochromism, 11 

aggregation-induced emission (AIE) and mechanofluorochromic (MFC) enhancement 12 

characteristics was rationally designed and synthesized by attaching bulky diphenylamine 13 

electron-donor and pivalate ester electron-acceptor to coumarin. With solvent polarity increase 14 

from n-hexane to acetonitrile, this molecular displayed a bathochromic shift in the emission 15 

wavelength (from 436 nm to 553 nm) and a decrease in the quantum yield (from 81.1% to 2.8%), 16 

indicating solvatochromic effect. Also, the AIE behaviors were observed in CH3CN/water and 17 

THF/water mixture systems. For example, the PL intensity increased 6 times in mixed solvent 18 

(CH3CN : water = 10 : 90) compared to that in pure CH3CN. Moreover, the emission of original 19 

powder samples was red-shifted (from 438 nm to 483 nm) with fluorescence enhancement (the 20 

solid-state quantum yield increase from 19% to 28%) upon grinding, and the emission behaviors 21 

of grinding powder samples could be reverted to original state by wetting with n-hexane. 22 

Furthermore, the relationship among the molecular structure, intermolecular interactions and 23 

emission properties was investigated by single-crystal diffraction analysis. DPACP had a twisted 24 

conformation because of steric hindrance from diphenylamine and pivalate ester groups, which 25 

played a decisive role in realizing AIE and MFC enhancement behaviors. The absence of π-π 26 

stacking observed in single-crystal structure was the main reason for the AIE property. The MFC 27 

enhancement property could be ascribed to the disturbance of weak electrostatic interaction of 28 

adjacent molecules upon grinding. The bulky group of pivalate ester was first used to construct 29 

MFC molecule, and this work provided insights for developing AIE and MFC materials based on 30 

conventional planar fluorophore which was always subject to ACQ effect.  31 

1. Introduction 32 

The design and synthesis of mechanofluorochromic (MFC) materials showing reversible 33 
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solid-state emission change upon external mechanical stimuli have attracted considerable 1 

scientific interest [1-18]. Normally, fluorophores with AIE (such as tetraphenylethylene, 2 

triphenylethylene, cyanoethylene and diarylvinylanthracene) have always been used as building 3 

blocks to construct MFC materials [19-27], because AIE-active molecules often afford twisted 4 

molecular conformations and loose packing, which facilitates the destruction of molecular 5 

arrangements upon external mechanical stimuli, resulting in MFC behavior. For example, at least 6 

100 MFC molecules based on tetraphenylethylene (TPE, a typical AIE compound) have been 7 

reported [19]. But, it should be noted that not all AIE-core molecules exhibit mechano-responsive 8 

behavior, some influences including crystallinity, velocity of crystallization and polymorphism play 9 

important roles in MFC property and predictability was difficult to achieve [28].  10 

Conventional planar organic dyes always display strong fluorescence in dilute solution but their 11 

luminescence decays obviously in aggregate or solid states, known as aggregation-caused 12 

quenching (ACQ) [29, 30], which is against to solid-state emission and stimuli-responsive 13 

behaviors. However, ACQ can be restrained by virtue of structural modification to prevent the 14 

aggregation, making conventional fluorophore potential candidates as promising AIE and MFC 15 

materials. Therefore, in view of a known fluorescent structure unit, the molecular skeleton 16 

modification is important and significant for achieving the AIE and MFC activities, which deserves 17 

further exploration.  18 

Coumarins are extensively applied to design fluorescent probes for biomedical imaging 19 

because of their simple molecular structures, convenient skeleton modifications and excellent 20 

photophysical properties in solution state [31]. But their derivatives that show both MFC and AIE 21 

activities are scarce, which probably arise from fluorophore ACQ effect. Recently, several 22 

mechanoresponsive molecules based on coumarin have been reported. For example, Yu and 23 

co-workers reported a mechanoresponsive coumarin hydrozone compound by breaking of 24 

hydrogen-bonded dimers under pressure [32]. By disturbing the π-π stacking upon grinding, Peng 25 

and co-workers developed a novel TPE-fused coumarin molecule exhibiting MFC properties [33]. 26 

Very recently, our group reported a MFC coumarin oxime compound based on the destroying of 27 

H-aggregate induced by mechanical stimulus [34]. Even so, coumarin derivatives showing obvious 28 

fluorescence in solution and aggregate states and MFC behavior are still very limited, and the 29 

relationship among the molecular structure, intermolecular interactions and emission properties 30 

requires to be revealed. 31 

Herein we designed and developed a new coumarin-based fluorophore 32 

7-(diphenylamino)coumarin-4-yl pivalate (DPACP) (Scheme 1) with solvatochromism, AIE and 33 

reversible MFC enhancement properties. The fluorophore had a D-π-A molecular framework and 34 
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displayed remarkable solvatochromic effect. Importantly, by introducing the diphenylamine 1 

(electron donor) and pivalate ester (electron acceptor) as steric hindrance moieties into the 2 

molecular system, DPACP had a highly twisted conformation, which could reduce the 3 

intermolecular π−π stacking and restrain the fluorescence quenching in aggregation state, thus 4 

resulting in its AIE attribute. Moreover, twisted molecular structure could be beneficial to weaken 5 

intermolecular interaction and eventually lead to MFC behavior of DPACP. In particular, the 6 

solid-state quantum yield of DPACP increased from 0.19 to 0.28 upon grinding. To our knowledge, 7 

the bulky group of pivalate ester was first used to construct MFC molecule. 8 

 9 

 10 

Scheme 1. Synthetic route to target compound DPACP 11 

 12 

2. Experimental 13 

2.1. Measurements and material  14 

All reagents and solvents were purchased from commercial sources and used as received 15 

without further purification. NMR spectral measurements were carried out on a Bruker AV Ⅲ 16 

HD 600 NMR spectrometer. Mass spectrometric measurements were performed on a Bruker 17 

micrOTOF-Q-II mass spectrometer. UV-Vis spectra were recorded on a Purkinje TU-1950 18 

spectrophotometer. Photoluminescence (PL) spectra were recorded on an Agilent Cary Eclipse 19 

fluorescence spectrophotometer. The fluorescence quantum yields in solutions were measured 20 

by comparing a standard (quinine sulfate in 0.1 N H2SO4 aqueous solution, QF = 0.54). The 21 

absolute fluorescence quantum yields of the solids were measured on an Edinburgh FLS1000 22 

fluorescence spectrophotometer. The X-ray diffraction (XRD) measurements were carried out on 23 

a Skyray DX-2600 X-ray diffractometer. Single crystal XRD measurements were carried out on a 24 

Bruker smart apexii single crystal X-ray diffractometer. The photographic images were taken 25 

under a 365 nm UV lamp.  26 

Preparation of the samples for photophysical properties study. The UV-Vis absorption and PL 27 

spectra of DPACP in various organic solvents were measured using freshly prepared 1.0×10−5 M 28 

solutions. The CH3CN/water (or THF/water) mixtures (concentration of 1.0×10−5 M) with different 29 
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water fractions were prepared by slowly adding distilled water into the CH3CN (or THF) solution 1 

of sample under ultrasound at room temperature. 2 

The crystal of DPACP was grown from CH3OH solution by slow evaporation at room 3 

temperature. CCDC 2011067 provided supplementary crystallographic data for this paper. 4 

2.2. Synthesis 5 

Compound 1 (8.0 g, 65 mmol), iodobenzene (29.2 g, 143 mmol), 1,10-phenanthroline (1.0 g, 6 

5.5 mmol), CuI (1.1 g，5.5 mmol) and t-BuOK (21.8 g, 195 mmol) were added in dry toluene (130 7 

mL). The mixture was heated to reflux for 24 h under N2. After cooling, the suspension was 8 

filtered and the filtrate was washed with 100 mL H2O and 100 mL brine. The organic layer was 9 

dried over Na2SO4 and the solvent was removed in vacuum. Further purification was performed 10 

by column chromatography with petrol ether/EtOAc to obtain 2 as colorless oil (13.8 g, 77%).  11 

1H NMR (600 MHz, CDCl3) δ 7.24 (t, J = 7.7 Hz, 4H), 7.14 (t, J = 8.1 Hz, 1H), 7.09 (d, J = 7.9 Hz, 4H), 12 

7.01 (t, J = 7.3 Hz, 2H), 6.65 (d, J = 8.3 Hz, 1H), 6.62 (s, 1H), 6.55 (d, J = 8.2 Hz, 1H), 3.71 (s, 3H).  13 

13C NMR (150 MHz, CDCl3) δ 160.56, 149.26, 147.84, 129.91, 129.33, 124.57, 122.98, 116.56, 14 

109.87, 108.06, 55.36. LRMS (ESI): [M+H]+, 276.35. 15 

Compound 2 (12.0 g，43.5 mmol) was added drop-wise into melting pyridine hydrochloride 16 

(60.0 g), and the mixture was stirred for 2 h at 180 °C. After cooling, the 200 mL water and 200 17 

mL EtOAc were added, phases were separated under stirring and the aqueous layer was 18 

extracted. The combined organic layers were dried over Na2SO4 and the solvent was removed in 19 

vacuum. Further purification was performed by column chromatography with ether/EtOAc to 20 

obtain 3 as light green solid (6.8 g, 60%). 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 6.1 Hz, 4H), 7.24 21 

(s, 1H), 7.09 (d, J = 8.0 Hz, 4H), 7.02 (t, J =7.3 Hz, 2H), 6.63 (d, J = 8.1 Hz, 1H), 6.52 (s, 1H), 6.46 (d, 22 

J = 8.0 Hz, 1H).13C NMR (150 MHz, CDCl3) δ 156.29, 149.34, 147.61, 130.05, 129.25, 124.67, 23 

123.04, 116.04, 110.37, 109.36. LRMS (ESI): [M+H]+, 262.32. 24 

Compound 3 (5.2 g, 20 mmol) and bis(2,4,6-trichlorophenyl) malonate (12.0 g, 26 mmol) were 25 

added in dry toluene (22 mL). The mixture was heated to reflux for 6 h under N2. After cooling, a 26 

large amount of solid precipitation separated out from the mixture. The precipitate was filtered 27 

off and washed with cold toluene to yield 4 as green solid (3.2 g, 48%). 1H NMR (600 MHz, DMSO) 28 

δ 12.28 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.44 – 7.37 (m, 4H), 7.21 (td, J = 7.4, 1.0 Hz, 2H), 7.18 (dd, 29 

J = 7.6, 0.8 Hz, 4H), 6.75 (dd, J = 8.8, 2.2 Hz, 1H), 6.52 (d, J = 2.3 Hz, 1H), 5.39 (s, 1H). 13C NMR 30 

(151 MHz, DMSO) δ 165.89, 162.17, 154.92, 151.44, 145.67, 130.00, 126.15, 125.27, 124.23, 31 

115.29, 108.48, 105.01, 88.28. LRMS (ESI): [M+H]+, 330.36. 32 

To a stirred solution of compound 4 (1.0 g, 3 mmol), pivaloyl chloride (0.5 g, 4.5 mmol) in dry 33 

CH2Cl2 (15 mL) were added dry Et3N (0.61 g, 6 mmol). The mixture was stirred for 2 h at room 34 
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temperature under N2, then was diluted with 20 mL CH2Cl2 and washed with H2O and brine. The 1 

organic layer was dried over Na2SO4 and the solvent was evaporated in vacuum to obtain DPACP 2 

as yellowish solid (1.1 g, 91%). 1H NMR (600 MHz, CDCl3) δ 7.34 (t, J = 5.3 Hz, 4H), 7.31 (d, J = 5.9 3 

Hz, 1H), 7.17 (t, J = 5.7 Hz, 6H), 6.86 (dd, J = 5.9, 1.4 Hz, 1H), 6.83 (d, J = 1.5 Hz, 1H), 1.40 (s, 9H). 4 

13C NMR (151 MHz, CDCl3) δ 174.58, 162.29, 159.51, 155.38, 152.36, 146.00, 129.94, 126.43, 5 

125.47, 123.16, 116.39, 108.58, 106.67, 101.62, 40.09, 27.19. LRMS (ESI): [M+H]+, 414.46.  6 

3. Results and discussion  7 

3.1. Synthesis and characterization  8 

The chemical structure and synthetic route of DPACP were shown in Scheme 1. The 9 

Buchwald-Hartwig coupling reaction of starting compound 3-methoxy aniline 1 with iodobenzene 10 

in the presence of 1,10-phenanthroline/CuI as catalyst gave compound 2 [35], which could be 11 

converted to compound 3 by demethylation using pyridine·HCl. The reaction of 3 with 12 

bis(2,4,6-trichlorophenyl) malonate in toluene yielded compound 4 [36]. The target compound 13 

DPACP was prepared from the hydroxyl-acylation reaction of 4 with pivaloyl chloride in the 14 

presence of triethylamine. All compounds were characterized by 1H NMR and 13C NMR 15 

spectroscopy and mass spectrometry. Furthermore, the structures of DPACP were demonstrated 16 

by the single-crystal X-ray analysis.  17 

3.2. Solvatochromic properties 18 

UV-Vis absorption and photoluminescence properties of DPACP were studied in solvents with 19 

increasing polarities (polarity parameter, Δf, was chosen as the measure of solvent polarity). As 20 

shown in Fig. 1a and Table 1, the polarity of solvents had a negligible influence on the absorption 21 

spectra of DPACP, indicating ground state energy was almost not influenced by solvent polarity 22 

changes. In contrast, the fluorescence spectra were greatly affected by changes in solvent 23 

polarity (Fig. 1b and Table 1). With solvent polarity increase the maximum emission wavelength 24 

displayed significant red shift from 436 nm in n-C6H14 to 553 nm in CH3CN, and the relative 25 

emission intensity also decreased simultaneously due to the large solvent relaxation effect. For 26 

example, the quantum yield in acetonitrile was about 40 times lower than that in n-hexane. Such 27 

large solvatochromic effect brought about distinct fluorescence colors and intensities, which 28 

could be differentiated by the naked eye through a 365 nm UV lamp.  All these demonstrated 29 

that photo-induced twist intramolecular charge transfer (TICT) occurred in the molecular 30 

structure [37, 38]. Remarkably, the high fluorescence quantum yields of DPACP in n-hexane 31 

implied that it was a potentially good blue fluorophore [39]. 32 
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 1 

Fig. 1. (a) Normalized UV-vis absorption spectra and (b) PL spectra and photographic images 2 

(inset) of DPACP in various solvents.  3 

Table 1 Photophysical properties of DPACP in various solvents 4 

solvent Δf λAbs (nm) λPL (nm) Δν (cm-1) ΦF (%) 

n-hexane 0.001 368 436 4238 81.1 

toluene 0.014 371 464 5402 66.3 

ethyl acetate 0.20 373 491 6443 54.3 

tetrahydrofuran 0.21 376 500 6595 42.8 

methylene chloride 0.22 377 508 6840 36.6 

acetone 0.29 379 522 7228  7.7 

acetonitrile 0.31 381 546 7931  2.8 
a The polarity parameter is calculated as Δf = (ε - 1)/(2ε + 1) - (n2 - 1)/(2n

2 + 1), where ε is the 5 

static dielectric constant and n is the optical refractive index of the solvent. 6 

Then the Lippert−Mataga mode was adopted to insight into the solvatochromic behaviors of 7 

DPACP. The Stokes shifts (Δν) in different solvents with orientation polarity parameter (Δf) were 8 

listed in Table 1. And the Lippert−Mataga plot was shown in Fig. 2, which exhibited a good linear 9 

correlation (R2 = 0.90) of Stokes shifts versus orientation polarizability. The result demonstrated 10 

DPACP could be applied to detect and discriminate the organic solvents. The transition dipole 11 

moment between the ground state and the excited state (Δμ = μe − μg) was estimated to be 12.4 12 

D (see the Supporting Information) according to the slope of the fit curve (9480 cm−1). So the 13 

dramatic solvent-dependent fluorescent shifts and color changes of DPACP in various solvents 14 

mainly were ascribed to large transition dipole moment induced by changes of solvent polarities. 15 

 16 
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 1 

Fig. 2. Lippert−Mataga plot for DPACP in various solvents. 2 

To better understand the origin of large transition dipole moment and solvatochromic 3 

behaviors of DPACP, density functional theory (DFT) calculations based on the single-crystal 4 

structure were performed to examine the charge distribution in the ground state and the excited 5 

state. As can be seen in Fig. 3, the highest occupied molecular orbital (HOMO) was mostly 6 

localized on the diphenylamino unit, whereas the lowest unoccupied molecular orbital (LUMO) 7 

was primarily distributed on the lactone core and –O-C=O group of pivalate ester. The distinct 8 

distribution of the electron cloud in HOMO and LUMO energy levels suggested a large transition 9 

dipole moment during the ground−excited state transition. Also, the transfer of electrons from 10 

donor to acceptor created a more polarized excited state, which could be stabilized through the 11 

reorganization of polar solvent molecules. Therefore, the solvent polarity increase could lead to 12 

lowered energy of the excited state and red-shifted emission spectrum.  13 

 14 

Fig. 3. Molecular orbital energy levels of the HOMO and LUMO for DPACP based on DMol3 15 

calculations. 16 

3.3. AIE properties 17 

  To explore the fluorescence behaviors of DPACP in aggregation state, the photoluminescence 18 

spectra in CH3CN/water and THF/water mixtures with different fractions of water (fw) were 19 

performed (Fig. 4). DPACP emitted a weak emission in strong polar solvent CH3CN, which 20 

displayed further reduction of emission intensity up to 0.6 of fw. However, when the fw reached to 21 

0.7, the fluorescence was notably enhanced. Eventually, the PL intensity increased 6 times in 22 

mixed solvent with 0.9 of fw compared to that in pure CH3CN. This down-up phenomenon of 23 

emission intensity was observed in some compounds with AIE attribute [40, 41]. From 0 to 0.6 of 24 
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fw, the decreased PL intensity could be ascribed to ICT effect arising from the increased solvent 1 

polarity. With a further increase of fw from 0.6 to 0.9, the increased PL intensity was attributed to 2 

the domination of the AIE effect caused by the aggregate formation at higher water percentage. 3 

Similar fluorescence behaviors were also observed in THF/water mixture system for DPACP. As 4 

the fw increased from 0 to 0.7, the PL intensity was significantly weakened and eventually 5 

quenched due to the influence of the polarity of solvents on the TICT state. Nevertheless, 6 

fluorescence was enhanced at fw = 0.8, and reached the intensity maximum at 0.95 of water 7 

content, reflecting a typical AIE phenomenon. The above results suggested the AIE properties of 8 

DPACP. 9 

 10 

Fig. 4. Fluorescence spectra of DPACP in (a) CH3CN/water and (c) THF/water mixtures with 11 

different water fractions. The effect of water fractions on the maximum emission intensity and 12 

emission images (insets) of DPACP in (b) CH3CN/water and (d) THF/water mixtures.  13 

3.4. MFC properties 14 

Considering that the twisted molecular conformations and obvious AIE properties, the 15 

fluorescence behaviors of DPACP in the solid states were studied under mechanical stimuli. As 16 

shown in Fig. 5a, the original powders obtained from the evaporation of the n-hexane solvent 17 

emitted blue fluorescence centered at 438 nm with quantum yield of 0.19. Upon grinding with a 18 

pestle, ground samples displayed green fluorescence and the emission peak was red-shifted to 19 

483 nm with quantum yield of 0.28. Moreover, the fluorescence spectra and colors could be 20 

reverted to its original state by wetting with n-hexane solvent. Thus, DPACP exhibited remarkable 21 
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MFC turn-on behaviors. Furthermore, powder X-ray diffraction measurements were performed 1 

for interpretation of the reversible MFC properties (Fig. 5b). The pristine sample of DPACP 2 

displayed sharp diffraction peaks, meaning good microcrystalline phase. By contrast, the ground 3 

powder showed rather weak or broad peaks, indicating partial disordered molecular packing or 4 

decrease of the crystallinity. However, the sharp diffraction patterns recovered through n-hexane 5 

wetting, implying reversion to the crystalline nature. The reversible MFC behavior could be 6 

assigned to morphology change between crystalline and partial amorphous states due to 7 

modification of the molecular arrangement. 8 

 9 
Fig. 5. (a) Normalized emission spectra and emission images (inset) and (b) XRD patterns of the 10 

corresponding samples for DPACP. 11 

3.5. X-ray single-crystal diffraction analysis 12 

The optical behaviors had closely relation to the molecular conformation, intermolecular 13 

interactions and packing modes, so X-ray single-crystal diffraction analysis was necessary for 14 

investigating the solid-state luminescence and MFC property of DPACP. The single crystal was 15 

obtained from saturated methanol solution by slow evaporation at room temperature. As shown 16 

in Fig. 6a, DPACP adopt twisted structure, the dihedral angles between the central coumarin 17 

plane and two phenyl group, pivalate ester group(-O-C=O) were 64.81ᵒ, 69.38ᵒ and 60.36ᵒ, 18 

respectively. There existed three specific intermolecular interactions between adjacent molecules, 19 

including C7-H···O4 (2.326 Å) hydrogen bond interaction (Fig. 6b), C24-H···π (2.873 Å) aromatic 20 

interaction and C8···C12 (3.296 Å) electrostatic interaction (Fig. 6c). These interactions restrained 21 

the intramolecular motions and blocked nonradiative decay to some extent. Furthermore, no π-π 22 

stacking was observed between the adjacent molecules due to large twisted conformation and 23 

steric hindrance from diphenylamine and pivalate ester moieties, avoiding the quenching of 24 

fluorescence in the solid state. Thus DPACP exhibited AIE nature and acceptable solid-sate 25 

quantum yield. It was noted that electrostatic interaction of adjacent molecules between 26 

electron-deficient C8 and electron-rich C12 was relatively weak and sensitive to 27 

mechano-stimulus due to the absence of shielding from dipole-dipole or π-π interactions. Upon 28 
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grinding, monomers were slipped along the short axis with respect to each other, possibly 1 

making adjacent molecules distance increases and electrostatic interaction (between C8 and C12) 2 

decreases. It meant that the nonradiative decay caused by electrostatic interaction was inhibited, 3 

which may account for the solid-state luminescence change together with quantum yield 4 

enhancement after grinding treatment of DPACP. Additionally, the red-shifted emission upon 5 

grinding should be mainly ascribed to more planar molecular conformation and better electronic 6 

conjugation of DPACP [42, 43].  7 

  8 

Fig. 6. Crystal structures of DPACP revealing (a) large dihedral angle and (b and c) three specific 9 

intermolecular interactions between adjacent molecules. 10 

4. Conclusions  11 

In summary, we designed and synthesized a new coumarin fluorophore DPACP with bulky 12 

diphenylamine donor and pivalate ester acceptor. It exhibited solvatochromism, AIE and 13 

reversible MFC enhancement behaviors. The Lippert−Mataga plot study and theoretical 14 

calculation indicated that solvatochromism was ascribed to intramolecular charge transfer and 15 

large transition dipole moment affected by changes of solvent polarities. With the conformation 16 

confirmed by single crystal structure, the relationship between intermolecular interactions and 17 

emission properties were investigated. DPACP had a twisted conformation which was crucial for 18 

AIE and MFC enhancement behaviors. The absence of π-π stacking avoided the non-radiative 19 

decay in aggregation state, leading to AIE. The destruction of weak electrostatic interaction of 20 

adjacent molecules upon mechanical stimuli was considered to be responsible for MFC 21 

enhancement nature. This design strategy allowed molecular skeleton modification of 22 

conventional planar fluorescence making them potential AIE and MFC materials.  23 
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Highlights 

1. A new coumarin fluorophore with AIE and MFC enhancement properties was 

developed.    

2. It was shown that twisted molecule conformation was crucial for AIE and 

MFC behaviors. 

3. The bulky group of pivalate ester was first used to construct AIE and MFC 

molecule. 

4. The fluorescence quantum yields of the compound in n-hexane reached to 

0.81. 
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