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Abstract Biphenyl lignans are rare compounds that exhibit a broad
range of biological activities. The first total synthesis of natural biphenyl
ether lignan, 3-methylobovatol, has been achieved in four steps. This
synthesis allows for modification of the C-2 phenol and in doing so, will
facilitate various structure–activity relationship studies into these bio-
active compounds.

Key words synthesis, lignin, biphenyl ether, obovatol, Ullmann con-
densation

Biphenyl-type lignans are rare compounds from within
the lignan class (Figure 1). These compounds are biosynthe-
sized through the radical coupling of phenolic substrates,
resulting in compounds with either a C–C linkage between
aryl units [as in magnolol (1) and honokiol (2)], or with a
C–O ether linkage [as seen in obovatol (3) and obovatal (4)].
Magnolianin (5) is a novel 1,4-benzodioxane lignan, isolated
from the bark of Magnolia obovata and is a trilignan derived
from two molecules of obovatol (3, red) and one of magno-
lol (1, blue).1

The most well-known biphenyl ether lignan is obovatol
(3), which was first isolated alongside its oxidized deriva-
tive obovatal (4) from the bark of Magnolia obovata, a mate-
rial commonly used in Japan and China for the treatment of
gastrointestinal issues and neurosis.2,3 Obovatol (3) has
been reported to have a range of biological activities includ-
ing inhibition of chitin synthase 2,4 inhibition of NO pro-
duction,5 displays antiplatelet effects,6 and also exhibits an-
titumor and anti-inflammatory activities through inhibi-
tion of the transcription factor, NF-κB.7 Analogues of 3 have
shown activity against colon and prostate cancer8 whilst 3

Figure 1  Naturally occurring biphenyl lignans and magnolianin (5), a 
trilignan
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and closely related compounds 1, 2, and 4 have been
screened for their antibacterial activity against Streptococ-
cus mutans.2

Kijjoa et al. first isolated 3-methylobovatol (6) from
Magnolia henryi, and it has subsequently been isolated from
Illicium lanceolatum, a plant known for its anti-inflammato-
ry activity.9,10 Like obovatol (3), 6 was found to inhibit NO
production, in a dose-dependent manner, with an IC50 of
26.59 μg/mL; this inhibitory effect was determined to not
be attributable to its nonspecific cell toxicity.10

In our continuing work on O-aryl-linked lignans,11–14 we
sought to prepare 3-methylobovatol (6) using methods that
could later allow for the preparation of obovatol analogues
for further study into the broad range of activities that are
displayed by 3 or could be used to prepare magnolianin (5)
using our previously reported methods for 1,4-benzodiox-
ane lignan construction.11–13

The synthesis began with the selective bromination of
eugenol (7), using i-PrMgCl and dibromodimethylhydantoin
(DBDMH).15 i-PrMgCl is used to form the corresponding
phenoxide, increasing the nucleophilicity at the carbon
ortho to the phenol for bromination (Scheme 1). Using this
method after three hours, bromide 8 was produced in 31%
yield.16 If the reaction was left for longer in an effort to in-
crease the yield of 8, polybrominated compounds were ob-
tained which were inseparable from desired 8. Following
this, phenol 8 was protected in 73% yield, to provide MOM
ether 9 for the required Ullmann condensation reaction.17

Scheme 1  Synthesis of bromide 9

The second coupling partner for the Ullmann condensa-
tion was 4-allylphenol (10) which was thought to be easily
produced through the previously reported demethylation of
estragole (11).18 The reaction was first attempted by adding
a solution of BBr3 at 0 °C, and then allowing the reaction to
warm to room temperature and stir for 3.5 hours, a shorter
time than has been previously reported (Scheme 2).18 Un-
fortunately, it was found that a mixture of desired product
10 (49%) and bromide 12 (31%) was produced, with 12 most

likely formed by the addition of HBr to the terminal alkene
in 10.19 Shortening the reaction time to one hour provided
4-allylphenol (10) in 73% yield, with no evidence of bro-
mide 12 being produced.20

Scheme 2  Synthesis of 4-allylphenol (10)

The Ullmann condensation between bromide 9 and
phenol 10 was attempted using conditions reported by
Kwak et al., which used a combination of CuI and Cs2CO3
with N,N-dimethylglycine used as the ligand. However, us-
ing the reported time of two days gave the desired diaryl
ether 13 in a poor yield of 16% (Scheme 3).21 Increasing the
reaction time from two to four days improved the yield of
13 to 36% (with 52% of 9 returned unreacted), and no ob-
served isomerization of the terminal alkene, an effect com-
monly observed.21,22 It has previously been reported that
MOM groups are unstable in the basic Ullmann condensa-
tion conditions.23 Our result demonstrates that the above
conditions for Ullmann condensations are compatible with
MOM groups.

Scheme 3  Synthesis of 3-methylobovatol (6)
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Unreacted starting material 9 and the desired diaryl
ether 13 were inseparable using standard flash chromatog-
raphy. However, using the classical, but infrequently ap-
plied method of employing silver impregnated silica,24,25

the dialkene-containing product 13 was able to be easily
separated from monoalkene aryl bromide 9. Finally, depro-
tection of the MOM ether using 2 M HCl in methanol pro-
vided the natural product 6 in 74% yield.26

The 1H NMR spectra for synthetic 6 was in close agree-
ment with the literature values reported for the natural
product, with slight differences in values for H-7, H-7′, and
OMe groups.9 This led us to speculate that the isolated natu-
ral compound could be an alternate methylated derivative
of obovatol, that being 2-methylobovatol. That compound
has been prepared by others via methylation of obovatol
(3),27 and its NMR data show significant differences in the
aromatic proton signals when compared to reported data
for isolated 6 and our prepared synthetic sample. This indi-
cates that the natural product is not 2-methylobovatol and
most likely is the 3-methyl isomer 6. Unfortunately, no
13C NMR data were reported when 6 was isolated.

In conclusion the synthesis of 3-methylobovatol (6) in
four steps has been achieved. This synthesis demonstrates
the compatibility of MOM ether protecting groups for alco-
hols in Ullmann condensation reactions, as well as the ef-
fective usage of silver-impregnated silica to separate mono-
and dialkene-containing products that would otherwise be
inseparable. This synthesis also allows for further modifica-
tion of the C-2 phenol for further study into the effect of
this group and other functionalities that could be added
there, on the activities of these compounds.
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