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Abstract
A simple cost-effective and green method was presented for the synthesis of coumarin bis sulfonamides. Seventeen novel 
coumarin sulfonamides were synthesized in good to high yield and purity in six steps starting from 2-amino thiazole, aniline, 
and 4-methoxy aniline. All of the reactions have been done under green conditions without using any hazardous solvent. The 
chemical structures of the products were elucidated by IR, 1H NMR, and 13C NMR spectroscopy and elemental analysis. 
Also, the anti-bacterial properties of the synthesized sulfonamides were investigated using two strains of Staphylococcus 
(gram-positive) and Escherichia coli (gram-negative) bacteria.
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Introduction

Coumarins with synthetic and natural origin constitute a 
large group of heterocyclic compounds. Many compounds 
which contain the coumarin moiety were reported to show 
a wide range of valuable biological activities in medici-
nal and pharmaceutical areas, such as anti-inflammatory 
[1], antiviral [2], anti-Alzheimer [3], antitumor [4], and 
anticancer [5]. In the development of newer antimicrobi-
als, coumarins have been identified as plant antibacterial 
agents with bacterial-growth inhibitory potential, particu-
larly against Gram-positive species [6]. Sulfonamide deriv-
atives belong to the most important class of antibacterial 

agents [7]. Several compounds bearing sulfonamide groups 
exhibit other important biological properties, such as anti-
tumor [8], antidiabetic type 2 [9], and antifungal activities 
[10]. Commonly, sulfonamides are prepared from sulfonyl 
chlorides and amines [11]. Synthesis of sulfonamides under 
solvent-free conditions have attracted great interest because 
of significant environmental and economic advantages [12, 
13]. Aryl sulfonyl chlorides are typically prepared via elec-
trophilic aromatic substitution using an excess of chlorosul-
fonic acid, or oxidative chlorination of thiols and sulfides 
[14, 15]. Direct synthesis of sulfonamides obtained from 
sulfonic acids, onepot synthesis of sulfonamides from Grig-
nard reagents and  SO2, and also from aryl iodide are some 
other reported methods [16, 17].

Coumarin-sulfonamide is an important structural motif 
that is a core and integral part of different therapeutic scaf-
folds and analogues [18–22]. Several hybrid drugs including 
both the coumarin and sulfonamide moieties were designed 
and synthesized to improve biological activities such as 
COX-2 inhibitors (compound A) [23], antioxidant activity 
(compound B) [24], and anti-proliferative agents (compound 
C) [25] (Fig. 1). Recently, Alshibl et al. synthesized new 
coumarin-sulfonamide hybrids as an antioxidant, antimicro-
bial, and anti-inflammatory agents [26]

In view of the antibacterial activity of sulfonamides and 
coumarins, a combination of coumarin nucleus with sul-
fonamide moieties is attractive as a versatile platform for 
the development of a new class of antibacterial agents. As a 
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part of our research effort to explore novel antibacterial com-
pounds [27–31] herein, we report the solvent-free synthesis 
of a series of novel coumarin compounds having biologically 
active sulfonamide moiety.

Results and discussion

Chemistry

According to the pharmaceutical properties of coumarin 
and sulfonamides, we design and synthesized several sul-
fonamides and disulfonamides derived from coumarin and 
some amino sulfonamides (Fig. 2). At first, p-anisidine (1a), 
aniline (1b), and 2-aminothiazol (1c) were acylated using 
acetic anhydride under solvent and base-free conditions. The 

corresponding acetamides (2a–c) were obtained just by the 
addition of water and filtration as a powder in high yield and 
purity and used in the next step without further purification 
(Fig. 3). In the second step chlorosulfonic acid was added to 
acetamides 2a–c at 0 °C. Acetamide sulfonyl chlorides 3a–c 
were obtained as a white powder that was washed with water 
until neutral pH (Fig. 4). The next step is the synthesis of 
acetamide sulfonamides (4a1–6, 4b1–3, 4c1,2). Based on our 
previous work on solvent-free reactions [32–35], this method 
was used in this step (Fig. 5). The procedure is simply mix-
ing of acetamide sulfonyl chlorides (3a–c) with an amine in 
the presence of  NaHCO3 at room temperature in the absence 
of any solvent. The products were obtained after an easy 
work-up by the addition of water, then filtration and dring. 
As it was shown in Table 1, a wide range of structurally 
and electronically varied amines with electron-donating and 

Fig. 1  Examples of hybrid drugs including both the coumarin and sulfonamide moieties

Fig. 2  The general structure of 
synthesized cumarine sulfona-
mides
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electron-withdrawing groups were subjected to the reaction 
with synthesized acetamide sulfonyl chlorides 3a–c, and the 
corresponding acetamide sulfonamides (4a1–6, 4b1–3, 4c1,2) 
were obtained in 85–95% yield with high purity by this sim-
ple procedure (Table 1).

In the next step, for the synthesis of amine sulfonamides 
(5a1–6, 5b1–3, 5c1,2), the prepared acetamide sulfonamides 
(4a1–6, 4b1–3, 4c1,2) were hydrolyzed using acidic condi-
tions. (Fig. 5). A mixture of acetamide sulfonamides,  H2SO4 
70%, and  H2O was refluxed for 30 min. The reaction was 
controlled by TLC. After completion of the reaction, the 
solution was cooled and natural with NaOH. The precipi-
tate was filtered and washed with water. As it was shown 
in Table 2, Amine sulfonamides were obtained in 83–95% 
yields with high purity and used in the next step without 
any purification.

Synthesis of new coumarin sulfonamides derived 
from coumarin‑6‑sulfonyl chloride (6)

Finally for the synthesis of coumarin sulfonamides, amine 
sulfonamides  (5a1–6,  5b1–3,  5c1,2), was reacted with cou-
marin-6-sulfonyl chloride (6) that was synthesized by chlo-
rosulfonation of coumarin using chlorosulfonic acid at 0 °C 
according to our previous work [13]. The reactions were 
carried out in the presence of  NaHCO3, at room tempera-
ture, under solvent-free conditions (Fig. 6). After comple-
tion of the reaction, the mixture was washed with water and 
the precipitate was filtered and dried. As it was shown in 
Table 3, the structurally varied amine sulfonamides with 
electron-donating and electron-withdrawing groups  (5a1–6 
and  5b1–3) as well as amine sulfonamides derived from thia-
zol as heterocycle ones  (5c1,2) were treated with coumarin 
sulfonyl chloride after a short reaction time and produced 
the corresponding coumarin bissulfonamides (7a1–6, 7b1–3, 

Fig. 3  The synthetic route for the preparation of acetamides (2a, 2b, 
2c)

Fig. 4  The synthetic route of acetamide sulfonyl chlorides (3a, 3b, 3c)

Fig. 5  The synthetic route of amine sulfonamides  (5a1–6,  5b1–3,  5c1,2)
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7c1,2) in moderate to high yield. The chemical structures of 
the synthesized coumarin bissulfonamides were elucidated 
by IR,1H NMR, and 13C NMR.

Synthesis of new coumarin sulfonamides derived 
from coumarin‑3‑carbonyl chloride(8)

In continuation to this work, we designed and synthesized 
another series of coumarin sulfonamides derived from 

Table 1  Yields/reaction times 
for the preparation of acetamide 
sulphonamides

 
Entry 

 
Amine 

Acetamide sulfonamide (4)     
(product number) 

Time  
(min) 

Yield 
(%) 

 
 

1 

 
 

(Me)2-
2,4-

PhNH2 

HN

S
O2OCH3

H
N

H3C

CH3

CH3

O

4a1 

22 90 

 
 

2 

 
 

Me-4-
PhNH2 

HN

S
O2OCH3

H
N CH3

CH3

O

4a2 

30 91 

 
 

3 

 
 

Cl-3-
PhNH2 

HN

S
O2OCH3

H
N

CH3

O

Cl

4a3 

35 89 

 
 

4 

 
 

Me-2-
PhNH2 

HN

S
O2OCH3

H
N

H3C

CH3

O

4a4 

25 90 

 
 

5 

 
 

Cl-4-
PhNH2 

HN

S
O2OCH3

H
N

Cl

CH3

O

4a5 

45 85 

 
 

6 

 
 

Br-4-
PhNH2 

 

HN

S
O2OCH3

H
N

Br

CH3

O

   4a6 

38 90 
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coumarin-3-carbonyl chloride (8) and aminosulfonamides 
5a1–6. To do this, coumarin-3-carboxylic acid was reacted 
with thionyl chloride under reflux conditions. Coumarin-
3-carbonyl chloride (8) was obtained in high yield and used 
in the next step without any purification. Then, aminosul-
fonamides 5a1–6 were reacted with coumarin-3-carbonyl 
chloride 8 in the presence of  NaHCO3 under solvent-free 
conditions (Fig. 7). The results were shown that all of the 
reactions were done in a short reaction time and the cou-
marin sulfonamides 9a1–6 were obtained in 80–95% yield in 
high purity (Table 3). The products were characterized by 
IR,1H NMR, 13C NMR.

Antibacterial activity

All of the synthesized coumarin bissulfonamides  (7a1–6, 
 7b1–3,  7c1,2) were screened for their antibacterial activity 
against Escherichia coli (ATCC35218) as Gram-negative 
and Staphylococcus aureus (ATCC 6538) as Gram-positive 
bacterial strains using the conventional agar-dilution method 
[17]. These results show that coumarin bissulfonamides 
derived from aniline, 2-aminothiazol, and p-anisidin that is 
contained electron-withdrawing substitutions in para posi-
tion  (7a5,6,  7b1–3,  7c1,2) have higher antibacterial activity 
against the Gram-negative bacteria than that against Gram-
positive bacteria. But coumarin bissulfonamides derived 

Table 1  (continued)

7 MeO-4-
PhNH2

O2S

HN

N
H

OCH3

CH3

O

4b1

15 95

8 Me-4-
PhNH2

O2S

HN

N
H

CH3

CH3

O

4b2

25 92

9 MeO-2-
PhNH2

O2S

HN

N
H

OCH3

CH3

O

4b3

30 90

10 (Me)2-
2,4-

PhNH2

HN

S N

O2S
H
N CH3

CH3

O

H3C

4c1

35 89

11 Cl-2-
PhNH2

HN

S N

O2S
H
N

CH3

O

Cl

4c2

40 85
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from p-anisidin that is contained electron-withdrawing 
substitutions in meta or electron-donating substituents in 
ortho and para position  (7a2–4) have lower antibacterial 
activity against the Gram-negative bacteria than that against 

Gram-positive bacteria. Compound  7b1 derived from ani-
line that is contained para-OMe substitution has the high-
est activity compared with  7b2 and  7b3. Compound  7b2 has 
the lowest antibacterial activity against the Gram-positive 

Table 2  Yields/reaction times 
for the preparation of amine 
sulphonamides Entry Amine

Amine sulfonamide (5)

(product number)

Time

(min)

Yield

(%)

1 (Me)2-

2,4-

PhNH2 5a1
25 95

2 Me-4-

PhNH2

S
N
H

OO
CH3

H2N

OCH3

5a2 23 94

3 Cl-3-

PhNH2

S
N
H

OO
H2N

OCH3

Cl

5a3 35 90

4 Me-2-

PhNH2

S
N
H

OO
H2N

OCH3
CH3

5a4 25 93

5 Cl-4-

PhNH2

S
N
H

OO
H2N

OCH3

Cl

5a5 40 89

6 Br-4-

PhNH2

S
N
H

OO
H2N

OCH3

Br

5a6 30 92

S
N
H

OO
CH3

CH3OCH3

H2N
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bacteria and compound  7c2 has the most potent antibacte-
rial activity against the Gram-positive and Gram-negative 
bacteria.

In regard to sulfonamides 9a1–6, compared with coumarin 
bissulfonamides  (7a1–6,  7b1–3,  7c1,2), antibacterial activity, 
reduced. Overall, coumarin sulfonamides contained chloro 
and bromo substitutions have higher antibacterial activity 
against the Gram-negative bacteria (Escherichia coli) and 
coumarin sulfonamides contained alkyl substitutions have 
the same activity against the Gram-negative and Gram-
positive bacteria.

The diameters of the zones of inhibition for compounds 
 (7a1–6,  7b1–3,  7c1,2) with a concentration of 2.5 mg/mL are 
listed in Table 3 and compared with those of reference 
standards ampicillin and chloramphenicol.

Conclusions

We introduced an easy and green method for the preparation 
of several structurally varied novel coumarin sulfonamides 
and coumarin disulfonamides. The reactions are character-
ized by simple reaction procedures, easy separation, and 
high yields. Also, most steps were carried out under sol-
vent-free conditions, and the products were separated in high 
purity. Furthermore, the synthesized coumarin sulfonamides 
were shown moderate to good antibacterial activity against 
E. coli and S. aureus microorganisms.

Table 2  (continued)

7 MeO-4-

PhNH2

5b1

18 92

8 Me-4-

PhNH2 H2N

S
N
H

OO
CH3

5b2

20 95

9 MeO-2-

PhNH2
H2N

S
N
H

OO

OCH3

5b3

22 90

10 (Me)2-

2,4-

PhNH2

S
N
H

OO

S
N

H2N
CH3

CH3

5c1
35 85

11 Cl-2-

PhNH2

S
N
H

OO

S
N

H2N
Cl

5c2
45 83

H2N

S
N
H

OCH3OO
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Experimental

Materials and measurements

All chemicals were purchased from Merck and Fluka 
chemical companies. Infrared spectra were recorded on a 
Perkin–Elmer VIR spectrophotometer. 1H-NMR and 13C-
NMR spectra were recorded on a Bruker (400 MHz) FT 
spectrometer in  CDCl3 and DMSO-d6. All of the reactions 
were conducted open to the atmosphere and the yields refer 
to the isolated products.

Synthesis of 2‑Oxo‑2H‑chromene‑6‑sulfonyl 
chloride (6)

Chlorosulfonic acid (0.5 ml) was added slowly to coumarin 
(1 mmol, 0.146 g), at 0 °C and stirred for 30 min and then 
at room temperature for 60 min. After completion of the 
reaction (as it was shown by TLC) the mixture was poured 
into ice. The solid product was filtered, washed with cold 
water (10 ml) until the pH of water become about 7 and then 
dried. The product was obtained as white solid in 94% yield 
with high purity and used in the end step without any puri-
fication, m.p = 98–100 °C; white solid; Rf = 0.4 (50% ethyl 
acetate, 50% n-hexane); IR (KBr,  cm−1) = 1734 (CO), 1373, 
1168  (SO2); 1H NMR (400 MHz, DMSO) δ (ppm) = 6.51 
(1H,d, J = 9.6 Hz), 7.35 (1H,d, J = 8.4 Hz), 7.82 (1H, dd, 
J1 = 8.4 Hz, J2 = 2.0 Hz), 7.99 (1H,d, J = 2.0 Hz), 8.15 (1H,d, 

J = 9.6 Hz); 13C NMR(100 MHz, DMSO) δ(ppm) = 116.5, 
116.9, 118.5, 125.9, 129.7, 144.3, 144.8, 154.0, 160.4.

General procedure for the synthesis of Acetamides 
(2a–c)

The mixture of amine (10 mmol) and acetic anhydride 
(20 mmol) was triturated in mortar for 20 min at room tem-
perature. The reaction was controlled by TLC. Then, the 
water was added (100 ml), and the solid products were fil-
tered, washed with water, and dried. Acetamides (2a–c) were 
obtained as a powder in 84–87% yield and used in the next 
step without further purification.

General procedure for the synthesis of acetamide 
sulfonyl chlorides (3a–c)

Chlorosulfonic acid (0.6 ml) was added dropwise to aceta-
mides 2a–c (1 mmol) at 0 °C. The progress of the reactions 
was controlled by TLC. After completion of the reaction, the 
mixture was poured into ice and stirred for 5 min. Then, the 
mixture was filtered, washed with cold water until the pH of 
water becomes about 7. Then the solid product was dried at 
room temperature. The products were obtained as a white pow-
der in 84–85% yield and used in the next step without further 
purification.

Fig. 6  The synthetic route of 
coumarin bissulfonamides 
 (7a1–6,  7b1–3,  7c1,2)
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Table 3  Yield/reasction time data for the preparation of coumarin bissulfonamides (7a1–6, 7b1–3, 7c1,2) and coumarin sulfonamides (9a1–6) 
and their Antibacterial Activities

Entry 
Coumarin sulfonamide  

(product number) 

Time  

 

 

 

(min) 

Yieldb 

(%) 

S. aureus 

(ATCC6538) 

E. coli 

(ATCC35218) 

1 

HN
S

O

OO

O

S
O2OCH3

H
N

H3C CH3 7a1 

22 87 12 11 

2 

HN
S

O

OO

O

S
O2OCH3

H
N

CH3 7a2 

24 89 14 11 

3 

HN
S

O

OO

O

S
O2OCH3

H
N

Cl 7a3 

35 86 14 11 

4 

HN
S

O

OO

O

S
O2OCH3

H
N

H3C 7a4 

25 88 14 14 

5 

HN
S

O

OO

O

S
O2OCH3

H
N

Cl 7a5 

45 85 12 14 
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General procedure for the synthesis of acetamide 
sulfonamides (4a–c)

The procedure is simply grinding of 1  mmol acetamide 

sulfonyl chlorides (3a–c) with an amine (1 mmol) in a mortar 
in the presence of  NaHCO3 (0.5 g) at room temperature in the 
absence of any solvent. The reaction was controlled by TLC. 
After completion of the reaction the water was added (25 ml) 

Table 3  (continued)

6 

HN
S

O

OO

O

S
O2OCH3

H
N

Br 7a6 

38 85 12 14 

7 

O2S

HN
S

O

OO

O

N
H

OCH3

7b1 

25 87 14 17 

8 

O2S

HN
S

O

OO

O

N
H

CH3

7b2 

25 87 6 15 

9 
O2S

HN
S

O

OO

O

N
H

OCH3 7b3 

30 86 13 16 

10 

O O

S
HN

S N

O2S

OO

NH

H3C

CH3 7c1 

35 80 12 16 

11 
O O

S
HN

S N

O2S

OO

NH

Cl
7c2 

40 85 17 20 
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Table 3  (continued)

12 

O O

N
H

O

SO2
OCH3

HN
H3C

CH3

9a1 

20 95 8 8 

13 

O O

N
H

O

SO2
OCH3

H
NH3C

9a2 

22 90 8 10 

14 

O O

N
H

O

SO2
OCH3

H
N

Cl

9a3 

30 83 10 8 

15 

O O

N
H

O

SO2
OCH3

HN
H3C

9a4 

21 94 8 8 

16 

O O

N
H

O

SO2
OCH3

H
NCl

9a5 

40 80 9 10 

17 

O O

N
H

O

SO2
OCH3

H
NBr

9a6 

35 82 9 10 

18 Ampicillin – – 17 9 

19 Chloramphenicol – – 12 14 
aEach value is an average of three independent determinations. b Isolated yield 
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and stirred for 15 min. Then the mixture was filtered and dried. 
The products were obtained in 85–95% yields with high purity 
and used in the next step without any purification.

General procedure for the synthesis of amino 
sulfonamides (5a–c)

A mixture of 4 mmol acetamide sulfonamides, 3.6 ml 
 H2SO4 70%, and 8 ml  H2O was refluxed for 30 min. The 
reaction was controlled by TLC. After completion of the 
reaction, the solution was cooled and natural with NaOH 
(5%). The precipitate was filtered, washed with water, 
and dried. Amine sulfonamides were obtained in 83–95% 
yields with high purity and used in the next step without 
any purification.

General procedure for the synthesis of coumarin 
disulfonamides (7a–c)

A mixture of amino sulfonamide (1 mmol), coumarin sulfo-
nyl chloride (1 mmol), and  NaHCO3 (0.5 g) was triturated 
in the mortar at room temperature under solvent-free condi-
tions. The reaction was controlled by TLC. After comple-
tion of the reaction, water was added and stirred for 5 min. 
Then the mixture was filtered washed with additional water 
and dried. Coumarin disulfonamides were obtained in high 
purity and elucidated by IR, 1H-NMR, and 13C-NMR.

Spectral data of the synthesized coumarin disulfonamides 
 (7a1–6,  7b1–3,  7c1,2)

N-(3-(N-(2,4-dimethylphenyl)sulfamoyl)-4-methoxyphenyl)-
2-oxo-2H-chromene-6- sulfonamide (7a1): Color = Light 
Violet; m.p = 244–248 °C; Yield = 87%; Rf = 0.30 (60% ethyl 

acetate, 40% n-hexane); IR (KBr,  cm−1) = 3256 (N–H), 1729 
(CO), 1158, 1338  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 1.99  (3HMe, s), 2.17  (3HMe, s), 3.81  (3HoMe, s), 6.63 
 (1Harom, d, J = 9.56 Hz), 6.67  (1Harom, d, J = 7.68 Hz), 6.73 
 (1Harom, d), 6.89  (1Harom, s), 7.14  (1Harom, d, J = 8.4 Hz), 
7.28  (1Harom, s), 7.32  (1Harom, d, J = 7.96 Hz), 7.47  (1Harom, 
d, J = 8.2 Hz), 7.69  (1Harom, d, J = 7.6 Hz), 8.09  (1Harom, 
s), 8.15  (1Harom, d, J = 9.16 Hz), 9.18 (s,  1HN-H), 10.24 (s, 
 1HN-H); 13C NMR (100 MHz, DMSO-d6) δ (ppm) = 17.34, 
20.31, 56.08, 113.56, 117.55, 117.78, 118.84, 123.02, 
126.33, 127.57, 127.97, 128.38, 129.05, 129.42, 131.00, 
132.04, 134.24, 134.82, 135.53, 143.40, 153.61, 155.75, 
159.07.

N-(3-(N-(4-methylphenyl)sulfamoyl)-4-methoxyphenyl)-
2-oxo-2H-chromene-6-sulfonamide (7a2): Color = Cream; 
m.p = 150–153 °C; Yield = 89%; Rf = 0.27 (60% ethyl ace-
tate, 40% n-hexane); IR (KBr,  cm−1) = 3263 (N–H), 1732 
(CO), 1161, 1339  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 2.14  (3HMe, s), 3.81  (3HoMe, s), 6.65  (1Harom, d, 
J = 9.6 Hz), 6.85  (2Harom, d, J = 8.3 Hz), 6.89  (2Harom, d, 
J = 8.4 Hz), 7.06  (1Harom, d, J = 9.2 Hz), 7.24  (1Harom, dd, J 
1 = 2.4 Hz, J 2 = 2.8 Hz), 7.50  (1Harom, d, J = 2.8 Hz), 7.53 
 (1Harom, d, J = 8.8 Hz), 7.76(1Harom, dd, J = 2 Hz), 8.12 
 (1Harom, d, J = 2.4 Hz), 8.16  (1Harom, d, J = 10 Hz), 9.87 (s, 
 1HN-H), 10.32 (s,  1HN-H); 13C NMR (100 MHz, DMSO-d6) 
δ (ppm) = 20.69, 56.76, 114.20, 118.11, 118.31, 119.39, 
120.14, 124.23, 127.12, 128.12, 128.74, 129.72, 129.86, 
130.01, 133.25, 135.37, 135.54, 143.93, 153.98, 156.28, 
159.57.

N-(3-(N-(3-chlorophenyl)sulfamoyl)-4-methoxyphenyl)-
2-oxo-2H-chromene-6-sulfonamide (7a3): Color = Light 
Violet; m.p = 158–163 °C; Yield = 86%; Rf = 0.3 (60% ethyl 
acetate, 40% n-hexane); IR (KBr,  cm−1) = 3184 (N–H), 1711 
(CO), 1164, 1341  (SO2); 1H NMR (400 MHz, DMSO) δ 

Fig. 7  The synthetic route for 
synthesizing coumarin sulfona-
mides  (9a1–6)
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(ppm) = 3.80  (3HoMe, s), 6.64  (1Harom, d, J = 9.6 Hz), 6.95 
 (1Harom, d, J = 7.6 Hz), 7.02  (2Harom, m), 7.10  (1Harom, d, 
J = 9.2 Hz), 7.17  (1Harom, t, J = 8 Hz), 7.28  (1Harom, dd, 
J 1 = 2.4 Hz, J 2 = 2.8 Hz), 7.53  (1Harom, d, J = 8.8 Hz), 
7.56  (1Harom, d, J = 2.8 Hz), 7.78(1Harom, dd, J 1 = 2.4 Hz, 
J 2 = 2 Hz), 8.11  (1Harom, d, J = 2 Hz), 8.15  (1Harom, d, 
J = 9.6 Hz), 10.36 (s,  2HN-H); 13C NMR (100 MHz, DMSO-
d6) δ (ppm) = 56.84, 114.43, 117.92, 118.14, 118.35, 119.09, 
119.43, 123.79, 124.14, 126.78, 128.09, 129.04, 129.95, 
131.08, 133.66, 135.43, 139.66, 143.86, 154.05, 156.33, 
159.58.

N-(3-(N-(2-methylphenyl)sulfamoyl)-4-methoxyphenyl)-2-
oxo-2H-chromene-6-sulfonamide (7a4): Color = Light Vio-
let; m.p = 126–129 °C; Yield = 88%; Rf = 0.45 (60% ethyl 
acetate, 40% n-hexane); IR (KBr,  cm−1) = 3258 (N–H), 1733 
(CO), 1158, 1332  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 2.10  (3HMe, s), 3.80  (3HoMe, s), 6.64  (1Harom, d, 
J = 9.6 Hz), 6.86  (1Harom, d, J = 7.6 Hz), 6.95  (1Harom, d, 
J = 7.6 Hz), 7.02  (1Harom, m), 7.09  (1Harom, d, J = 7.2 Hz), 
7.14  (1Harom, m), 7.32  (1Harom, d, J = 2.4 Hz), 7.34(1Harom, 
d, J = 2.4 Hz), 7.48(1Harom, d, J = 8.8 Hz), 7.71(1Harom, 
dd, J = 2.4 Hz), 8.07  (1Harom, d, J = 2 Hz), 8.14  (1Harom, d, 
J = 9.6 Hz), 9.29 (s,  1HN-H), 10.23 (s,  1HN-H); 13C NMR 
(100  MHz, DMSO-d6) δ (ppm) = 17.91, 56.58, 114.09, 
115.64, 118.06, 118.27, 119.34, 123.66, 126.53, 126.61, 
128.04, 128.66, 128.85, 128.97, 129.80, 129.95, 130.94, 
134.58, 135.28, 135.47, 143.92, 154.10, 156.23, 159.61.

N-(3-(N-(4-chlorophenyl)sulfamoyl)-4-methoxyphenyl)-2-
oxo-2H-chromene-6-sulfonamide (7a5): Color = Light Vio-
let; m.p = 181–184 °C; Yield = 85%; Rf = 0.24 (60% ethyl 
acetate, 40% n-hexane); IR (KBr,  cm−1) = 3205 (N–H), 1715 
(CO), 1156, 1349  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 3.74  (3HoMe, s), 6.59  (1Harom, d, J = 9.6 Hz), 6.94 
 (1Harom, d, J = 9.2 Hz), 6.97  (2Harom, dd, J = 8.8 Hz), 7.09 
 (1Harom, d), 7.13  (2Harom, dd, J = 8.8 Hz), 7.47  (1Harom, d, 
J = 2.4 Hz), 7.48  (1Harom, d), 7.80  (1Harom, dd, J = 2 Hz), 
8.09(1Harom, d), 8.16  (1Harom, d, J = 9.6  Hz), 10.18 (s, 
 2HN-H); 13C NMR (100 MHz, DMSO-d6) δ (ppm) = 56.75, 
114.13, 117.60, 117.98, 119.13, 121.05, 123.54, 126.66, 
127.72, 128.31, 129.18, 130.13, 134.17, 137.52, 138.21, 
144.12, 152.21, 155.65, 159.75.

N-(3-(N-(4-bromophenyl)sulfamoyl)-4-methoxyphenyl)-2-
oxo-2H-chromene-6-sulfonamide (7a6): Color = Light Vio-
let; m.p = 183–185 °C; Yield = 85%; Rf = 0.24 (60% ethyl 
acetate, 40% n-hexane); IR (KBr,  cm−1) = 3204 (N–H), 1718 
(CO), 1156, 1349  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 3.79  (3HoMe, s), 6.65  (1Harom, d, J = 10 Hz), 6.94 
 (2Harom, d, J = 8 Hz), 7.07  (1Harom, d, J = 8.8 Hz), 7.24 
 (1Harom, d, J = 8 Hz), 7.31  (2Harom, d, J = 8.4 Hz), 7.57 
 (2Harom, m), 7.79(1Harom, d, J = 8.4 Hz), 8.14(1Harom, s), 
8.18(1Harom, d, J = 9.6 Hz), 10.26 (s,  1HN-H), 10.38 (s, 
 1HN-H); 13C NMR (100 MHz, DMSO-d6) δ (ppm) = 56.81, 
114.37, 116.09, 118.15, 118.44, 119.43, 121.50, 124.26, 

126.70, 128.13, 128.96, 129.82, 129.97, 132.19, 135.46, 
137.53, 143.82, 153.99, 156.33, 159.52.

N-(4-(N-(4-methoxyphenyl)sulfamoyl)phenyl)-2-oxo-
2H-chromene-6-sulfonamide (7b1): Color = Violet; 
m.p = 122–125 °C; Yield = 87%; Rf = 0.26 (60% ethyl ace-
tate, 40% n-hexane); IR (KBr,  cm−1) = 3249 (N–H), 1736 
(CO), 1155, 1328  (SO2);): 1H NMR (400 MHz, DMSO-d6) 
δ (ppm) = 3.66 (s,  3HCH3), 6.36 (d,  1Harom, J = 9.6 Hz), 6.74 
(d,  2Harom, J = 8.4 Hz), 7.10 (d,  2Harom, J = 8.4 Hz), 7.30 
(d,  2Harom, J = 8.8 Hz), 7.33 (d,  1Harom, J = 8.0 Hz), 7.35 
(s,  2HN-H), 7.69 (d,  2Harom, J = 8.8 Hz), 7.89 (d,  1Harom, 
J = 8.0 Hz), 7.97 (d,  1Harom, J = 8.0 Hz), 7.98 (s,  1Harom); 
13C NMR (100 MHz, DMSO-d6) δ (ppm) = 55.14, 114.40, 
115.62, 118.34, 119.91, 121.20, 122.70, 128.34, 129.70, 
129.72, 129.74, 130.23, 134.55, 136.40, 140.63, 142.47, 
156.40, 156.69 160.92.

N-(4-(N-(4-methylphenyl)sulfamoyl)phenyl)-2-oxo-
2H-chromene-6-sulfonamide (7b2): Color = Light Cream; 
m.p = 203–205  °C; Yield = 87%; Rf = 0.66 (60% ethyl 
acetate, 40% n-hexane); IR (KBr,  cm−1) = 3239, 3189 
(N–H), 1711 (CO), 1152, 1323  (SO2); 1H NMR (400 MHz, 
DMSO-d6) δ (ppm) = 2.16 (s,  3HCH3), 6.63 (d,  1Harom, 
J = 9.6 Hz), 6.88 (d,  2Harom, J = 8 Hz), 6.97 (d,  2Harom, 
J = 8.4 Hz), 7.22 (d,  2Harom, J = 8.8 Hz), 7.55 (d,  1Harom, 
J = 8 Hz), 7.58 (d,  2Harom, J = 8.8 Hz), 7.93 (dd,  1Harom, 
J1 = 2.4 Hz, J2 = 2.4), 8.16 (d,  1Harom, J = 9.6 Hz), 8.29 
(d,  1Harom, J = 2 Hz), 10 (s,  1HN-H), 11.05 (s,  1HN-H); 13C 
NMR (100 MHz, DMSO-d6) δ (ppm) = 20.74, 118.40, 
118.42, 119.06, 119.51, 121.20, 128.33, 128.84, 129.94, 
129.99, 133.88, 133.91, 134.49, 134.59, 135.24, 135.33, 
141.81, 143.81, 156.55, 159.53.

N-(4-(N-(2-methoxyphenyl)sulfamoyl)phenyl)-2-oxo-
2H-chromene-6-sulfonamide (7b3): Color = Dark Cream; 
m.p = 120–122 °C; Yield = 86%; Rf = 0.23 (60% ethyl ace-
tate, 40% n-hexane); IR (KBr,  cm−1) = 3247 (N–H), 1733 
(CO), 1160, 1345  (SO2); 1H NMR (400 MHz, DMSO-d6) δ 
(ppm) = 3.76 (s,  3HCH3), 6.36 (d,  1Harom, J = 9.6 Hz), 6.88 
(d,  2Harom, J = 8.4 Hz), 7.10 (d,  2Harom, J = 8.4 Hz), 7.30 
(d,  2Harom, J = 8.8 Hz), 7.33 (d,  1Harom, J = 8.0 Hz), 7.35 
(s,  2HN-H), 7.69 (d,  2Harom, J = 8.8 Hz), 7.89 (d,  1Harom, 
J = 8.0 Hz), 7.97 (d,  1Harom, J = 8.0 Hz), 7.98 (s,  1Harom); 
13C NMR (100 MHz, DMSO-d6) δ (ppm) = 55.07, 110.00, 
115.69, 118.34, 119.92, 121.20, 123.84, 124.76, 125.60, 
125.74, 128.36, 129.64, 130.23, 133.95, 136.40, 140.63, 
142.47, 149.82, 156.99 160.92.

N-(2,4-dimethylphenyl)-2-((2-oxo-2H-chromene)-6-sul-
fonamido)thiazole-4-sulfonamide (7c1): Color = Cream; 
m.p = 159–161 °C; Yield = 80%; Rf = 0.5 (60% ethyl ace-
tate, 40% n-hexane); IR (KBr,  cm−1) = 3256 (N–H), 1728 
(CO), 1157, 1338  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 2.01  (3HMe, s), 2.10  (3HMe, s), 6.62  (1Harom, d, 
J = 9.6 Hz), 6.78  (1Harom, d, J = 8 Hz), 6.89  (1Harom, d, 
J = 8.4 Hz), 6.98  (1Harom, s), 7.59  (1Harom, d, J = 8.8 Hz), 
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7.84  (1Harom, dd, J = 2.0 Hz), 8.07  (1Harom, d, J = 2.0 Hz), 
8.19  (1Harom, d, J = 9.6 Hz), 9.61  (2HN-H, s); 13C NMR 
(100 MHz, DMSO-d6) δ (ppm) = 18.02, 20.79, 118.00, 
118.10, 119.21, 127.29, 127.43, 127.78, 130.30, 131.89, 
131.99, 135.09, 136.79, 136.97, 143.96, 156.09, 159.85.

N-(2-chlorophenyl)-2-((2-oxo-2H-chromene)-6-sulfon-
amido)thiazole-4-sulfonamide (7c2): Color = Light Cream; 
m.p = 169–171 °C; Yield = 74%; Rf = 0.53 (60% ethyl ace-
tate, 40% n-hexane); IR (KBr,  cm−1) = 3241 (N–H), 1731 
(CO), 1162, 1343  (SO2); 1H NMR (400 MHz, DMSO) δ 
(ppm) = 6.62  (1Harom, d, J = 9.6 Hz), 7.26  (3Harom, m), 7.42 
 (1Harom, m), 7.60  (1Harom, d, J = 2.0 Hz), 7.91  (1Harom, dd, 
J = 2.0 Hz), 8.14  (1Harom, d, J = 2.4 Hz), 8.19  (1Harom, d, 
J = 10 Hz), 10.19  (2HN-H, s). 13C NMR (100 MHz, DMSO-
d6) δ (ppm) = 118.12, 118.20, 119.32, 127.99, 128.35, 
128.49, 129.92, 129.98, 130.34, 130.47, 133.57, 133.68, 
136.79, 136.89, 143.98, 156.35, 159.63.

General procedure for the synthesis 
of coumarin‑3‑carbonyl chloride (8)

Coumarin-3-carboxylic acid (1 mmol) and thionyl chloride 
(1.2 mmol) were refluxed for 12 h. The progress of the reac-
tion was controled by TLC. After completion of the reaction, 
the excess of thionyl chloride was distilled and the product 
was obtained as yellow light solid that was used in the next 
step.

General procedure for the synthesis of coumarin 
sulfonamides (9a1‑6)

A mixture of amino sulfonamid  (5a1–6) (1 mmol), coumarin 
carbonyl chloride (1 mmol, 0.208 g) and  NaHCO3 (1 mmol), 
was triturated in mortar at room tempreture under solvent-
free conditions. The reaction was controled by TLC. After 
completion of the reaction, water (25 ml) was added and the 
mixture was stired for 5 min. The precipitate was filtered 
and dried. Coumarin sulfonamides  (8a1–6) were obtained 
in 80–95% yield and elucidated by IR and 1H-NMR and 
13C-NMR.

Spectral data of the synthesized coumarin sulfonamides 
 (9a1–6)

N-(3-(N-(2,4-dimethylphenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 1 ) : 
m.p = 270–274 °C; Yield = 95%; Rf = 0.33 (70% ethyl ace-
tate, 30% n hexane); IR (KBr,  cm−1) = 3374, 3268 (N–H), 
1710,1664 (C = O), 1336, 1161  (SO2); 1H NMR (400 MHz, 
DMSO-d6) δ (ppm) = 2.12 (s, 3  HCH3), 2.16 (s,  3HCH3), 3.90 
(s,  3HOMe), 6.8 (s, 2H), 6.9 (s, 1H), 7.26 (d, 1H, J = 9.2 Hz), 

7.44 (t, 1H, J = 7.2 Hz), 7.52 (d, 1H, J = 8.0 Hz), 7.89 (d, 1H, 
J = 8.8 Hz), 7.95 (d, 1H, J = 7.6 Hz), 8.03 (s, 1H), 8.81 (s, 
1H), 9.20 (s,  1HN-H), 10.57 (s,  1HN-H); 13C NMR (100 MHz, 
DMSO-d6) δ (ppm) = 17.9, 20.8, 56.6, 113.6, 116.7, 118.8, 
120.6, 121.7,125.7, 126.4, 126.9, 127.2, 128.5, 130.6, 10.8, 
131.6, 132.7, 134.6, 134.7, 136.0, 147.5, 153.2, 154.3, 
160.3, 160.4.

N-(3-(N-(4-methylphenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 2 ) : 
m.p = 265–270 °C; Yield = 90%; Rf = 0.36 (70% ethyl ace-
tate, 30% n-hexane); IR (KBr,  cm−1) = 3262 (N–H), 1707, 
1666 (C = O), 1327, 1149  (SO2); 1H NMR (400  MHz, 
DMSO-d6) δ (ppm) = 2.14 (s,  3HCH3), 3.89 (s,  3HOMe), 7.0 
(s, 1H), 7.17 (d, 1H, J = 9.2 Hz), 7.45 (p, 1H, J = 7.6 Hz), 
7.53 (d, 1H, J = 8.4 Hz), 7.76 (p, 1H, J = 8.0 Hz), 7.8 (dd, 
1H, J1 = 8.8 Hz, J2 = 2.8 Hz), 7.9 (dd, 1H, J1 = 7.8 Hz, 
J2 = 1.2 Hz), 8.2 (d, 1H, J = 2.8 Hz), 8.85 (s, 1H), 9.85 (s, 
 1HN-H), 10.60 Hz (s,  1HN-H); 13C NMR (100 MHz, DMSO-
d6) δ (ppm) = 20.7, 56.7, 113.7, 116.7, 118.8, 120.4, 120.6, 
120.8, 122.4, 125.7, 126.8, 129.8, 130.6, 130.9, 133.5, 
147.6, 153.2, 154.3, 160.4, 160.4.

N-(3-(N-(3-chlorophenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 3 ) : 
m.p = 257–262 °C; Yield = 83%; Rf = 0.38 (70% ethyl ace-
tate, 30% n-hexane); IR (KBr,  cm−1) = 3247 (N–H), 1715, 
1665 (C = O), 1324, 1156  (SO2); 1H NMR (400  MHz, 
DMSO-d6) δ (pm) = 3.86 (s,  3HOCH3), 7.0 (d, 1H, J = 7.6 Hz), 
7.08 (d, 1H, J = 8.0 Hz), 7.15–7.25 (m, 3H), 7.45 (t, 1H, 
J = 7.6 Hz), 7.52 (d, 1H, J = 8.4 Hz), 7.76 (t, 1H, J = 7.6 Hz), 
7.83 (d, 1H, J = 7.2 Hz), 7.97 (d, 1H, J = 7.6 Hz), 8.32 (s, 
1H), 8.87 (s, 1H), 10.37 (s,  1HN-H), 10.64 (s,  1HN-H); 13C 
NMR (100 MHz, DMSO-d6) δ (ppm) = 56.81, 113.95, 116.7, 
118.0, 118.8, 119.2, 120.4, 122.3, 123.8, 125.7, 126.5, 
127.2, 130.7, 131.2, 133.6, 134.7, 139.8, 147.7, 153.2, 
154.3, 160.4, 160.4.

N-(3-(N-(2-methylphenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 4 ) : 
m.p = 250–255 °C; Yield = 94%; Rf = 0.32 (70% ethyl ace-
tate, 30% n-hexane); IR (KBr,  cm−1) = 3305, 3245 (N–H), 
1711, 1661 (C = O), 1340, 1161  (SO2); 1H NMR (400 MHz, 
DMSO-d6) δ (ppm) = 3.67 (s,  3HMe), 3.90 (s,  3HOMe), 6.8 
(t, 1H, J = 7.2 Hz), 6.93 (d, 1H, J = 8.0 Hz), 7.05 (t, 1H, 
J = 7.6 Hz), 7.3 (dd, 2H, J1 = 9.2 Hz, J2 = 8.0 Hz), 7.4 (t,1H, 
J = 7.2 Hz), 7.5 (d, 1H, J = 8.4 Hz), 7.77 (t, 1H, J = 7.6 Hz), 
7.8 (d,  1H, J = 8.8 Hz), 7.9 (d, 1H, J = 7.6 Hz), 8.1 (s, 1H), 
8.63 (s,  1HN-H), 8.84 (s,  1HN-H); 13C NMR (100  MHz, 
DMSO-d6) δ (ppm) = 56.2, 56.8, 112.0, 113.5, 116.7, 118.8, 
120.5, 120.9, 121.7, 123.5, 125.7, 126.0, 126.3, 126.7, 
127.6, 130.6, 130.7, 134.7, 147.6, 151.6, 153.4, 154.3, 
160.4, 160.4.

N-(3-(N-(4-chlorophenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 5 ) : 
m.p = 265–270  °C; Yield = 80%; Rf = 0.34 (70% ethyl 
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acetate, 30% n-hexane); IR (KBr,  cm−1) = 3327, 3268 
(N–H), 1709, 1664 (C = O), 1342, 1161  (SO2); 1H NMR 
(400 MHz, DMSO-d6) δ (ppm) = 3.87 (s,  3HOCH3), 7.19 (d, 
1H, J = 9.2 Hz), 7.20 (dd, 4H, J1 = 58.08 Hz, J2 = 9.4 Hz), 
7.46 (p, 1H, J = 7.6 Hz), 7.53 (d, 1H, J = 8.4 Hz), 7.76 (p, 
1H, J = 8.0 Hz), 7.83 (dd, 1H, J1 = 8.8 Hz, J2 = 2.8 Hz), 7.9 
(dd, 1H, J1 = 7.8 Hz, J2 = 1.6 Hz), 8.27 (d, 1H, J = 2.8 Hz), 
8.87 (s, 1H), 10.23 (s,  1HN-H), 10.63 (s,  1HN-H); 13C NMR 
(100 MHz, DMSO-d6) δ (ppm) = 56.8, 113.8, 116.7, 118.8, 
120.4, 121.5, 122.4, 125.7, 126.5, 127.1, 128.2, 129.4, 
130.7, 131.0, 134.7, 137.2, 147.7, 153.2, 154.34, 160.44, 
160.5.

N-(3-(N-(4-bromophenyl)sulfamoyl)-4-methoxyphenyl)-
2 - o x o - 2 H - c h r o m e n e - 3 - c a r b o x a m i d e  ( 9 a 6 ) : 
m.p = 261–265  °C; Yield = 82%; Rf = 0.36 (70% ethyl 
acetate, 30% n-hexane); IR (KBr,  cm−1) = 3322 (N–H), 
1709, 1663(C = O), 1333, 1160  (SO2); 1H NMR (400 MHz, 
DMSO-d6) δ (ppm) = 3.41 (s,  3HOCH3), 7.24 (dd, 4H, 
J1 = 128.8 Hz, J2 = 1.6 Hz), 7.18 (d, 1H, J = 9.2 Hz), 7.45 
(t, 1H, J = 7.2 Hz), 7.5 (d, 1H, J = 8.0 Hz), 7.76 (p, 1H, 
J = 8.0 Hz), 7.82 (dd, 1H, J1 = 8.8 Hz, J2 = 2.8 Hz), 7.97 
(dd, 1H,, J1 = 8.0 Hz, J2 = 1.2 Hz), 8.28 (d, 1H, J = 2.8 Hz), 
8.87 (s, 1H), 10.25 (s,  1HN-H), 10.64 (s,  1HN-H); 13C NMR 
(100 MHz, DMSO-d6) δ (ppm) = 56.8, 113.8, 116.2, 116.2, 
116.7, 118.8, 120.3, 121.8, 122.4, 125.7, 126.4, 127.1, 
130.7, 131.0, 132.3, 134.7, 137.6, 147.7, 153.1, 154.3, 
160.4, 160.5.
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