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Graphical Abstract  
 

 

 

 

Dual efficient slightly twisted coumarin derivatives in solution and solid were realized 
by modulating intramoleculat charge transfer (ICT) and molecular pattern in crystal.   

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Rational design of slightly twisted coumarin molecules with 

remarkable solution and solid dual efficient luminescence 

Yue Sun,b Tong Wu,a, b Fang Zhang,a Rong Zhang,a Min Wu,a Yuezhen Wu,a 

Xiaozhong Liang,a Kunpeng Guo,a* Jie Lia* 

a Ministry of Education Key Laboratory of Interface Science and Engineering in 

Advanced Materials, Research Center of Advanced Materials Science and Technology, 

Taiyuan University of Technology, Taiyuan, 030024, China.  

b School of Chemistry and Chemical Engineering, Taiyuan University of Technology, 

Taiyuan 030024, China. 

Corresponding Author: guokunpeng@tyut.edu.cn; lijie01@tyut.edu.cn  

 

Abstract  

Endowing slightly twisted molecules highly emissive in both solution and solid state 

is of great importance for understanding the principle of maximizing the luminescent 

efficiency of luminophores. To this end, a series of slightly twisted coumarin 

luminophores CMs with different alkoxyl substituents at the 7-positions were 

synthesized. The effect of the substitutes on the diversity photophysical properties of 

the four compounds in solution, THF/H2O mixtures and solid state were investigated. 

Comparing to the referenced compound CM (3-p-tolyl-2H-chromen-2-one) that 

without a substitute, the introduced electron-rich alkoxyl substitutes not only 

enhanced the intramolecular charge transfer (ICT) effect, but also significantly 

modified their molecular packing patterns in the crystals. The combined effect of 

increasing the radiative and suppressing the nonradiactive pathways boosted the 

luminescence efficiency of CM1-CM3 in solution and the solid state simultaneously. 

Eventually, compound CM2 with an ethoxyl substitute exhibited the strongest blue 
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emission with fluorescence quantum yields as high as 73.2% and 96.7% in solution 

and the solid state, respectively. This work presents an efficient strategy towards dual 

strong fluorescent luminophores in both solution and the solid state. 

 

KEYWORDS: coumarin derivatives; slightly twisted conformation; intramolecular 

charge transfer; molecular packing pattern; dual efficient luminescence  

 

1. Introduction  

Highly emissive organic materials have attracted great attention due to their 

applicability in the fields of optoelectronic devices, chemosensors and bioprobes 

[1-18]. Although the emission of a number of traditional organic luminophores is 

efficient in dilute solution, it tends to decrease or even quench in the aggregated or 

solid states [19-22]. This aggregation-caused quenching (ACQ), which mainly caused 

by internal conversion, intersystem crossing, intermolecular electron transfer, as well 

as excimer or exciplex formation and isomerization, significantly limits the organic 

luminophores for their practical applications [23]. To prevent or alleviate these 

nonradiative pathways, numerous endeavors through molecular engineering and 

physical technology have been made, including the introduction of bulky substituents, 

enhanced intramolecular charge transfer (ICT) transition, cross-dipole packing and 

aggregated formation [24-34]. In 2001, Tang’s group reported a series of silole 

derivatives with propeller-like conformations that was nonemissive in dilute solitions, 

but highly luminescent when aggregated into solid state [35]. Their work has attracted 

huge attention as an effective methodology to overcome ACQ, and this novel 
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phenomenon was termed as aggregation-induced emission (AIE). Since then, various 

AIE materials with efficient luminescence in the solid state have been prepared for 

diverse applications [36-40]. 

To realize intense luminescence in the solid state, most AIE molecules adopt highly 

twisted conformations to restrict intramolecular rotation (RIR) or adverse 

intermolecular interactions [41-47]. However, such molecules often emit weak 

emission in solution, which limits their wide range of applications. Studies of 

developing molecules possess intense luminescence in both solution and the solid 

state have, to the best of our knowledge, been focused on restricting free rotation of a 

single bond in twisted AIE molecules through conjugation-induced rigidity or 

increasing steric hindrance [48-50]. However, the exploration of dual efficient 

luminescent materials based on slightly twisted molecules is still challenging. This is 

probably arisen from the difficulties of luminescence optimization from molecular 

level to molecular packing pattern control in solution and the solid state.  

Coumarin (chromen-2-one) derivatives have been widely studied and become a 

class of fluorescent dyes of intense interest due to their promising applications in 

organic lasers, organic light-emitting diodes and fluorescent sensors [51-59]. It is well 

known coumarin derivatives give intense emission in solution, but poor luminescence 

in the aggregated and solid state because their planar skeletons are prone to form 

strong π-π stacking [60]. To expand their real-world utilization, an AIE coumarin 

derivative based on the RIR mechanism has been designed and synthesized [61]. 

However, the reported AIE coumarin derivative still emits weakly in its solution. Thus, 
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the exploration of facile ways to obtain dual efficient fluorescent coumarin derivatives, 

especially those with slightly twisted conformations, is of high importance for 

structure-property understanding and practical applications. Herein, we developed 

four coumarin derivatives (Scheme 1) and investigated their photophysical properties 

systematically. Comparing with the referenced compound CM 

(3-p-tolyl-2H-chromen-2-one), its alkoxyl substituted derivatives at the 7-positions 

CM1-CM3 showed boosted luminescence in both solution and the solid state due to 

the synergistic effect of the ICT characteristic and the molecular packing modification 

by the alkoxyl tail. Among them, CM2 with an ethoxyl substitute exhibited the 

strongest blue emission with absolute fluorescence quantum yields (ΦFs) of 73.2% 

and 96.7% in THF solution and the solid state, respectively.  

 

2. Experimental section 

2.1. Materials and Characterization 

All chemicals for synthesis were purchased from Energy Chemical and used without 

purification. Reactions were monitored by TLC silica plate (60F-254). NMR spectra 

measurements were carried out at Bruker 600 MHz for 1H NMR and 151 MHz for 13C 

NMR, using chloroform-d as the solvent. Chemical shifts were reported in parts per 

million (ppm) relative to internal TMS (0 ppm). Splitting patterns were described as 

singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m). Mass spectra were 

measured on Microflex MALDI-TOF mass spectrometer. UV-Vis spectra were 

recorded in a HITIACH U-3900 spectrometer. Photoluminescent (PL) spectra were 
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recorded in a HORIBA FluoroMax-4 spectrometer. The absolute fluorescence 

quantum yields (ΦF) of solutions (10 µM) and powders were measured on HORIBA 

FluoroMax-4 by using a calibrated integrating sphere. The quartz cuvettes used were 

of 1 cm path length. Powder X-ray diffraction (XRD) of the samples was 

characterized using a Philips high resolution X-ray diffraction system (model 

PW1825). X-ray single-crystal diffractions of CM and CM2 were performed on a 

Bruker SMART APEX II diffractometer with Mo Ka radiation (λ= 0.71000 Å). The 

structures were solved with direct method (SHELX-97) and refined with full-matrix 

least-squares technique. All non-hydrogen atoms were refined anistropically and 

hydrogen atoms were geometrically placed. Relevant crystal collection data, 

refinement data for the crystal structures and the cif files of CM and CM2 can be 

found in the supporting information (ESI). The transient photoluminescence decay 

profiles of the solids were recorded using an Edinburgh Instrument FLS980 

spectrometer equipped with an EPL-375 picosecond pulsed diode laser.  

2.2. Synthetic procedures 

2.2.1. 3-p-Tolyl-2H-chromen-2-one (CM) 

An acetic anhydride (15 mL) solution of compound 2-hydroxybenzaldehyde (2.0 g, 

16.4 mmol), 2-p-tolylacetic acid (2.46 g, 16.4 mmol) and several drops of 

triethylamine (5 mL) were charged sequentially into a three-necked flask. The mixture 

was heated to reflux till no raw material was detected by the TLC plate. After cooling 

the reaction mixture, the precipitation was filtered and recrystallized from ethanol to 

produce CM as white crystals (2.83 g, yield 72%). 1H NMR (600 MHz, CDCl3) δ = 
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7.79 (s, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.36 (d, J = 8.2 Hz, 1H), 

7.30 – 7.26 (m, 2H), 7.25 (s, 1H), 2.40 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 

163.59, 156.34, 142.10, 141.82, 134.73, 134.09, 132.09, 131.32, 131.21, 130.73, 

127.35, 122.69, 119.32, 24.21. MALDI-TOF: m/z [M]+ cacld. C16H12O2, 236.2653; 

found: 236.2651. Anal. Calcd for C16H12O2: C, 81.34; H, 5.12; O, 13.54. Found: C, 

81.29; H, 5.15; O, 13.56. 

 

2.2.2. 7-Hydroxy-3-p-tolyl-2H-chromen-2-one (CM-OH) 

An acetic anhydride (20 mL) solution of compound 2,4-dihydroxybenzaldehyde 

(4.0 g, 29 mmol), 2-p-tolylacetic acid (4.4 g, 29 mmol) and several drops of 

triethylamine (5 mL) were charged sequentially into a three-necked flask. The mixture 

was heated to reflux till no raw material was detected by the TLC plate. After cooling 

the reaction mixture, the precipitation was filtered and recrystallized from ethanol to 

produce CM-OH as a yellow solid (5.3g, yield 72%). 1H NMR (600 MHz, CDCl3) δ 

= 7.78 (s, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.27 (s, 1H), 7.26 (s, 

1H), 7.15 (d, J = 2.1 Hz, 1H), 7.07 (dd, J = 8.4, 2.2 Hz, 1H), 2.40 (s, 3H). 13C NMR 

(151 MHz, CDCl3) δ = 171.67, 163.22, 156.82, 155.57, 141.90, 141.47, 134.53, 

132.11, 131.40, 131.27, 130.58, 121.34, 120.51, 112.84, 24.20, 24.04. MALDI-TOF: 

m/z [M]+ cacld. C16H12O3, 252.2647; found: 252.2644. Anal. Calcd for C16H12O3: C, 

76.18; H, 4.79; O, 19.03. Found: C, 76.21; H, 4.74; O, 19.05. 
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2.2.3. 7-Methoxy-3-p-tolyl-2H-chromen-2-one (CM1) 

A CH3CN (50 mL) solution of compound CM-OH (2.0 g, 7.9 mmol), methyl 

iodide (1.3 g, 9.5 mmol ) and K2CO3 (1.5 g, 10.9 mmol) was stirred at 80 oC for 12 

hours till no raw material was detected by the TLC plate. After cooling to room 

temperature, mixture was poured into water and the precipitated yellow solid was 

filtered. The crude product was purified by silica gel column chromatography with 

petroleum: ethylacetate (15: 1,v: v) as eluent to afford CM1 as a white powder (1.5 g, 

yield 71%). 1H NMR (600 MHz, CDCl3) δ= 7.73 (s, 1H), 7.60 – 7.58 (m, 2H), 7.42 (t, 

J = 5.2 Hz, 1H), 7.26 – 7.23 (m, 2H), 6.88 – 6.85 (m, 2H), 3.89 (s, 3H), 2.39 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ = 165.39, 163.80, 158.13, 142.20, 141.29, 135.05, 

132.01, 131.64, 131.16, 127.71, 116.36, 115.56, 103.34, 58.66, 32.60, 24.13. 

MALDI-TOF: m/z [M] + cacld. C17H14O3, 266.2913; found: 266.2915. Anal. Calcd for 

C17H14O3: C, 76.68; H, 5.30; O, 18.02. Found: C, 76.61; H, 5.26; O, 18.13. 

 

2.2.4. 7-Ethoxy-3-p-tolyl-2H-chromen-2-one (CM2) 

A procedure similar to the synthesis of CM1 was followed but using bromoethane 

(1.0 g, 9.5 mmol) instead of methyl iodide. CM2 was obtained as a white powder (1.7 

g, yield 79%). 1H NMR (600 MHz, CDCl3) δ 7.73 (s, 1H), 7.59 (d, J = 8.1 Hz, 2H), 

7.41 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 6.85 (dt, J = 4.0, 2.2 Hz, 2H), 4.11 

(q, J = 7.0 Hz, 2H), 2.39 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ = 164.76, 163.93, 158.11, 142.33, 141.28, 135.07, 132.02, 131.62, 131.16, 

127.54, 116.21, 115.97，103.77, 67.07, 32.61, 24.16, 17.49. MALDI-TOF: m/z [M] + 
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cacld. C18H16O3, 280.3718; found: 280.3715. Anal. Calcd for C18H16O3: C, 77.12; H, 

5.75; O, 17.12. Found: C, 77.08; H, 5.77; O, 17.15. 

 

2.2.5. 7-Butoxy-3-p-tolyl-2H-chromen-2-one (CM3) 

A procedure similar to the synthesis of CM1 was followed but using 

1-bromobutane (1.3 g, 9.5 mmol) instead of methyl iodide. CM3 was obtained as a 

white powder (2.5 g, yield 85%). 1H NMR (600 MHz, CDCl3) δ = 7.73 (s, 1H), 7.60 – 

7.58 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.25 – 7.23 (m, 2H), 6.85 (dt, J = 3.3, 2.3 Hz, 

2H), 4.03 (t, J = 6.5 Hz, 2H), 2.39 (s, 3H), 1.81 (dd, J = 14.8, 7.0 Hz, 2H), 1.51 (dd, J 

= 10.3, 4.7 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ = 164.97, 

163.94, 158.12, 142.34, 141.26, 135.09, 132.02, 131.60, 131.16, 127.49, 116.17, 

116.00, 103.78, 71.26, 33.94, 32.62, 24.17, 22.10, 16.72. MALDI-TOF: m/z [M]+ 

cacld. C20H20O3, 308.3710; found: 308.3708. Anal. Calcd for C20H20O3: C, 77.90; H, 

6.54; O, 15.57. Found: C, 77.86; H, 6.51; O, 15.63. 

 

3. Results and discussion 

3.1 Synthesisand characterization 

The target coumarin homologues CM and CM1-CM3 were synthesized according 

to literatures as depicted in Scheme 2 [62]. Compounds CM1-CM3 were synthesized 

by the alkoxylation reaction of the key intermediate CM-OH with methyl iodide, 

bromoethane and 1-bromobutane, respectively. They were all characterized by 1H 

NMR, 13C NMR, and mass spectroscopy. All of the coumarin derivatives are soluble 
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in common organic solvents such as toluene, tetrahydrofuran (THF), ethanol and 

dimethyl sulfoxide (DMSO).  

3.2 Theoretical calculations  

To understand the conformations of these compounds, the optimized molecular 

geometries were first evaluated by DFT calculation at the B3LYP/6-31G* level 

(Fig.1). The dihedral angles between the chromen-2-one and the 4-methylphenyl 

moiety for CM, CM1, CM2 and CM3 were 36.22°, 36.39°, 34.64° and 35.96°, 

respectively, indicating all of the compounds adopted slightly twisted conformations. 

Meanwhile, the four compounds presented similar frontier orbital distributions. As 

shown in Fig. S1, large steric overlap between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) was observed, which 

were mainly distributed over the conjugated chromen-2-one and the 4-methylphenyl 

segment. Although the alkoxyl substitutes in CM1-CM3 hardly made contributions to 

the distribution of the molecular orbits, they did have a significant effect on the dipole 

moment of the molecules. Comparing to the referenced CM (4.0758 D), it was found 

increased dipole moments for CM1 (5.7458D), CM2 (5.9456D) and CM3 (5.7857D), 

respectively, indicating an improved ICT effect of CM1, CM2 and CM3. 

3.3 Photophysical properties in solution 

To verify the increased ICT effect on the photophysical properties of the compounds, 

UV-vis absorption and photoluminescence spectra were studied in solvents with 

different polarities and the corresponding data were extracted in Table 1. A 

bathochromic shift of the absorption bands from 328-330 nm for CM to 338-346 nm 
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for CM1-CM3 was observed (Fig.2), which can be attributed to the introduced 

electron-rich alkoxyl substitutes at the 7-position in coumarin skeleton [63]. 

Meanwhile, CM showed similar absorption maxima and profiles in solutions, 

indicating a small change of dipole moment at the ground state in different solvents 

[64]. However, the absorption maxima (λAbs) of CM1-CM3 red-shifted about 15 nm 

on increasing the solvent polarity from hexane to DMSO. These features indicate that 

ICT character has more evident influence on the absorption bands of CM1-CM3 than 

that of CM. 

The ICT effect introduced by the alkoxyl substitutes in coumarin skeleton was 

further confirmed in the photoluminescence spectra (Fig. 3). All of the four 

compounds gave blue emission in various solutions (Fig.4). The maximum emission 

peak (λPL) of CM was blue shifted from 425 nm to 409 nm as increasing the solvent 

polarity from nonpolar hexane to polar DMSO. This negative fluorosolvatochromism 

indicated that the molecule became less polar in the excited state than in the ground 

state [65]. On the contrary, the emission spectra of CM1-CM3 showed positive 

fluorosolvatochromism with unstructured peaks shifted to the long wavelength as 

increasing the solvent polarity owning to the ICT effect of the molecules (Fig. 3b-3d, 

Table 1).  

To further evaluate the influence of alkoxyl substitutes on the photoluminescent 

properties of CM and CM1-CM3, their ΦFs were examined. The ΦFs of the 

compounds increased with solvent polarity just in the primary region, and decreased 

in the very strong polar solvents, producing a distinct maximum. This up-down 
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phenomenon has been observed in some enone derivatives [66]. From hexane to THF, 

the increased ΦF of “negative solvation effect” can be ascribed to the reduction of “the 

proximity effect” of π-π* and n-π* transition of the molecule with the increased 

solvent polarity [67]. With a further increase of the solvent polarity from THF to 

DMSO, the decreased ΦF of “positive solvation effect” is attributed to the domination 

of the ICT process. In addition, the Stokes shifts of CM in various solvents were 

larger than those of CM1-CM3. This suggests a larger excitation-induced geometry 

change exists in CM than those in CM1-CM3 in solution, and such “conformation 

change” decreases the ΦF of CM [68]. All of the competing mechanisms resulted in 

the observed maximum fluorescence quantum yields of 17.6%, 45.8%, 73.2% and 

61.06% for CM, CM1, CM2 and CM3 in THF, respectively. Obviously, CM1-CM3 

with enhanced ICT effect exhibited more efficient luminescence in solution than the 

referenced compound CM (Fig.4). Among them, CM2 with an ethoxyl substitute 

exhibited the strongest blue emission, whose ФF value was about 4.1 times larger than 

that of CM in THF solution. Considering their similar slightly twisted skeletons, the 

reasonable explanation for the ethoxyl effect is that CM2 possesses the largest dipole 

moment among the four compounds, leading to more obvious ICT effect to give 

highly efficient luminescence in solution. 

3.4 Fluorescent properties in the aggregated states 

To investigate the fluorescence behaviors of CM and CM1-CM3 in aggregated 

states, the UV-Vis absorption and PL spectra in THF/water mixtures with different 

water fractions (fw) were studied. When the fw was up to 90%, the absorption spectra 
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exhibited significant changes with leveled-off tails clearly appearing in the 

long-wavelength region (Fig. S2). This result can be attributed to the well-known Mie 

effect, which indicates that CM and CM1-CM3 molecules aggregate in high water 

fractions. In the PL spectra, all of the compounds exhibited an up-down tendency in 

intensity upon increasing the water fraction. Taking CM2 as a typical example, its PL 

intensity was increased upon increasing water content when the water fraction was 

less than 80%, but sharply decreased with emission peak shifting 17 nm to long 

wavelength when the fw reached 99%, indicating J-type nanoaggregates may be 

formed during aggregation (Fig. 5). Similar behaviors were observed for compounds 

CM, CM1 and CM3 (Fig.S3), respectively. This up-down phenomenon has been 

observed in some compounds with AIE properties, suggesting the aggregates 

morphology of the coumarin derivatives at high water content is different from that at 

lower water content [69]. SEM images in Fig. 6 and Fig. S4 gave a visualized proof to 

support our hypothesis. CM2 formed amorphous nanoscale aggregates in mixtures 

with “low” water content (fw < 80%) (Fig. 6a), and further developed to nanoparticles 

which gave intense emission when fw reached 80% (Fig. 6b). Further increasing the fw 

to 99%, regular 1D rods were observed (Fig. 6c), which may cause emission quench 

because of the dominated J-aggregates. 

3.5 Fluorescent properties in the solid states 

Although CM and CM1-CM3 aggregates exhibited similar photophysical 

properties in THF/water mixtures, their crystals gave distinct fluorescence behaviors. 

As shown in Fig. 7a and Table 2, CM crystals emitted blue fluorescence peaking at 
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441 nm with a moderate ФF of 67.1% under UV irradiation. However, the crystals of 

CM1, CM2 and CM3 gave red-shifted emission of 450 nm, with a dramatically 

enhanced ФF value of 89.6%, 96.7% and 70.7%, respectively. Similar to the 

fluorescence behavior in solutions, the crystal of CM2 showed the strongest blue 

emission, whose ФF value was about 1.44 times larger than that of CM. 

Time-resolved fluorescence measurements revealed a longest lifetime of CM2 

crystals (4.39 ns) than any other crystals of the compounds (Fig. 7b and Table 2). The 

highest ФF value, combined with a longest lifetime, led to a relatively large radiative 

decay rate (kr 0.22 ns-1) and a smallest nonradiative decay rate (knr 0.0075 ns-1) of 

CM2 crystals, which suggested the absolute domination of radiative decay.   

To explore the underlying origins of the enhanced emission of alkoxyl substituted 

coumarins, the molecular packing patterns in single crystals were analyzed through 

X-ray diffraction experiments and the crystallographic data were summarized in Table 

S1. As shown in Fig. 8, both CM (CCDC1561738) and CM2 (CCDC 1561739) 

molecules adopted slightly twisted conformations, and the dihedral angles of between 

the chromen-2-one and the 4-methylphenyl moiety at the 3- position were 28.7°, and 

37.53°, respectively, which was close to their calculated results. Notably, their 

molecular packing patterns were significantly different from each other. CM 

crystallized in monoclinic P21/c symmetry (Fig. 9a and 9b). In the crystal, the 

molecules were stacked in an anti-parallel arrangement to form a lamellar-packed 

mode viewed down the b-axis. The interplanar distance (3.393 Å) between the 

adjacent chromen-2-one moieties demonstrated efficient π-π stacking in crystal that 
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would activate nonradiative pathways of excited states causing fluorescence 

quenching. On the other hand, multiple O...H hydrogen bonds with distances about 

2.56 Å were observed between the aromatic H and the carbonyl groups of adjacent 

molecules. These hydrogen bonds can rigidify the molecular conformation of CM in 

the solid thus suppress the nonradiative pathways and resulted emission intensity 

increasing. As a result, CM crystals demonstrated a moderate ФF because of the 

competitive intermolecular interactions of π-π stacking and hydrogen bonds. However, 

in the case of CM2, dramatic changes took place after the introduction of an ethoxyl 

substitute at the 7-position of CM in the stacking pattern and intermolecular 

interactions (Fig. 9c and 9d): 1) CM2 crystallized in triclinic P-1 symmetry. The 

molecules formed herringbone packing in a face-to-edge pattern without π-π overlap 

between two adjacent molecules; 2) two main kinds of intermolecular weak 

interactions were observed including multiple O…H hydrogen bonds with distances 

in the range of 2.56-2.71 Å, and C-H…π interactions with distances about 2.8 Å 

between the aromatic H and the chromen-2-one moiety as well as the alkoxyl H and 

the aromatic ring of adjacent molecules. Therefore, the nonradiative pathways were 

effectively weakened or eliminated due to the beneficial hydrogen bonds and C-H…π 

interactions as well as the absence of the adverse π-πinteractions, raising the emission 

intensity of CM2 crystal to give a ФF as high as 96.7%.  

4. Conclusion  

In summary, we developed a molecular design strategy for boosting the 

luminescence efficiency both in solution and the solid state of coumarin derivatives 
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with slightly twisted conformation. By attaching electron-rich alkoxyl tails at the 

7-position of CM the fluorescent efficiencies of CM1-CM3 in solution were 

enhanced up to 73.2% through the introduced ICT effect. Meanwhile, the alkoxyl tail 

plays a key role in modulating the molecular packing patterns and controlling the 

intermolecular interactions to enhance the solid efficiency of CM1-CM3. Both the 

face-to-edge packing patterns that eliminated π-π intermolecular interactions and 

beneficial weak intermolecular interactions suppressed nonradiative pathways in 

crystal, endowing CM2 with remarkable solid efficiency of 96.7%. Such strategy of 

simultaneously taking advantages of ICT effect and modulating molecular packing 

patterns provides an effective method to construct dual-state highly luminescent 

materials in both solution and the solid state, which would expand their practical 

applications in optoelectronic and biological fields. 
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Table1  

Photophysical properties of CM and CM1-CM3 in various solvents (10 µM). 

 

Table 2  

Luminescent properties of CM and CM1-CM3 in solid sates. 

 

 

 

 

 

  

Compound Solvent λAbs 
(nm) 

λPL 
 (nm) 

Stokes shift 
(cm-1) 

ФF  
(%) 

CM Hexane 328 425 6958 6.3 
 THF 328 410 6098 17.6 
 Ethanol 328 408 5978 4.7 
 DMSO 330 409 5853 4.2 

CM1 Hexane 338 414 6333 28.5 
 THF 342 424 5655 45.8 
 Ethanol 342 429 5930 41.2 
 DMSO 345 431 5784 39.4 

CM2 Hexane 338 416 5547 38.9 
 THF 342 425 5710 73.2 
 Ethanol 344 431 5868 71.5 
 DMSO 345 433 5891 68.1 

CM3 Hexane 338 416 5547 56.4 
 THF 343 423 5514 61.1 
 Ethanol 344 429 5760 59.7 
 DMSO 346 431 5700 58.5 

Compound λPL (nm) ФF (%) τ (ns) kr(ns-1) knr(ns-1) 

CM 441 67.1 3.72 0.18 0.088 

CM1 450 89.6 3.76 0.24 0.028 

CM2 450 96.7 4.39 0.22 0.0075 

CM3 450 70.7 3.79 0.19 0.077 
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Captions  

 

Scheme 1 Molecular structures of CM, CM1, CM2 and CM. 

 

Fig. 1 Optimized molecular geometry of CM, CM1, CM2 and CM3 by DFT calculation at the 

B3LYP/6-31G* level. 

 

Scheme 2 The synthetic route for compounds CM, CM1, CM2 and CM3. 

 

Fig. 2 Normalized absorption spectra of (a) CM, (b) CM1, (c) CM2 and (d) CM3 in various solvents (10 

µM). 

 

Fig. 3 Normalized PL spectra of (a) CM, (b) CM1, (c) CM2 and (d) CM3 in various solvents (10 µM). 

 

Fig.4 Photographs of (a) CM, (b) CM1, (c) CM2 and (d) CM3 in various solvents under UV (λex=365 

nm) illumination. 

 

Fig.5 (a) PL spectra of CM2 (10 µM) in THF/water mixtures with different water fractions, (b) The effect 

of water fractions on the maximum emission intensity of CM2. 

 

Fig. 6 SEM images of CM2 aggregates in THF/water mixtures (10 µM) with different water fractions: (a) 

in THF/H2O (60:40, v/v); (b) in THF/H2O (20:80, v/v); (c) in THF/H2O (1:99, v/v). 
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Fig.7 (a) PL emission spectra of CM, CM1, CM2 and CM3 in the solid state. Inset: photographs of CM, 

CM1, CM2 and CM3 powders under UV (λex=365 nm) illumination. (b) Time-resolved fluorescence 

spectra of CM, CM1, CM2 and CM3 in the solid state (λex = 375 nm). 

Fig.8 ORTEP diagram of (a) CM and (b) CM2. 

 

Fig.9 (a) The packing pattern and (b) weak interactions in the crystals of CM. (c) The packing pattern and 

(d) weak interactions in the crystals of CM2. 
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Figures  
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Figure 2 
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Figure 3 
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Figure 4 

 

 

Figure 5 
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Figure 6 

 

 

Figure 7 
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Figure 8 

 

 

Figure 9 
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Highlights  

� Four slightly twisted coumarin luminophores with different alkoxyl substituents 

at the 7-positions were synthesized. 

� The introduced alkoxyl substitutes enhanced the intramolecular charge transfer 

effect and modified their molecular packing patterns in the crystals. 

� Alkoxyl substituted CM1-CM3 exhibited boosted luminescence in solution and 

the solid state simultaneously. 

� CM2 with an ethoxyl substitute giving fluorescence quantum yields as high as 

73.2% and 96.7% in solution and the solid state, respectively. 

 


