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Multicomponent cyclocondensation of hydrazine derivatives, ethyl acetoacetate, aromatic aldehydes, and 4-hydroxycoumarin has
been reported.&e optimization details of the developed novel protocol are recorded.&e novel procedure features short reaction
time, moderate yields, and simple workup. In addition, BMIM[triflate] was chosen as a green solvent. &e structures of the
obtained benzylpyrazolyl coumarins were determined and confirmed by 1H NMR, 13C NMR, IR, and elemental analysis. &eMIC
values of benzylpyrazolyl coumarin derivatives were determined by the microbroth dilution method using 96-well plates.
However, the derivatives 5a, 5b, 5d, and 5g possess the strongest activities. Compound 5b was the most active derivative against
Candida albicans. Moreover, the antioxidant activity determination of these coumarins derivatives 5(a–g)–6(a–g) were studied
with the DPPH and compared with gallic acid (GA)and butylated hydroxytoluene (BHT). Molecular modelling studies using DFT
(density functional theory) calculations showed that there two tautomers A and B in which A is more stable than B. &e
benzylpyrazolyl coumarin derivatives 5e and 6f exhibited the most cytotoxic effect on the promising cytotoxic activity with IC50
values 4.45 μg/mL against MDA-MB-231 and 4.85 μg/mL against MCF7, respectively.

1. Introduction

Coumarin scaffolds are commonly bioactive compounds
[1–23]. Pyrazolone derivatives also exhibit a broad spectrum
of biological activities [24–26] and are also important
structural moieties in many drug substances of medicinal
applications [22, 27, 28], such as phenazone, propyphena-
zone, ampyrone, and metamizole sodium (Figure 1).

Multicomponent reactions convert three or more
starting materials in one pot to a highly functionalized
product displaying maximum molecular diversity [29–35].

At present, ionic liquids (ILs) are playing a more and more
important role in organic synthesis as green catalysts and

solvents. Compared with traditional catalysts, these ionic liq-
uids have shown special advantages and potential due to their
ideal catalytic performance and the unusual characteristics.

Here, we report the synthesis of pyrazolone-linked
coumarin derivatives which were obtained via the four-
component domino reaction of 4-hydroxycoumarin, hy-
drazine derivatives, ethyl acetoacetate, and arylaldehydes;
then, the structures of these new coumarin derivatives were
characterized by spectroscopic methods (1H and 13C NMR,
FT-IR, and elemental analysis). In addition, the benzyl-
pyrazolyl coumarin derivatives were tested for their anti-
microbial and antioxidant activities, which have not been
studied in the past.
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2. Results and Discussion

&e cyclocondensation of hydrazine derivatives, ethyl ace-
toacetate, and arylaldehydes with 4-hydroxycoumarins to
generate benzylpyrazolyl coumarin derivatives was in-
vestigated under a variety of conditions (solvents, reaction
time, temperature, and catalysts) (Scheme 1).

Initially, for examination of the catalytic activity, dif-
ferent catalysts such as TFA, HCOOH, Cu(OAc)2, ZnO, and
glacial acetic acid were selected. &en, a model study was
carried out by the condensation reaction of hydrazine
derivatives, ethyl acetoacetate, aromatic aldehydes, and 4-
hydroxycoumarin under conventional conditions at dif-
ferent temperatures in the presence of each catalyst, sep-
arately. &e corresponding results are summarized in
Table 1.

Several catalysts were tested to check their effects such as
TFA, HCOOH, Cu(OAc)2, ZnO, and glacial acetic acid
(Table 1, entries 10–15). &e obtained results indicated that
glacial AcOH is the best catalyst for this reaction. &en,
several amounts of this catalyst were evaluated: It was found
that 5mol% of the catalyst gave 65% of yield. When we
increased the amounts of the catalyst to 10mol%, 15mol%,
and 20mol%, the yields were also found to be increased up to
95%, 94%, and 85%, respectively. After 20mol%, there is no
significant improvement of the yield of the reaction; con-
sequently, 10mol% of the catalyst was chosen as the max-
imum quantity of the catalyst for the reaction. &e reaction
was also performed at different reaction times, and the
obtained results showed that the best reaction time was
30min (Table 1, entries 1 and 15–17). Based on all of these
experiments, the optimum reaction conditions were iden-
tified as [BMIM][CF3SO3] for 30min using 10mmol% of
glacial acetic acid. &e reaction was then carried out with
different series of substituted aromatic aldehydes in order to
check the limitations of this methodology. &e results are
summarized in Table 2.

&e aromatic aldehydes carrying both electron-with-
drawing and electron-donating functional groups (Table 2,
entries 2–7) underwent successful condensation with ethyl
acetoacetate and hydrazines derivatives. &e structures of
compound 5 were confirmed from their spectroscopic data
including 1HNMR, 13CNMR spectra, and elemental analysis.

In the 1H NMR of compound 5c, two characteristic
singlets at 3.34 and 3.55 ppm were assigned to the methyl
protons (a) and (b, d), whereas the proton Hc appears as a

singlet at about 4.17 ppm in accordance with the literature
data for other 4-hydroxycoumarin derivatives [36, 37]. 13C
NMR showed the C2′ signal at δ � 168.06 ppm, the C4 signal
had a chemical shift of δ � 164.90 ppm, while the C2, C3, Ca,
Cc, Cb,d, C1, and C5 signals were assigned at δ � 162.87,
103.59, 13.66, 36.34, 40.01, 128.53, and 152.9 ppm,
respectively.

&e compound 5 thus obtained can exist in the form of
two tautomers A and B. &eoretical calculations with the
Gaussian program 09 carried out with the DFT (density
functional theory) level with the base 6-31G+ (d) and the
functional B3LYP confirm the stability of the structure A
with respect to that of B (ΔE� 2 kcal). Optimized geometries
for compounds A and B are shown in Figure 2.

Encouraged by the obtained results, we tried to ex-
trapolate our method to the condensation with hydrazine.
&e reaction seemed to be tolerant with different aromatic
aldehydes. Overall, yields in the range of 75%–95% were
obtained (Table 3).

&e structure of the benzylpyrazolyl coumarin 6 de-
rivatives has been confirmed by their spectroscopic data, and
their melting points are compared with literature reports.
&e presence of signal at 3425 cm−1 in IR spectra was
assigned to NH.

3. Antimicrobial Activity

&e in vitro antimicrobial activity of the novel benzylpyr-
azolyl coumarin derivatives 5(a–g)–6(a–g) were evaluated
for in vitro antimicrobial activity by the well diffusion
method. All products were screened for activity against
Gram-positive bacteria (Micrococcus luteus, Listeria mono-
cytogenes, and Staphylococcus aureus), Gram-negative bac-
teria (Pseudomonas aeruginosa and Escherichia coli), and
fungi (Candida albicans). &e minimum inhibitory con-
centrations (MICs) were determined and are given in
Table 4.

As can be seen, most of the benzylpyrazolyl coumarin
derivatives exhibit considerable activity against the tested
microorganisms. &e results obtained by these tests showed
that our different molecules have antimicrobial activity. In
fact, regarding the activity against Gram-negative bacteria
(Pseudomonas aeruginosa), 5a showed excellent activity and
compounds 5b–5g showed good activity. On the contrary,
compound 5b was the most active against Candida albicans.
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Figure 1: Structures of (D) phenazone, (E) propyphenazone, (F) ampyrone, and (G) metamizole.
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In addition, we evaluated the antimicrobial activity of
four synthetic products (5a, 5b, 5d, and 5g) possessing
the strongest activities against two Gram-positive bacteria
(S. aureus) and Gram-negative bacteria (P. aeruginosa)
against a fungus (Candida albicans) by the determination
of the MIC in a liquid medium.

We determined the MIC values of the products tested
against two bacteria and a fungus. �en, the minimal

inhibitory concentration (MIC) values of benzylpyrazolyl
coumarin derivatives were determined against Staphylo-
coccus aureus ATCC 6538, Pseudomonas aeruginosa ATCC
49189, and Candida albicans. �e obtained results are given
in Table 5.

We have noticed that the compounds 6a, 6b, and 6g are
very active by comparing with ampicillin used as a control
antibiotic against the strain Staphylococcus aureus. �ese
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Scheme 1: Synthesis of benzylpyrazolyl coumarin derivatives 5(a–g)–6(a–g).

Table 1: Optimization of the conditions’ reaction using di�erent solvents.
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Entry Catalysts (mmol%) Solvent Time (h) Temperature (°C) Yielda,b,c (%)
1 No ([BMIM][CF3SO3]) 24 210 —
2 No DMC 24 90 —
3 No H2O 24 100 —
4 No EtOH 24 78 —
5 No CH3CN 24 82 —
6 No THF 24 66 —
7 No CH2Cl2 24 40 —
8 No Toluene 24 110 —
9 No Glacial AcOH 24 119 —
10 TFA (10) ([BMIM][CF3SO3]) 24 210 40
11 HCOOH (10) ([BMIM][CF3SO3]) 24 210 45
12 Cu(OAc)2 (10) ([BMIM][CF3SO3]) 24 210 —
13 ZnO (10) ([BMIM][CF3SO3]) 24 210 Trace
14 Gl. AcOH (5) ([BMIM][CF3SO3]) 24 210 65
15 Gl. AcOH (10) ([BMIM][CF3SO3]) 24 210 95
16 Gl. AcOH (15) ([BMIM][CF3SO3]) 24 210 94
17 Gl. AcOH (20) ([BMIM][CF3SO3]) 24 210 85
18 Gl. AcOH (10) ([BMIM][CF3SO3]) 30min 210 95
19 Gl. AcOH (10) ([BMIM][CF3SO3]) 40min 210 85
20 Gl. AcOH (10) ([BMIM][CF3SO3]) 1 210 76
21 Gl. AcOH (10) ([BMIM][CF3SO3]) 1 : 5 h 210 72
22 Gl. AcOH (10) ([BMIM][CF3SO3]) 2 210 75
aAll reactions were carried with hydrazine (0.005mol), ethyl acetoacetate (0.005mol), benzaldehyde (0.005mol), and 4-hydroxycoumarin (0.005mol). bYield
of the isolated product. c�e reaction failed to provide a product. [BMIM][CF3SO3], 1-butyl-3-methylimidazolium tri¡uoromethanesulfonate.
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same results showed that the compounds 6a and 5a are very
active against the fungus Candida albicans by comparing
with a standard antifungal “fluconazole.”

4. Antioxidant Activities

&e scavenging activity of the synthesized benzylpyrazolyl
coumarin derivatives 5 with DPPH (1,1-diphenyl-2-pic-
rylhydrazyl) was investigated (Figure 3).

&e analysis of the results showed that the profiles of the
antiradical activity obtained reveal that the synthetic
products tested compound 5 have a very important anti-
radical activity. For a used concentration (0.0625mg/ml),

the product 5e has a radical activity lower than gallic acid
and BHT (butylated hydroxytoluene). Of the same way, the
compound 5b for a concentration equal to 0.01575mg/ml
has a lower radical activity than gallic acid and BHT (bu-
tylated hydroxytoluene). At a concentration of 1mg/ml,
these products revealed a very interesting activity of DPPH
in comparison with the activity of the synthetic antioxidants
used.

5. Conclusion

In this study, the synthesis of pyrazolone-linked coumarin
derivatives through a four-component, one-pot

Table 2: Chemical yields and physical properties of coumarins derivatives 5a–5g.
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Entry R Compoundb Yielda (%) Melting
point (°C)

1 H 5a 60 204
2 p-CH3 5b 70 221
3 p-N(CH3)2 5c 75 176
4 p-NO2 5d 80 138
5 m-Br 5e 75 242
6 m-OCH3 5f 85 138
7 m-OH 5g 90 174
aAll reactions were carried with hydrazine (0.005mol), ethyl acetoacetate (0.005mol), benzaldehyde (0.005mol), and 4-hydroxycoumarin (0.005mol). bYield
of the isolated product. [BMIM][CF3SO3], 1-butyl-3-methylimidazolium trifluoromethanesulfonate.

(a) (b)

Figure 2: Optimized 3D geometrical structures for compounds (a) A and (b) B.
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condensation of ethyl acetoacetate, aromatic aldehydes,
hydrazines, and 4-hydroxycoumarin using ([BMIM]
[CF3SO3]) as a green solvent was described. In addition,
their structures were confirmed by elemental and spectral
analyses. &e antibacterial and antioxidant property of the
synthesized compounds were assessed against Gram-posi-
tive and Gram-negative bacteria. Some of the compounds
were very effective as antimicrobial agents.&e results of the
research were promising, and some of the synthesized
derivatives represent good candidates for MIC

determination during future studies. &is study further
presents benzylpyrazolyl coumarin derivatives as a new
class of antioxidant agents, and it may serve as a model
compound for design and development of therapeutic-
based anticancer inhibitors.

6. Experimental

6.1.General Information. All manipulations were performed
using Standard Schlenk techniques under the Argon

Table 3: Chemical yields and physical properties of coumarins derivatives 6a–6g.
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Entry R Compound Yield (%) Melting point (°C)
1 H 6a 95 120
2 p-CH3 6b 75 142
3 p-N(CH3)2 6c 80 160
4 p-NO2 6d 85 210
5 m-Br 6e 87 160
6 m-OCH3 6f 90 236
7 m-OH 6g 95 240

Table 4: Antibacterial activity of the prepared compounds 5(a–g)–6(a–g).

Compounds
Microorganisms

Micrococcus luteus
LB 14110

Listeria monocytogenes
ATCC 19117

Staphylococcus aureus
ATCC 6538

Pseudomonas aeruginosa
ATCC 49189 E. coli Candida

albicans
5a — — — 24± 0.1 — 25± 0.1
5b — 12± 0.2 16± 0.5 18± 0.4 — 26± 0.5
5c — — 20± 0.1 16± 0.1 — 20± 0.2
5d — — 12± 0.5 15± 0.1 — 18± 0.3
5e — 10± 0.2 12± 0.5 20± 0.6 — 20± 0.6
5f — 10± 0.2 14± 0.2 20± 0.3 — 22± 0.2
5g — — 14± 0.5 16± 0.4 — 18± 0.2
6a — — 15± 0.4 30± 0.1 — 28± 0.4
6b — — 15± 0.2 28± 0.2 — 28± 0.5
6c — 10± 0.2 14± 0.2 24± 0.12 — 20± 0.6
6d — — 15± 0.2 24± 0.3 — 26± 0.3
6e — — — 22± 0.5 — 12± 0.3
6f — — 14± 0.3 24± 0.4 15± 0.2 28± 0.1
6g 18± 0.3 16± 0.5 20± 0.2 22± 0.3 24± 0.3 28± 0.2

Table 5: Determination of the minimum inhibitory concentrations (MICs) expressed in mg/ml.

Microorganisms
Compounds

6a 6b 6g 5a Ampicillin Fluconazole
Staphylococcus aureus ATCC 6538 0.3125 0.3125 0.1562 0.625 0.04 —
Pseudomonas aeruginosa ATCC 49189 0.1562 0.3125 0.625 0.625 0.04 —
Candida albicans 0.00975 0.039 0.0781 0.00975 — 0.00125
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atmosphere. Chemicals were purchased from Sigma-Aldrich
and were used without further purification. All solvents were
purified and dried by the MBRAUN SPS 800 solvent pu-
rification system. 1H NMR and 13C NMR spectra were
recorded at 400MHz and 100MHz, respectively. Chemical
shifts, δ, are reported in ppm relative to the internal standard
TMS for both 1H and 13C NMR. &e products were char-
acterized by GC (gas chromatography). Quantitative GC

analyses were performed with the GC-2010 Plus gas chro-
matography (SHIMADZU). &e NMR studies were carried
out in high-quality 5mm NMR tubes. Signals are quoted in
parts per million as δ downfield from tetramethylsilane
(δ � 0.00) as an internal standard. NMR multiplicities are
abbreviated as follows: s� singlet, d� doublet, t� triplet, and
m�multiplet signals. IR spectra were recorded on a 398
spectrophotometer.

Concentration (mg/mL)

In
hi

bi
tio

n 
(%

)

0
10
20
30
40
50
60
70
80
90

100

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5 1

5a
Gallic acid
BHT

(a)

Concentration (mg/mL)

In
hi

bi
tio

n 
(%

)

0
10
20
30
40
50
60
70
80
90

100

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5 1

5b
Gallic acid
BHT

(b)

1

Concentration (mg/mL)

In
hi

bi
tio

n 
(%

)

0
10
20
30
40
50
60
70
80
90

100

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5

5d
Gallic acid
BHT

(c)

Concentration (mg/mL)

In
hi

bi
tio

n 
(%

)

0
10
20
30
40
50
60
70
80
90

100

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5 1

5e
Gallic acid
BHT

(d)

0
20
40
60
80

100
120

In
hi

bi
tio

n 
(%

)

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5 1

Concentration (mg/mL)

5f
Gallic acid
BHT

(e)

BHT

0.
00

78
5

0.
01

57
5

0.
03

12
5

0.
06

25

0.
12

5

0.
25 0.

5 1

0
10
20
30
40
50
60
70
80
90

100

In
hi

bi
tio

n 
(%

)

Concentration (mg/mL)

5g
Gallic acid

(f )

Figure 3: Scavenging activity of benzylpyrazolyl coumarin derivatives 5 on DPPH radicals.
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Elemental microanalysis was performed on an Ele-
mentar Vario El III Carlo Erba 1108 elemental analyzer, and
the values found were within ±0.4% of the theoretical values.
Melting points were determined with the Kofler bench. &e
biological analysis was done regarding our previous work
[36, 37].

6.2. General Procedure for the Synthesis of Coumarin De-
rivatives 5(a–g)–6(a–g). A mixture of hydrazine (5mmol,
0.157mL) or phenylhydrazine 1 (5mmol, 0.491mL), ethyl
acetoacetate 2 (5mmol, 0.6mL), aromatic aldehyde 3
(benzaldehyde (5mmol, 0.510mL), para tolyl benzaldehyde
(5mmol, 0.589mL), 4-(dimethylamino)benzaldehyde
(5mmol, 0.745 g), 4-nitrobenzaldehyde (5mmol, 0.755 g), 3-
bromobenzaldehyde (5mmol, 0.582mL), m-anisaldehyde
(5mmol, 0.609mL), 3-hydroxybenzaldehyde (5mmol,
0.610 g)), 4-hydroxycoumarin 4 (5mmol, 0.810 g), and
glacial acetic acid (10mmol%, 0.02mL) in 5ml of ionic
liquid [BMIM][CF3SO3] was stirred at 210°C. After com-
pletion of the reaction (indicated by TLC), the reaction
mixture was then cooled to the room temperature to give a
precipitate, and the free-flowing solid was filtered and
washed with water. &e precipitated crude product was
purified by recrystallization from hot ethanol. &e isolated
compounds were well characterized by IR, 1H NMR, 13C
NMR, and elemental analysis.

6.2.1. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-
yl)(phenyl)methyl)-5-methyl-l-2-phenylpyrazol-3-one (5a).
Yield: 1.72 g (60%); m.p. 204°C–206°C; 1H NMR (DMSO-d6,
400MHz): δ 2.42 (s, 3H, Ha), 5.74 (s, 1H, H4′), 6.38 (s, 1H,
Hc), 7.21 (s, 1H, H9′), 7.31 (m, 2H, H2”,6″), 7.35 (m, 3H,
H3″,4″,5″), 7.43 (d, 2H, H6,8), 7.51 (m, 2H, H8′,10′), 7.62 (m,
2H, H7′,11′), 7.87 (d, 1H, H7), 7.89 (d, 1H, H5); 13C NMR
(DMSO-d6, 100MHz,): δ 34.14 (Ca), 39.60 (Cc), 104.46 (C3),
105.95 (C1′), 107.18 (C8), 116.36 (C7′), 118.50 (C11′), 121.29
(C9′), 124.31 (C5), 126.48 (C6), 127.26 (C4″), 128.68 (C2″),
129.73 (C3″), 132.42 (C7), 135.59 (C8′), 139.93 (C10′), 147.44
(C6′), 152.45 (C1″), 162.69 (C10), 163.98 (C2), 164.74 (C4),
165.31 (C2′); Anal. Calc. C26H20N2O4: C, 73.573%; H,
4.749%; N, 6.600%; Found: C, 73.9; H, 4.5; N, 6.8%.

6.2.2. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-
yl)-(p-tolyl)methyl)-5-methyl-2-phenylpyrazol-3-one (5b).
Yield: 1.53 g (70%); m.p. 221°C–223°C; IR (cm−1) 3585 (O-
H), 3425 (NH), 1542 (C�C), 1715 (CO lactone), 1742 (CO
ketone); δ 2.24 (s, 3H, Ha), 2.40 (s, 3H, Hb), 3.17 (s, 1H, H4′),
5.67 (s, 1H, Hc), 7.01 (s, 2H, H3″,5″), 7.06 (s, 2H, H2″,6″), 7.30
(m, 3H, H6,8′,10′), 7.52 (t, 1H, H8), 7.58 (m, 2H, H7′,9′), 7.68
(d, 1H, H11′), 7.79 (dd, 1H, H7), 7.86 (dd, 1H, H5); 13C NMR
(DMSO-d6, 100MHz): δ 20.91 (Cb), 33.81 (Ca), 39.72 (Cc),
104.73 (C3), 106.16 (C1′), 107.3 (C8), 116.3 (C11′), 121.19
(C9′), 124.25 (C5), 127.16 (C6), 129.24 (C7), 129.70 (C3″),
132.29 (C2″), 135.39 (C8′), 136.80 (C4″), 147.39 (C1″), 152.42
(C6′), 162.74 (C5′), 163.84 (C10), 164.70 (C2), 165.33 (C4),
165.72 (C2′); Anal. Calc. for C27H22N2O4: C, 73.9%; H, 5.0%;
N, 6.3%; Found: C, 73.5; H, 6.1; N, 6.2%.

6.2.3. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)-(p-
N,N-dimethyl phenyl)methyl)-5-methyl-2-phenylpyrazol-3-one
(5c). Yield: 75 g (75%); m.p. 176°C–178°C; IR (cm−1) 3585
(O-H), 3425 (NH), 1542 (C�C), 1715 (CO lactone), 1745
(CO amide); 1H NMR (DMSO-d6, 400MHz): δ 3.34 (s, 3H,
Ha), 3.55 (s, 6H, Hb,d), 4.17 (s, 1H, Hc), 7.32 (s, 1H, H3″), 7.88
(d, 1H, H5″), 8.20 (t, 2H, H2″,6″), 8.33 (m, 2H, H6,8), 8.46 (t,
1H, H9′), 8.56 (t, 2H, H8′,10′), 8.62 (s, 2H, H7′,11′), 8.86 (dd,
1H, H7), 9.00 (dd, 1H, H5), 9.68 (s, 1H, H4); 13C NMR
(DMSO-d6, 100MHz): δ 36.34 (Ca), 39.59 (Cb,), 103.59 (C3),
111.80 (C1′), 116.0 (C2″), 118.58 (C8), 120.2 (C7′), 121.68
(C9′), 123.42 (C5), 124.56 (C6), 128.53 (C3″), 129.15 (C5″),
131.53 (C7), 137.89 (C8′), 139.36 (C1″), 148.61 (C6′), 152.0
(C4″), 152.99 (C5′), 154.28 (C10), 162.87 (C2), 164.90 (C4),
168.06 (C2′); Anal. Calc. for C28H25N3O4: C, 71.93%; H,
5.39%; N, 8.9%; Found: C, 71.7%; H, 5.4%; N, 8.7%.

6.2.4. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)-
(4-nitrophenyl)methyl)-5-methyl-2-phenylpyrazol-3-one (5d).
Yield: 1.87 g (80%); m.p. 138°C–140°C. IR (cm−1) 3585 (O-
H), 3425 (NH), 1540 (C�C), 1715 (CO lactone), 1742 (CO
amide); 1H NMR (DMSO-d6, 400MHz): δ 1.06 (s, 3H, Ha),
3.44 (s, 1H, H4′), 6.35 (s, 1H, Hc), 6.84 (s, 1H, H9′), 7.16 (d,
2H, H6,8), 7.27 (m, 1H, H8′), 7.37 (m, 1H, H10′), 7.53 (m, 1H,
H2″), 7.69 (d, 1H, H6″), 7.82 (d, 1H, H7′), 7.89 (d, 1H, H11′),
7.94 (s, 1H, H7), 8.05 (d, 1H, H5), 8.13 (d, 1H, H3″), 8.22 (m,
1H, H5″), 10.89 (s, 1H, H4); 13C NMR δ (DMSO-d6,
100MHz): δ 34.87 (Ca), 39.82 (Cc), 103.60 (C3), 105.00 (C1′),
106.78 (C8), 113.03 (C7′), 116.22 (C11′), 120.37 (C9′), 121.46
(C5), 124.48 (C7), 126.43 (C3″), 129.67 (C6), 134.05 (C2″),
143.07 (C6″), 144.90 (C7), 146.44 (C8′), 147.30 (C10′), 148.46
(C6′), 151.05 (C4″), 152.55 (C5′), 152.95 (C10), 162.24 (C2),
164.89 (C4), 167.42 (C2′); Anal. Calc. for C26H19N3O6: C,
66.5%; H, 4.0%, N, 8.9%; Found C, 66.4%; H, 4.2%; N, 8.8%.

6.2.5. 4-((3-Bromo-phenyl)-(4-hydroxy-2-oxo-2H-chromen-3-
yl)methyl)-5-methyl-1,2-dihydro-5-methyl-2-phenylpyrazol-3-
one (5e). Yield: 88 g (75%); m.p. 242°C–244°C. 1H NMR
(DMSO-d6, 400MHz): δ 240 (s, 3H, Ha), 3.43 (s, 1H, H4′),
5.71 (s, 1H, Hc), 7.22–7.80 (m, 13H, Harom); 13C NMR δ
(DMSO-d6, 100MHz): δ 34.03 (Ca), 39.72 (Cc), 105.10 (C3),
106.75 (C1′), 116.41 (C8), 121.38 (C7′), 122.14 (C9′), 124.35
(C6), 126.62 (C6″), 127.24 (C7), 129.75 (C8′), 130.86 (C5″),
132.52 (C2″), 135.59 (C6′), 143.16 (C1″), 147.38 (C5′), 152.50
(C10), 162.12 (C2), 164.61 (C4), 166.12 (C2′); Anal. Calc. for
C26H19BrN2O4: C, 62.04%; H, 3.805%; N, 5.565%; Found: C,
62.1; H, 3.9; N, 5.6%.

6.2.6. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(3-
methoxyphenyl)methyl)-5-methyl-2-phenylpyrazol-3-one (5f).
Yield: 1.92 g (85%); m.p. 138°C–140°C: 1H NMR (DMSO-d6,
400MHz): δ 2.39 (s, 3H, Ha), 3.66 (s, 3H, Hb), 5.68 (s, 1H,
Hc), 6.71 (s, 1H, H4′), 6.78 (d, 2H, H2″,6″), 7.26 (m, 5H,
H6,8,9′,5″,4″), 7.51 (m, 2H, H8′,10′), 7.59 (t, 1H, H7), 7.71 (d,
2H, H7′,11′), 7.83 (t, 1H, H5); 13C NMR δ (DMSO-d6,
100MHz): δ 33.66 (Ca), 39.86 (Cc), 54.83 (Cb), 105.21 (C3),
106.43 (C1′), 110.42 (C4″), 113.48 (C2″), 115.85 (C8), 118.19
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(C6″), 119.23 (C7′), 120.75 (C9′), 123.76 (C5), 126.55 (C6),
129.71 (C7), 131.86 (C8′), 135.35 (C5″), 141.42 (C6′), 146.94
(C1″), 151.98 (C10,), 159.20 (C3″), 161.76 (C2), 163.83 (C4),
164.25 (C2′); IR (cm−1) 3588 (O-H), 3425 (NH), 1542 (C�C),
1715 (CO lactone), 1742 (CO amide); Anal. Calc. for
C27H22N2O5: C, 71.3%; H, 4.8%; N, 6.1%; Found: C, 71.5; H,
5.1; N, 5.8%.

6.2.7. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)-(3-
hydroxyphenyl)methyl)-5-methyl-2-phenylpyrazol-3-one (5g).
Yield: 1.98 g (90%); m.p. 174°C–176°C; IR (cm−1) 3585 (O-
H), 3425 (NH), 1535 (C�C), 1710 (CO lactone), 1745 (CO
amide); 1H NMR (DMSO-d6, 400MHz): δ 22.41 (s, 3H, Ha),
3.44 (s, 1H, H4′), 5.66 (s, 1H, Hc); 6.57 (s, 1H, H9′), 6.76 (m,
2H, H4″,5″), 6.97 (d, 2H, H2″,6″), 7.30 (m, 2H, H6,8), 7.37 (m,
2H, H8′,10′), 7.68 (d, 2H, H7′,11′), 7.79 (d, 1H, H7), 7.84 (t, 1H,
H5);13C NMR (DMSO-d6, 100MHz): δ 33.61 (Ca), 39.56
(Cc), 33.61 (C3), 105.65 (C1′), 112.9 (C4″), 114.7 (C2″), 116.4
(C8), 120.3 (C6″), 121.1 (C7′), 122.8 (C9′), 123.3 (C5), 125.4
(C6), 130.1 (C5″), 137.3 (C6′), 143.7 (C1″), 152.3 (C5′), 157.35
(C3″), 162.7 (C2), 163.57 (C4), 164.34 (C2′); Anal. Calc. for
C26H20N2O5: C, 70.9%; H, 4.5%; N, 6.3%; Found: C, 71.8%,
H, 4.6%; N, 6.4%.

6.2.8. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)phe-
nyl)methyl)-5-methyl-pyrazol-3-one (6a). Yield: 95%; m.p.
120°C–122°C; IR (cm−1) 3589 (O-H), 3423 (NH), 1539
(C�C), 1705 (CO lactone), 1741 (CO amide); 1H NMR
(DMSO-d6, 400MHz): δ 2.50 (s, 3H, Ha), 6.32 (s, 1H, Hc),
7.14 (d, 3H, H3″,4″,5″), 7.18 (d, 2H, H2″,6″), 7.31 (m, 2H, H6,8),
7.56 (t, 2H, H5,7), 7.85 (d, 2H, H3′,4′); 13C NMR (DMSO-d6,
100MHz): δ 36.42 (Ca); 39.96 (Cc), 104.74 (C3), 116.51 (C1′),
117.99 (C8), 124.34 (C5), 126.19 (C6), 127.18 (C2″), 128.61
(C3″), 132.55 (C1″), 139.86 (C10), 152.62 (C2′), 165.31 (C2),
165.39 (C4); Anal. Calc. for C20H16N2O4: C, 68.9%; H, 4.6%;
N, 8.0%; Found: C, 68.9%, H, 4.6%; N, 8.0%.

6.2.9. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(p-
tolyl)methyl)-5-methyl-pyrazol-3-one (6b). Yield: 75%; m.p.
142°C–144°C; IR (cm−1) 3440 (O-H), 3423 (NH), 1539
(C�C), 1741 (CO lactone), 1797 (CO amide); 1H NMR
(DMSO-d6, 400MHz): δ 2.76 (s, 6H, Ha,b), 6.55 (s, 1H, Hc),
7.27 (s, 4H, H2′,3′,5′,6′), 7.59 (m, 4H, H5,6,7,8), 7.84 (t, 1H, H4′),
8.13 (d, 1H, H3′); 13C NMR (DMSO-d6, 100MHz): δ 20.53
(Ca); 35.61 (Cb); 39.52 (Cc); 104.44 (C3), 116.07 (C1′), 117.46
(C8), 123.85 (C5), 126.64 (C6), 128.78 (C2″), 132.11 (C1″),
134.69 (C4″), 136.10 (C10), 152.13 (C2′), 164.66 (C2), 164.94
(C4); Anal. Calc. for C21H18N2O4: C, 69.6%; H, 5.0%; N,
7.7%; Found: C, 69.9%, H, 5.0%; N, 7.7%.

6.2.10. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)-
(4-N,N-dimethylphenyl)methyl)-5-methyl-pyrazol-3-one (6c).
Yield: 80%; m.p. 160°C–162°C; IR (cm−1) 3584 (O-H), 3420
(NH), 1545 (C�C), 1715 (CO lactone), 1735 (CO amide), 1H
NMR (DMSO-d6, 400MHz): δ 3.03 (s, 3H, Ha), 3.11 (s, 6H,
Hb,d), 6.28 (s, 1H, Hc), 6.82 (s, 1H, H4′), 6.82 (s, 1H, H4′),
7.29(m, 4H,H2″,3″,5″,6″), 7.52 (t, 2H,H6,8), 7.71 (d, 1H,H7), 7.80

(d, 1H, H5), 8.56 (s, 1H, H3′); 13C NMR (DMSO-d6, 100MHz):
δ 26.91 (Ca), 36.38 (Cb), 45.69 (Cc), 103.56 (C3), 112.37 (C1″),
116.02 (C2″), 120.17 (C8), 123.45 (C5), 124.57 (C7), 128.59
(C1″), 131.57 (C4″), 152.99 (C10), 159.56 (C4′), 164.91 (C2),
168.07 (C4); Anal. Calc. for C22H21N3O4: C, 67.5%; H, 5.4%; N,
10.7%; Found: C, 67.5%, H, 5.4%; N, 10.7%.

6.2.11. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-
nitrophenyl)methyl)-5-methyl-pyrazol-3-one (6d). Yield: 85%;
m.p. 210°C–212°C; IR (cm−1) 3585 (O-H), 3425 (NH), 1545
(C�C), 1712 (CO lactone), 1745 (CO amide); 1H NMR
(DMSO-d6, 400MHz): δ 2.50 (s, 3H, Ha), 3.43 (s, 1H, H4′),
6.36 (s, 1H, Hc), 7.29 (m, 4H, H6,8,2″,6″), 7.39 (d, 1H, H7), 7.54
(t, 1H, H5), 7.82 (d, 2H, H3″,5″), 8.06 (d, 1H, HH3′); 13C NMR
(DMSO-d6, 100MHz): δ 37.20 (Ca), 40.00 (Cc), 103.46 (C3),
116.17 (C1′), 119.64 (C8), 123.70 (C5), 124.58 (C2″), 128.41
(C6), 131.91 (C4″), 145.86 (C1″), 151.35 (C10), 152.96 (C2′),
164.49 (C1′), 167.68 (C4); Anal. Calc. for C20H15N3O6: C,
61.0%; H, 3.8%; N, 10.6%; Found: C, 61.0%, H, 3.8%; N,
10.6%.

6.2.12. 4-((3-Bromo-phenyl)-(4-hydroxy-2-oxo-2H-chromen-
3-yl)methyl)-5-methyl-1,2-dihydro-5-methyl-pyrazol-3-one
(6e). Yield: 87%; m.p. 160°C–162°C; IR (cm−1) 3592 (O-H),
3425 (NH), 1543 (C�C), 1715 (CO lactone), 1745 (CO
amide); 1H NMR (DMSO-d6, 400MHz): δ 2.53 (s, 3H, Ha),
5.52 (s, 1H, H3′), 6.42 (s, 1H, Hc), 7.50(m, 4H, H6,8,5″,6″),
7.79(m, 3H, H7,2″,4″), 7.92(d, 1H, H5), 8.00 (d, 1H, H3′);
13C NMR (DMSO-d6, 100MHz): δ 22.30 (Ca), 40.01 (Cc),
91.46 (C3), 114.28 (C1′), 116.84 (C9), 117.1 (C8), 123.65
(C3″), 125.63 (C5), 128.73 (C6), 131.37 (C6″), 132.19 (C7),
153.07 (C2″), 153.98 (C1″), 156.13 (C10), 158.05 (C2′),
162.31 (C2), 166.0824 (C4); Anal. Calc. for C20H15N2O4Br:
C, 56.2%; H, 3.5%; N, 6.5%; Found: C, 56.2%, H, 3.5%; N,
6.5%.

6.2.13. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(3-
methoxyphenyl)methyl)-5-methyl-pyrazol-3-one (6f). Yield:
90%; m.p. 236°C–238°C; IR (cm−1) 3585 (O-H), 3425 (NH),
1535 (C�C), 1710 (CO lactone), 1735 (CO amide); δ 2.51 (s,
3H, Ha), 3.64 (s, 3H, Hb), 6.31 (s, 1H, Hc), 6.66 (d, 2H,
H4″,6″), 7.14 (t, 1H, H2″), 7.35 (m, 3H, H6,8,5″), 7.58 (t, 2H,
H5,7), 7.88 (d, 2H, H3′,4′); 13C NMR (DMSO-d6, 100MHz): δ
36.42 (Ca), 39.97 (Cc), 55.33 (Cb), 104.62 (C3), 110.74 (C1′),
113.73 (C2″), 116.46 (C8), 118.2 (C6″), 119.63 (C5), 124.27
(C6), 124.35 (C7), 129.57 (C5″), 132.43 (C1″), 141.96 (C10),
152.65 (C2′), 159.73 (C3′), 165.29 (C2), 165.60 (C4); Anal.
Calc. for C21H18N2O5: C, 66.6%; H, 4.7%; N, 7.4%; Found: C,
66.5%, H, 4.8%; N, 7.5%.

6.2.14. 1,2-Dihydro-4-((4-hydroxy-2-oxo-2H-chromen-3-
yl)(3-hydroxyphenyl)methyl)-5-methyl-pyrazol-3-one (6g).
Yield: 95%; m.p. 204°C–206°C; IR (cm−1) 3588 (O-H), 3425
(NH), 1545 (C�C), 1715 (CO lactone), 1742 (CO amide); δ
2.51 (s, 3H, Ha), 6.31 (s, 1H, Hc), 6.66 (d, 2H, H4″,6″), 7.14 (t,
1H, H2″), 7.35 (m, 3H, H6,8,5″), 7.58 (t, 2H, H5,7),7.88 (d, 2H,
H3′,4′); 13C NMR (DMSO-d6, 100MHz): δ 36.4 (Ca), 39.9
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(Cc), 104.6 (C3), 110.7 (C1′), 113.7 (C4″), 114.3 (C2″), 116.4
(C8), 120.3 (C6″), 123.7 (C5), 128.3 (C7), 152.1 (C5′), 156.9
(C3″), 157.3 (C2′), 165,2 (C2), 165,4 (C4); Anal. Calc. for
C20H16N2O5: C, 65.9%; H, 4.4%; N, 7.6%; Found: C, 65.9%,
H, 4.4%; N, 7.6%.
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