

Journal of Asian Natural Products Research

ISSN: 1028-6020 (Print) 1477-2213 (Online) Journal homepage: http://www.tandfonline.com/loi/ganp20

Three new indole alkaloid derivatives from the roots of Murraya paniculata

Xiao-Ting Wang, Ke-Wu Zeng, Ming-Bo Zhao, Peng-Fei Tu, Jun Li & Yong Jiang

To cite this article: Xiao-Ting Wang, Ke-Wu Zeng, Ming-Bo Zhao, Peng-Fei Tu, Jun Li & Yong Jiang (2017): Three new indole alkaloid derivatives from the roots of Murraya paniculata, Journal of Asian Natural Products Research, DOI: <u>10.1080/10286020.2017.1327950</u>

To link to this article: http://dx.doi.org/10.1080/10286020.2017.1327950

- 1

View supplementary material 🕝

Published online: 17 May 2017.

Ø	

Submit your article to this journal 🕑

View related articles \square

View Crossmark data 🕑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ganp20

Check for updates

Three new indole alkaloid derivatives from the roots of *Murraya paniculata*

Xiao-Ting Wang, Ke-Wu Zeng, Ming-Bo Zhao, Peng-Fei Tu, Jun Li and Yong Jiang

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

ABSTRACT

Three new indole alkaloid derivatives, named paniculidines D–F (1–3), and six known analogs (4–9) were isolated from the roots of *Murraya paniculata*. The structures were elucidated on the basis of comprehensive HRESIMS, UV, IR, and NMR spectroscopic data analysis and comparison with the data reported in literature. The absolute configurations of new compounds were assigned via the determination of specific optical rotation, Mosher's method, and ECD spectra. Compound **3** is the first heterodimer of C-N linked indole and coumarin derivatives.

ARTICLE HISTORY

Received 17 March 2017 Accepted 5 May 2017

KEYWORDS

Rutaceae; *Murraya paniculata*; indole alkaloids; heterodimer

1. Introduction

The *Murraya* genus belongs to the Rutaceae family, including 14 species and 2 varieties all over the world. *Murraya paniculata* (L.) Jack, is a shrub distributed widely in India, Southeast Asia, and South China. The roots of *M. paniculata* have been used as a folk medicine for the treatment of gout, contusion, and bone ache [1]. Previous phytochemical investigations revealed that many bioactive compounds, such as indole alkaloids [1,2], coumarins [3–5], and flavonoids [6–8], were isolated from *M. paniculata*, with the activities of anti-inflammatory, anti-implantation, antidiarrhoeal, anti-diabetic, antioxidant, antinociceptive, antimicrobial, and anticancer effects [9–11].

Indole alkaloid derivatives are a type of very important heterocyclic compounds for the drug discovery and cell biology study. There has been an increasing interest in using the indole alkaloid derivatives as bioactive molecules against inflammation, microbes, cancer,

CONTACT Jun Li 🖾 lijun@bjmu.edu.cn; Yong Jiang 🖾 yongjiang@bjmu.edu.cn

Supplemental data for this article can be accessed here https://doi.org/10.1080/10286020.2017.1327950.

© 2017 Informa UK Limited, trading as Taylor & Francis Group

Figure 1. The structures of compounds 1–6.

and various kinds of disorders in the human body [12]. As a continuation of a search for indole analogs from *Murraya* species, we report here the isolation and structural elucidation of three new indole alkaloids (1-3) and six known analogs (4-9) from the roots of *M. paniculata* (Figure 1).

2. Results and discussion

The 95% aqueous EtOH extract of the roots of *M. paniculata* was suspended in H_2O and partitioned successively with petroleum ether and $CHCl_3$. The $CHCl_3$ -soluble portion was subjected repeatedly to silica gel and Sephadex LH-20 column chromatography (CC) followed by semipreparative RP-HPLC to afford three new indole alkaloid derivatives, named paniculidines D-F (1-3), and six known analogs, including paniculidines A-C (4-6) [1], tanakine (7) [13], indol-3-carbaldehyde (8) [14], and yuehchukene (9) [15].

Paniculidine D (1) was obtained as a light brown oil, with $[\alpha]_D^{23}$ + 36.0 (*c* 0.10, MeOH). Its molecular formula was determined as $C_{14}H_{19}NO_2$ on the basis of a protonated ion at m/z 234.1495 [M + H]⁺ in the positive HRESIMS and the ¹³C NMR data. The UV spectrum showed a maximal absorption at 271 nm and the IR spectrum showed absorption bands for aromatic ring (1601, 1499, and 1452 cm⁻¹) functionality. The ¹H NMR data (Table 1) revealed the presence of a 3,7-disubstituted indole unit [$\delta_{\rm H}$ 6.95 (1H, brs), 7.22 (1H, d, J = 7.8 Hz), 7.03 (1H, t, J = 7.8 Hz), 6.65 (1H, d, J = 7.8 Hz)], three methylene signals [$\delta_{\rm H}$ 2.71-2.77, 2.81-2.87 (each 1H, m); 1.50-1.58, 1.82-1.89 (each 1H, m); 3.49 (1H, dd, *J* = 10.5, 6.5 Hz), 3.57 (1H, dd, J = 10.5, 5.7 Hz)], one methine signal [δ_{H} 1.70–1.77 (1H, m)], and one methyl signal [$\delta_{\rm H}$ 1.02 (3H, d, *J* = 6.7 Hz)]. The NMR spectroscopic data of 1 were similar to those of paniculidine B (5) [1]. The main difference between these two compounds is the methoxy group in 5 shifts from the nitrogen atom to the C-7 position of the indole unit in 1, deduced from the HMBC correlations between H-5 and C-7/C-9, H-6 and C-4/C-5/ C-7/C-8, and OCH₃-7 and C-7 (Figure 2). The sign of the specific optical rotation of 1 is the same as that of 5, whose configuration is 12R. Therefore, the structure of paniculidine D (1) was established as (2R)-methyl-4-(7'-methoxy-indole-3'-yl)-1-butanol.

Paniculidine E (2) was obtained as a light brown oil, with $[\alpha]_D^{23} + 22.5$ (*c* 0.08, MeOH). Its positive mode HRESIMS showed a pseudomolecular ion at m/z 403.2377 [M + H]⁺, which, in conjunction with the ¹³C NMR data, established a molecular formula of $C_{26}H_{30}N_2O_2$. The ¹H NMR data (Table 1) revealed the presence of two 3-substituted indole units [δ_H 7.81 (1H, brs), 6.91 (1H, brs), 7.59 (1H, d, J = 7.8 Hz), 7.10 (1H, overlapped), 7.19 (1H, overlapped), 7.33 (1H, d, J = 8.1 Hz); 7.83 (1H, brs), 6.92 (1H, brs), 7.60 (1H, d, J = 7.8 Hz), 7.10 (1H, overlapped), 7.19 (1H, overlapped), 7.19 (1H, overlapped), 7.34 (1H, d, J = 8.1 Hz)], and two isopentenyl derivative

	1		2		3	
Position	δ _H (<i>J</i> , Hz)	δ_{c}	δ _H (<i>J</i> , Hz)	δ_{c}	δ _H (<i>J</i> , Hz)	δ _c
2	6.95, brs	120.7	6.91, brs	121.2	7.50, brs	124.4
3		117.3		116.0		117.2
4	7.22, d (7.8)	111.8	7.59, d (7.8)	119.0	7.13, d (7.9)	111.8
5	7.03, t (7.8)	119.6	7.10, overlapped	119.3	6.98, t (7.9)	119.5
6	6.65, d (7.8)	101.9	7.19, overlapped	122.1	6.69, d (7.9)	103.6
7		146.3	7.33, d (8.1)	111.2		147.7
8		126.9		136.5		127.8
9		128.9		127.6		129.9
10	2.81–2.87, m; 2.71–2.77, m	22.8	2.76–2.79, m	22.6	2.73–2.81, m; 2.63–2.71, m	22.8
11	1.82–1.89, m; 1.50–1.58, m	33.7	2.08–2.15, m; 1.79–1.88, m	34.3	1.76–1.85, m; 1.47–1.54, m	33.4
12	1.70–1.77, m	35.7	2.52–2.59, m	39.5	1.67–1.74, m	35.8
13	3.57, dd (10.5,5.7); 3.49, dd (10.5,6.5)	68.4		177.0	3.51–3.55, m; 3.43–3.49, m	68.4
14	1.02, d (6.7)	16.7	1.22, d (6.9)	17.4	0.98, d (6.7)	16.8
2′			6.92, brs	121.5		160.3
3′				116.7	6.22, d (9.5)	113.4
4′			7.60, d (7.8)	119.1	7.57, d (9.5)	143.8
5'			7.10, overlapped	119.3	7.34, d (8.7)	129.1
6′			7.19, overlapped	122.1	6.82, d (8.7)	108.3
7′			7.34, d (8.1)	111.2		161.0
8′				136.5		115.8
9′				127.6		153.7
10′			2.81–2.88, m; 2.76–2.79, m	23.0		113.4
11′			1.79—1.88, m; 1.58—1.64, m	32.6	7.41, d (10.0)	55.6
12′			1.88–1.95, m	33.9	5.47, d (10.0)	77.1
13′			3.97–4.04, m	69.2		144.3
14′			1.04, d (6.5)	17.0	4.93, s; 4.71, s	114.5
15′					1.78, s	16.8
OCH ₂ -7					4.07, s	55.9
OCH,-7'					3.94, s	56.2
NH-1	8.18, brs		7.81, brs			
NH-1'			7.83, brs			

Table 1. ¹H and ¹³C NMR spectral data of 1-3 (¹H: 500 MHz and ¹³C: 125 MHz, in CDCl₂).

Figure 2. The key HMBC correlations of compounds 1–3.

groups [$\delta_{\rm H}$ 2.76–2.79 (2H, m), 1.79–1.88, 2.08–2.15 (each 1H, m), 2.52–2.59 (1H, m), 1.22 (3H, d, *J* = 6.9 Hz); 2.76–2.79, 2.81–2.88 (each 1H, m), 1.58–1.64, 1.79–1.88 (each 1H, m), 1.88–1.95 (1H, m), 3.97–4.04 (2H, m), 1.04 (3H, d, *J* = 6.5 Hz)]. These data, along with 26 carbon resonances in the ¹³C NMR spectrum, suggested **2** to be a dimeric indole alkaloid composed of one 2-methyl-4-(3-indolyl)-butyric acid and one paniculidine C (**6**) units [1].

4 👄 X.-T. WANG ET AL.

These two units were linked by an ester bond on the basis of the HMBC correlations of H-13' and C-13/C-11'/C-12'/C-14'. The absolute configuration of **2** was deduced as (12*R*, 12'*R*) via alkaline hydrolysis and comparison of the specific optical rotation with those in literature [1]. Thus, the structure of paniculidine E (**2**) was elucidated as shown.

Paniculidine F (3) was obtained as a light yellow oil. Its molecular formula was assigned as $C_{29}H_{33}NO_6$ based on the ¹³C NMR spectroscopic data and a pseudomolecular ion at *m*/*z* 492.2379 [M + H]⁺ was observed in the positive mode HRESIMS. The ¹H NMR data (Table 1) indicated the presence of a 7-methoxy-8-isopentenyl coumarin moiety similar to auraptenol [16] [δ_H 6.22 (1H, d, *J* = 9.5 Hz), 7.57 (1H, d, *J* = 9.5 Hz), 6.82 (1H, d, *J* = 8.7 Hz), 7.34 (1H, d, *J* = 8.7 Hz), 3.94 (3H, s)], and an indole unit similar to compound 1 [δ_H 6.69 (1H, d, *J* = 7.9 Hz), 6.98 (1H, t, *J* = 7.9 Hz), 7.13 (1H, d, *J* = 7.9 Hz), 7.50 (1H, brs)]. These two units were linked through N-C-11' deduced from the HMBC correlations of H-11' and C-2/C-8/C-7'/C-8'/C-9'/C-12'.

The coupling constant between H-11' and H-12' (J = 10.0 Hz) indicated that **3** is a *threo* isomer. The absolute configuration of C-12' was determined as *S* by the Mosher's method (Figure 3), and the absolute configuration of C-11' was deduced as *S*. Moreover, the ECD spectrum of **3** was calculated using the TDDFT method at the B3LYP/6-31G(d) level, which is a powerful tool and widely used for the determination of absolute configuration of natural products [17]. The calculated ECD spectrum of (11'S,12'S)-**3** agreed well with the experimental one (Figure 4). Therefore, the absolute configuration of **3** was assigned as (11'S,12'S), and the structure of paniculidine F (**3**) was elucidated as shown.

The roots of *M. paniculata* have been used as a folk medicine for the treatment of inflammation-related diseases. Thus, in our study, all the isolates were tested for their inhibition activities on NO production stimulated by lipopolysaccharide in BV-2 microglial cells. However, these compounds showed no inhibitory effect at the concentration of 100 μ M.

3. Experimental

3.1. General experimental procedures

Specific optical rotation data were acquired on a Rudolph Autopol III automatic polarimeter (Rudolph Research, Fairfield, New jersey, U.S.A.). UV spectra were recorded on a Shimadzu UV-2450 spectrophotometer (Shimadzu Corporation, Kyoto, Japan). IR spectra

Figure 4. Calculated and experimental ECD spectra of 3.

were recorded on a Thermo Nicolet Nexus 470 FT-IR spectrometer (Thermo Nicolet, Vernon Hills, Illinois, U.S.A.). ECD data were acquired on a JASCO 810 CD spectrophotometer (Jasco Corporation, Tokyo, Japan). NMR spectra were recorded on a Varian INOVA-500 NMR spectrometer (Agilent Technologies, Santa Clara, California, U.S.A.), using CDCl₃ as solvent and the chemical shifts were referenced to the solvent residual peak. HRESIMS experiments were measured on a Waters Xevo G2 Q-TOF mass spectrometer (Waters MS Technologies, Manchester, UK). Silica gel (100–200 mesh or 200–300 mesh, Qingdao Marine Chemical Co. Ltd., China) and Sephadex LH-20 (Amersham Biosciences, Sweden) were used for open CC. Preparative HPLC were carried out using a Agilent Zorbax Eclipse XDB-C₁₈ column (9.4 × 250 mm, 5 μ m) on an Agilent 1260 system (Agilent Technologies Inc., Santa Clara, California, U.S.A.) with a DAD detector. Fractions and compounds were monitored at 210 nm and 330 nm. TLC analyses were carried out on the pre-coated silica gel GF₂₅₄ plates (Qingdao Marine Chemical Co. Ltd., China). Spots were visualized under the UV lights (254 and 365 nm). All the solvents used for isolation were of analytical grade and the solvents used for HPLC were of HPLC grade.

3.2. Plant material

The roots of *Murraya paniculata* were collected from Lihu Township, Guangxi Province, China, in June 2015, and were identified by Prof. Peng-Fei Tu. A voucher specimen (No. MP201506) has been deposited at the Herbarium of the Peking University Modern Research Center for Traditional Chinese Medicine.

3.3. Extraction and isolation

The roots of *M. paniculata* (9.3 kg) were extracted three times with 95% aqueous EtOH at room temperature. The extract was evaporated under reduced pressure, and the residue (500 g) was suspended in H_2O and partitioned successively with petroleum ether and $CHCl_3$. The CHCl₃ extract (150 g) was subjected to silica gel CC and eluted with a stepwise gradient of petroleum ether–EtOAc (7:3, 3:2, 2:3, 1:4, and 0:1, v/v) to afford nine fractions (A–I).

Fraction A (10 g) was separated on silica gel CC eluting with petroleum ether-acetone (10:1, 4:1, v/v) to afford six subfractions (A1–A6). Subfractions A4 (2 g) and A5 (2 g) were further chromatographed over Sephadex LH-20 eluting with CH₂Cl₂-MeOH (1:1, v/v) to afford Frs. A4-5 (0.3 g) and A5-4 (0.5 g), respectively, which were further purified by semipreparative RP-HPLC using a mobile phase of MeCN-H₂O (70:30, v/v, 2 ml/min) to give 9 (7 mg, t_p 35.6 min) and 2 (5 mg, t_p 17.9 min), respectively. Fraction B (15 g) was separated on silica gel CC eluting with petroleum ether-acetone (4:1, v/v) to afford six fractions (B1-B6). Subfraction B1 (3 g) was further chromatographed over Sephadex LH-20 (CH₂Cl₂–MeOH, 1:1, v/v) and ODS (MeOH-H₂O, 7:3, v/v) to afford Fr. B1-5-31 (0.6 g), which was further purified by semipreparative RP-HPLC using a mobile phase of MeCN-H₂O (70:30, v/v, 2 ml/min) to give 4 (28 mg, $t_{\rm R}$ 31.3 min) and 5 (21 mg, $t_{\rm R}$ 24.4 min). Fraction C (18 g) was separated on silica gel CC (CH₂Cl₂-acetone, 1:0-100:1, v/v) to afford four fractions (C1–C4). Subfraction C3 (5 g) was chromatographed successively on silica gel (petroleum ether-acetone, 3:1, v/v) and Sephadex LH-20 (CH₂Cl₂-MeOH, 1:1, v/v) CC to afford Fr. C3-2-5 (2 g), which was further purified by semipreparative RP-HPLC using a mobile phase of MeCN-H₂O (35:65, v/v, 2 ml/min) to give 1 (11 mg, $t_{\rm p}$ 39.0 min) and 6 (13 mg, $t_{\rm p}$ 34.5 min). Fraction D (30 g) was separated on silica gel (petroleum ether-acetone, 7:3, v/v) and Sephadex LH-20 (CH₂Cl₂-MeOH, 1:1, v/v) CC to afford Fr. D3-4-1 (1 g), which was further separated by preparative TLC (petroleum ether-acetone, 3:2, v/v) to give 7 (3 mg) and 8 (3 mg). Fraction E (30 g) was separated on silica gel (petroleum ether-acetone, 3:2, v/v) and Sephadex LH-20 (CH₂Cl₂-MeOH, 1:1, v/v) CC to afford Fr. E4-3-3 (2 g), which was further purified by semipreparative RP-HPLC using a mobile phase of MeCN-H₂O (40:60, v/v, 3 ml/min) to give 3 (3 mg, $t_{\rm R}$ 60.5 min).

3.3.1. Paniculidine D (1)

Light brown oil, $[\alpha]_D^{23}$ + 36.0 (*c* 0.10, MeOH); UV (MeOH) λ_{max} (log ε) 222 (4.40), 271 (3.55) nm; IR (KBr) ν_{max} 3399, 2918, 2851, 1713, 1601, 1578, 1499, 1452, 1374, 1259, 1034 cm⁻¹; ¹H and ¹³C NMR spectral data, see Table 1; HRESIMS: *m*/*z* 234.1495 [M + H]⁺ (calcd for C₁₄H₂₀NO₂, 234.1494).

3.3.2. Paniculidine E (2)

Light brown oil, $[\alpha]_D^{23} + 22.5$ (*c* 0.08, MeOH); UV (MeOH) λ_{max} (log ε) 203 (4.52), 223 (4.69), 282 (3.96) nm; IR (KBr) ν_{max} 3400, 2918, 2851, 1713, 1604, 1456, 1361, 1222, 1026, 530 cm⁻¹; ¹H and ¹³C NMR spectral data, see Table 1; HRESIMS: *m/z* 403.2377 [M + H]⁺ (calcd for C₂₆H₃₀N₂O₂, 403.2386).

3.3.3. Paniculidine F (3)

Light yellow oil, $[\alpha]_D^{23} + 17.5$ (*c* 0.08, MeOH); UV (MeOH) λ_{max} (log ε) 204 (4.68), 299 (4.03), 326 (3.98) nm; IR (KBr) ν_{max} 3445, 2918, 2850, 1735, 1713, 1604, 1363, 1029, 905, 836, 578 cm⁻¹; ¹H and ¹³C NMR spectral data, see Table 1; HRESIMS: *m*/*z* 492.2379 [M + H]⁺ (calcd for C₂₉H₃₄NO₆, 492.2386).

3.4. Determination of absolute configuration of compound 2

Compound **2** (1.3 mg) and K_2CO_3 (2.2 mg) were dissolved in MeOH (2 ml) for 4 h at 80 °C. The reaction product was acidized with 0.1 M HCl and then extracted with CH₂Cl₂ for three

times. After being concentrated to dryness, the organic residue was separated by semipreparative HPLC [1.0 ml/min, MeCN/0.1%HCOOH–H₂O (45:55)] to yield 2-methyl-4-(3indolyl)-butyric acid (**a**), and paniculidine C (**b**) (each 0.3 mg) at 11.3 min and 12.7 min, respectively. The structures of compounds **a** and **b** were identified by LC-MS (Figure S25, Supporting Information) under the following conditions: an Agilent 1260 chromatograph equipped with an Agilent Zorbax SB-Aq RP C₁₈ column (4.6 × 250 mm, 5 µm); column temperature: 35 °C; mobile phase: 0–30 min MeCN/0.1%HCOOH–H₂O (10:90–100:0); flow rate: 1.0 ml/min; UV detection wavelength: 210 nm. The molecular weights of **a** and **b** were m/z 217 and 203, respectively. The signs of the specific optical rotation of **a** $[[\alpha]_D^{25} + 46.7$ (*c* 0.03, MeOH)] and **b** $[[\alpha]_D^{25} + 53.3$ (*c* 0.03, MeOH)] were the same as that of **6**. Hence, the absolute configuration of **2** was deduced as (12*R*, 12′*R*).

3.5. Preparation of the (R)- and (S)-MPA esters of 3

Compound **3** (1.0 mg) was dissolved in 350 µl of CH_2Cl_2 , and DCC (0.8 mg), DMAP (0.5 mg), and (*R*)-MPA (0.6 mg) were then added sequentially. The reaction mixture was stirred for 16 h at room temperature. The crude products were separated by semipreparative HPLC [1.0 ml/min, MeCN/H₂O (80:20)] to yield the (*R*)-MPA ester **3***r* at 6.5 min. In a similar manner, (*S*)-MPA ester **3***s* was prepared by semipreparative HPLC [1.0 ml/min, MeCN/H₂O (80:20)] at 6.7 min, from the reaction of **3** (1.0 mg) with (*S*)-MPA.

(*R*)-MPA ester (**3***r*): ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 7.55 (1H, d, *J* = 9.3 Hz, H-4'), 7.46 (1H, d, *J* = 10.2 Hz, H-11'), 7.43 (1H, s, H-2), 7.37 (1H, d, *J* = 8.7 Hz, H-5'), 7.04 (1H, d, *J* = 7.8 Hz, H-4), 6.99 (1H, t, *J* = 7.8 Hz, H-5), 6.86 (1H, d, *J* = 8.7 Hz, H-6'), 6.73 (1H, d, *J* = 7.8 Hz, H-6), 6.22 (1H, d, *J* = 9.3 Hz, H-3'), 4.89 (1H, s, H-14'), 4.64 (1H, s, H-14'), 4.12 (3H, s, OCH₃-7), 4.07 (1H, m, H-13), 3.99 (3H, s, OCH₃-7'), 3.93 (1H, m, H-13), 2.61 (1H, m, H-10), 2.53 (1H, m, H-10), 1.80 (1H, m, H-11), 1.73 (1H, m, H-12), 1.67 (3H, s, H-15'), 1.62 (1H, m, H-11), 0.88 (3H, d, *J* = 6.6 Hz, H-14). (S)-MPA ester (**3***s*): ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 7.53 (1H, d, *J* = 9.6 Hz, H-4'), 7.45 (1H, d, *J* = 10.2 Hz, H-11'), 7.42 (1H, s, H-2), 7.32 (1H, d, *J* = 8.7 Hz, H-5'), 6.98 (1H, d, *J* = 7.7 Hz, H-4), 6.94 (1H, t, *J* = 7.7 Hz, H-5), 6.79 (1H, d, *J* = 8.7 Hz, H-6'), 6.65 (1H, d, *J* = 7.7 Hz, H-6), 6.21 (1H, d, *J* = 9.6 Hz, H-3'), 5.07 (1H, s, H-14'), 4.46 (1H, s, H-14'), 4.08 (3H, s, OCH₃-7), 4.03 (1H, m, H-13), 3.92 (3H, s, OCH₃-7'), 3.99 (1H, m, H-13), 2.60 (1H, m, H-10), 2.34 (1H, m, H-10), 1.80 (1H, m, H-11), 1.73 (1H, m, H-12), 1.62 (1H, m, H-11), 1.45 (3H, s, H-15'), 0.84 (3H, d, *J* = 6.7 Hz, H-14).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by National Natural Sciences Foundation of China [NSFC; grant numbers 81473106, 81222051]; and National Key Technology R&D Program "New Drug Innovation" of China [grant number 2012ZX09301002-002-002].

8 🔄 X.-T. WANG ET AL.

References

- [1] T. Kinoshita, S. Tatara, F.C. Ho, and U. Sankawa, Phytochemistry 28, 147 (1989).
- [2] T. Kinoshita, S. Tatara, and U. Sankawa, Chem. Pharm. Bull. 33, 1770 (1985).
- [3] C. Ito, H. Furulawa, H. Ishiii, T. Ishikawa, and J. Hafiniwa, J. Chem. Soc., Perkin Trans. 1, 2047 (1990).
- [4] T.S. Wu, M.J. Liou, and C.S. Kuoh, Phytochemistry 28, 293 (1989).
- [5] K. Raj, S.C. Misra, R.S. Kapil, and S.P. Popli, *Phytochemistry* 15, 1787 (1976).
- [6] T. Kinoshita and K. Firman, *Phytochemistry* 45, 179 (1997).
- [7] J.Y. Zhang, N. Li, Y.Y. Che, Y. Zhang, S.X. Liang, M.B. Zhao, Y. Jiang, and P.F. Tu, J. Pharm. Biomed. Anal. 56, 950 (2011).
- [8] J.Y. Zhang, J.Q. Lu, X.Y. Gao, Q. Zhang, N. Li, P.F. Tu, and Y.J. Qiao, *Chin. J. Nat. Med.* 11, 63 (2013).
- [9] M.A. Rahman, M. Hasanuzzaman, N. Uddin, and I. Shahid, *Pharmacology* 3, 768 (2010).
- [10] K. Sayar, M. Paydar, and B.P. Murphy, Med. Aromat Plants 3, 173 (2014).
- [11] Y.C. Kong, K.H. Ng, K.H. Wat, A. Wong, I.F. Saxena, K.F. Cheng, P.P. But, and H.T. Chang, *Planta Med.* 51, 304 (1985).
- [12] N.K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C.H. Kim, A.K. Verma, and E.H. Choi, *Molecules* 18, 6620 (2013).
- [13] D. Zárate-Zárate, R. Aguilar, R.I. Hernández-Benitez, E.M. Labarrios, F. Delgado, and J. Tamariz, *Tetrahedron* 71, 6961 (2015).
- [14] I.A.M. Asiri, J.M. Badr, and D.T.A. Youssef, Phytochem. Lett. 13, 53 (2015).
- [15] Y.C. Kong, K.F. Cheng, R.C. Cambie, and P.G. Waterman, J. Chem. Soc. Chem. Commun. 24, 737 (1985).
- [16] B.R. Barik, A.K. Dey, P.C. Das, A. Chatterjee, and J.N. Shoolery, *Phytochemistry* 22, 792 (1983).
- [17] G. Bringmann, T. Bruhn, K. Maksimenka, and Y. Hemberger, Eur. J. Org. Chem. 40, 2717 (2009).