Accepted Manuscript

Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents

Yang Hu, Yufeng Shen, Xiao Tu, Xiaohu Wu, Gao-Xue Wang

PII: S0223-5234(17)31003-6

DOI: 10.1016/j.ejmech.2017.11.100

Reference: EJMECH 9975

To appear in: European Journal of Medicinal Chemistry

Received Date: 21 June 2017

Revised Date: 16 November 2017

Accepted Date: 29 November 2017

Please cite this article as: Y. Hu, Y. Shen, X. Tu, X. Wu, G.-X. Wang, Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents, *European Journal of Medicinal Chemistry* (2018), doi: 10.1016/j.ejmech.2017.11.100.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Synthesis and biological evaluation of coumarin derivatives
2	containing imidazole skeleton as potential antibacterial agents
3	Yang Hu ^a , Yufeng Shen ^a , Xiao Tu ^a , Xiaohu Wu ^a , Gao-Xue Wang ^{a,*}
4	^a College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling,
5	Shaanxi, 712100, China;
6	*Author to whom correspondence should be addressed; E-mail address: wanggaoxue@126.com;
7	Tel./Fax: +86-029-8709-2102.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

21

22 Abstract

23 Emergence of multidrug-resistant bacteria causes an urgent need for new generation of antibiotics, 24 which may have a different mechanism of inhibition or killing action from the existing. Here, we report 25 on the design, synthesis, and biological evaluation of thirty-nine coumarin derivatives in order to solve 26 the antibacterial resistance by targeting at the inhibition of biosynthesis pathway of fatty acids. Their 27 antibacterial activities against Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and 28 Flavobacterium cloumnare are tested and action mechanism against the key enzyme in bacterial fatty 29 acid synthesis pathway are studied. The results show that compounds 13 and 18 have potent and broad 30 spectrum antimicrobial activity. In addition, 9, 14 and 19 show eminent antimicrobial efficacy toward S. 31 aureus, S. agalactiae, and F. cloumnare. Mechanistically, coumarin derivatives display the antibacterial 32 activity via the control of FabI and FabK function. The structure-activity relationship analysis indicate 33 that the length of linker and imidazole substitute group could significantly influence the antimicrobial 34 activity, as well as the inhibitory activity against FabI and FabK. The structural optimization analysis of 35 coumarin suggest that derivatives 9, 13, 14, 18 and 19 could be a viable way of preventing and 36 controlling bacteria and considered as promising lead compounds for the development of commercial 37 drugs.

- 38 Keywords: coumarin derivatives, antibacterial activity, FabI, FabK
- 39
- 40

41

42

43 1. Introduction

44 Antibiotic resistance has been a global healthcare problem due to the indiscriminate use of 45 antibiotics and the subsequent creation of bacteria that can survive traditional treatment [1,2]. Namely, 46 antibiotics have dramatically reduced the incidence of many diseases infected by bacteria. In addition, 47 antibiotic resistance has drastically outpaced new antibiotic discovery. For instance, 48 methicillin-resistant Staphylococcus aureus is one of the main species of bacteria that cause 49 nosocomial infections in hospitals worldwide [3-5]. It was only two years after the introduction of the 50 methicillin in 1959 that resistant strains of the gram-positive human pathogen Staphylococcus aureus 51 emerged. Additionally, many problems remain unresolved due to occasional serious side effects and the 52 appearance of antibiotic-resistant mutant bacteria. Therefore, the search for new drugs effective for the 53 treatment of bacterial infections is of high priority. Focusing on known validated intracellular targets 54 remains a valid approach to identify new drug candidates with novel chemical structures [6]. 55 Interestingly, use of natural products as a screening pool for novel antibiotics has several advantages 56 related to safety, availability, and minimizing the risk of side-effect and addiction [7,8]. 57 Natural products have been used to treat disease for thousands of years and play an increasingly 58 important role in drug discovery and development. In fact, the majority of anti-infectious agents are of natural origin [9,10]. Natural product coumarin, the simplest member of the group of oxygen 59 60 heterocyclics called benzo-2-pyrones, a secondary metabolite has been reported in many families of 61 plants such as Apiaceae, Asteraceae, Fabiaceae, Rosaceae, Rubiaceae, Rutaceae and Solanaceae [15]. 62 Natural products with a coumarinic moiety have been reported to have multiple biological activities 63 including anticancer, antioxidant, antiinflammatory and antiviral [10-17]. In addition, some 64 investigators have focused on the antimicrobial activity of coumarins [18-20]. For example, Wang et al.

has found that coumarin derivatives showed the antibacterial activity by inhibiting the key enzyme of
biosynthesis pathway of fatty acids (FAS) [21].

67 One of the strategies adopted to control bacterial pathogens is to target the FAS-II, in which the 68 highly conserved enoyl-acyl carrier protein reductase plays a key role [22]. Most eukaryotes contain 69 type I FAS, where all the catalytic domains reside on one polypeptide. Prokaryotes and plants contain 70 the type II or the dissociated FAS-II system, where each enzyme is found on a separate polypeptide. 71 Enzyme catalyzes the last step in the bacterial FAS-II cycle, the reduction of α , β -unsaturated fatty acids esterified to the acyl carrier protein (ACP). The FAS-II pathway consists of some distinct and 72 73 highly conserved enzymes: β-hydroxacyl-ACP-dehydratase (FabA, FabZ), β-ketoacyl-ACP-reductase 74 (FabG), and enoyl-ACP-reductase (FabI, FabK, FabL) [23,24]. For most bacterias, FabI and FabK are 75 responsible for the concluding reduction step of each elongation cycle. They represent a key 76 physiological regulator of fatty acid biosynthesis, and they have been carried out to be the important 77 drug targets for the development of novel antibacterials [25,26]. This has led to the pursuit of specific 78 FabI and FabK inhibitors as novel antibacterial agents which would not be expected to interfere with 79 comparable human biochemical processes. However, the information about the relationships between 80 the chemical structures and activity of inhibiting FAS-II enzymes is currently limited.

The exploration of new heterocycles that can accommodate potency to multiple biological targets remains an intriguing scientific endeavour. In recent years, many hybrid molecules with coumarin based ring systems have been synthesized utilizing novel synthetic methodologies. Some coumarin derivatives conjugated with nitrogen-containing heterocyclic moieties, such as triazole and pyridine, were synthesized and proved to possess antibacterial bioactivity [27,28]. Thus, hybridizing the coumarin nucleus with other moieties has afforded new molecules with improved antimicrobial activity

87 profiles.

88 In this study, our work are directed toward the coumarin antibiotics and their structural 89 modification. According to the previous studies, we hypothesized 1). Coumarin derivatives showed the 90 antibacterial activity by targeting the FAS-II. 2). The chemical structures of coumarin derivatives 91 influenced the antimicrobial activity. The previous researches promoted us to synthesize new 92 derivatives of coumarins with imidazoles skeleton for the sake of finding new effectively antibacterial 93 agents. Based on these things mentioned above, we synthesized several series of novel coumarins derivatives owning nitrogen-containing heterocyclic with different length of chemical bridges. We 94 95 studied their antibacterial activities against four strains of bacteria of Escherichia coli (E. coli), 96 Staphylococcus aureus (S. aureus), Streptococcus agalactiae (S. agalactiae), and Flavobacterium 97 cloumnare (F. cloumnare). Futhermore, we focused on the expression and purification of the 98 recombinant FabI and FabK protein to investigate the mechanism of the inhibitory activity of coumarins derivatives. This study also helped rationalize activities at the investigated drugs targets, 99 100 pointing to potential strategies for designing more selective compounds.

- 101 2. Results and discussion
- 102 2.1 Chemistry

103 The synthesis of initial compounds 7-hydroxy coumarin and 4-methyl-7-hydroxycoumarin were 104 shown in Scheme 1. The 7-hydroxycoumarin was obtained by heating the solution of 105 2,4-dihydroxybenzaldehyde and $ClCH_2COOC_2H_5$ together with PH_3^+ - $CH_2COOC_2H_5$ in ethanol. The 106 4-methyl-7-hydroxycoumarin was obtained by heating the solution of resorcinol and ethyl acetoacetate 107 together in sulfuric acid.

108	Scheme 1
109	The syntheses of the thirty-nine derivatives are based on well described reactions in previous
110	study [29]. Synthesis of coumarin derivatives 1-33 followed the general pathway depicted in Scheme
111	2-4. Compounds 1-5 were synthesized from 7-hydroxy coumarin by reacting with corresponding α ,
112	ω -dibromoalkanes and triethylamine in anhydrous acetone at reflux condition. Compounds 6-33 were
113	synthesized in 60-90% yield by treatment of 1-5 compounds with corresponding amines and anhydrous
114	potassium carbonate in acetonitrile at room temperature. In particularly, the derivative 29 was
115	synthesized in 95% yield by treatment of compound 4 using Gabriel reaction.
116	Scheme 2
117	Scheme 3
118	Scheme 4
119	Scheme 5 reported the synthetic pathway used to prepare compounds 34-39. To assess the effects
120	of the methyl at the para-position of oxygen atom, we changed the initial compound 7-hydroxy
121	coumarin to 4-methyl-7-hydroxy coumarin for synthesizing derivatives 34-39 . The structures of a total
122	thirty-nine synthesized compounds were confirmed by ESI-MS, ¹ H and ¹³ C NMR (see the
123	Supplementary data).
124	Scheme 5
125	Antibacterial activity
126	2.2 <i>MICs</i>
407	

127 The synthesized compounds were tested for their antibacterial activities against two
128 Gram-negative bacteria strains: *E. coli* and *F. cloumnare* and two Gram-positive bacteria strains: *S.*

129	aureus and S. agalactiae. The MICs (minimum inhibitory concentrations) of the compounds against
130	these bacteria were reported in Table 1 and 2, the activities of reference drugs enrofloxacin and
131	norfloxacin were also included. We sought to characterize the structure activity relationship (SAR) for
132	this class of compounds by introducing substituents on the aromatic ring of hydroxy and investigating
133	those compounds with different length of "C-linker". We also considered the role of the imidazole
134	analogues in the other item of the linker. Finally, we studied a limited set of variants by exploring
135	substituents of methyl at the C-4 position.
136	In line with results reported for 14 were against F. cloumnare, S. agalactiae and S. aureus with 2,
137	4, and 16 μ M MIC values, respectively (Table 1). Compound 14 was equal to the positive control
138	enrofloxacin with MIC values of 2 and 8 µM against F. cloumnare, S. agalactiae, respectively (Table 1).
139	Consistently and in line with the results obtained with the imidazole and 4-methylimidazole derivatives,
140	compounds 9 and 19, displayed the potent activities against F. cloumnare, S. agalactiae and S. aureus
141	with MIC values of 4, 8, 16 μ M and 4, 4, 8 μ M, respectively. Remarkably, derivative 28 which
142	introduced a benzimidazole group at the position of the end of linker which had the length of eight
143	atom, exhibited a dramatic loss in activities against F. cloumnare, S. agalactiae and S. aureus with MIC
144	values of 8, 256, 32 μ M. Additionally, introducing other substituent group at the position of the item of
145	linker, as with bromine-bearing (1, 2, 3, 4, and 5) or 2-phenylimidazole bearing (22, 23, and 24)
146	derivatives, did not show activities at these three strains of bacteria.

147

Table 1

148 In light with these results, we proposed a rationale for the chemical features required for a 149 balanced and potent activities at *F. cloumnare*, *S. agalactiae* and *S. aureus*. It was found that the length 150 of the R¹ substituent group (*"linker"*) played an important role in the antibacterial activities of

151	compounds. We therefore turned our attention to derivatives bearing this moiety. Reducing or
152	increasing the length of the linker of 14 to six (13) or ten (15) methylene units were detrimental for
153	activities at the three targets. As anticipated, the antibacterial activities of compounds 13 and 15 against
154	F. cloumnare, S. agalactiae and S. aureus decreased quite substantially (13: 16, 128, 64 µM; 15: 8, 8,
155	64 μ M;). This pattern was also observed in other two coumarin-imidazole hybrid derivatives. Among
156	compounds 6-10 and 16-20 the order of antibacterial activities showed the potency of $9 > 10 > 8 > 7 > 10$
157	6 and $19 > 20 > 18 > 17 > 16$ which indicated the activities of compounds against these three bacteria
158	with eight carbon atoms of linker were superior to that of with other length of linker.
159	Notably, activity at <i>E. coli</i> of compounds 1-28 behaved different rule from the other three strains.
160	According to the date, compounds with six carbon atoms of linker showed the significantly higher
161	activities against E. coli than other length of linker. For instance, in 13, the efficacy against E. coli was
162	$8 \mu\text{M}$ MIC value. By contrast, the results for 11, 12, 14, and 15 suggested that extending or narrowing
163	the carbon chains would lead to a drop in activity against E. coli. Derivative 8 maintained the potent
164	activities with MIC values of 32 μ M. In agreement with the behavior of 8 , 13 , and 18 , introducing a six
165	carbon atoms of linker would be the best choice for activity against E. coli. On the other hand, when
166	the R_2 position coupled with a 2-phenylimidazole or benzimidazole, the suitable length of linker would
167	be four methylene units. It was found that compounds 22 and 26 were 32, 8 μM MIC values
168	respectively with the highest activities among their own groups.
169	The effect of imidazole group on potency was apparent throughout our results, with its presence at
170	the R_2 position increasing the potency in every example. According to the results, we suggested that the
171	types of substituent group of R^2 could be crucial to the efficacy against bacteria. We synthesized five

172 compounds with the same linker but different types of heterocyclic nitrogen groups in R^2 substituted

173	position. Predictably, the analogues displayed huge difference of antibacterial activities. Among
174	compounds 9, 14, 19, 24, and 28, the order of antibacterial activities showed the potency of $14 > 19 > 19$
175	9 > 28 > 24 which indicated the activities of compounds with 2-methylimidazole substitutes were
176	superior to that of with the other four substitutes.
177	To assess the effects of the types of R^2 substituents, we synthesized and tested compounds 29-33
178	which had same length of linker at R_1 position but different substituent groups at R^2 position against <i>F</i> .
179	cloumnare and S. agalactiae. As shown in Table 2, only derivative 30 coupled with a triazole
180	maintained the activities against F. cloumnare and S. agalactiae among these five compounds, with the
181	MIC values of 64 and 32 μ M, respectively. The other four derivatives displayed no activities against
182	two bacteria at the concentration of 256 µM.
183	In addition, we further investigated the effect of methyl at the C-4 position. In light with the
184	results of compounds 34-39 against four strains of bacteria, we suggested that introducing a methyl
185	group in the distal ring of the O-biphenyl moiety led to a slight drop in activities. Namely, compound
186	35 showed anti- <i>F. cloumnare</i> , <i>S. agalactiae</i> and <i>S. aureus</i> activities with the MIC values of 4, 8, 64 μ M
187	while 9 which lacked a methyl but had the same length of linker was 4, 8, 16 μ M MIC values,
188	respectively. Similarly, derivatives 36 and 37 decreased the activities against F. cloumnare, S.
189	agalactiae and S. aureus to 4, 16, 64 μ M and 8, 8, 32 μ M, respectively. Interestingly, compound 38
190	increased the activity at S. agalactiae to 32 μ M compared to 28 (256 μ M). Derivative 39 was 16 μ M
191	against F. cloumnare while its analogue 30 exhibited the activity with MIC value of 64 μ M.
192	Consistently, all six derivatives didn't display the activity against E. coli at the concentration of 256
193	μΜ.

194

195 *2.3 MBCs*

196	We further investigated the MBC values of all compounds against four bacterials. The results
197	confirmed that the four overarching trends what we had noted previously were also suitable for the date
198	of MBC values. First, the eight methylene chains was the best choice for the coumarin derivatives
199	against the three strains of F. cloumnare, S. agalactiae and S. aureus. Extending or narrowing the
200	length of alkyl chain between the corresponding amine and coumarin led to a significant reduction in
201	activities at the three bacterials. For example, the compounds 8 , 9 , and 10 , with the same R^2 substituent
202	group but different in the length of linker, exhibited a great difference in antibacterial activity.
203	Compound 9 which had a six carbon atoms of linker on the position of R^1 showed activity against F.
204	cloumnare with the MBC value of 8 μ M. Otherwise, the MBC values were increased to 16 or 128 μ M,
205	if the length was ten or six carbon atoms.
206	Secondly, we suggested that compounds with six carbon atoms of linker would increase the anti-E.
207	coli activity notably. Derivatives 8 and 13 were the same MBC values of 64 μ M. Most importantly,
208	when the same substitution was coupled with a longer or shorter linker, activity at E. coli was
209	intensively affected. As shown in Table 3, compounds 7 and 12 displayed the activities with the MBC
210	values of 256 μ M. For another, the same trend noted previously was observed from MBC values of
211	21-28. Derivatives 22 and 26 which were coupled with the four methylene units exhibited the highest
212	activities with MBC values of 128 and 64 μ M, respectively. In addition, there are several investigators
213	demonstrated that the bioactivities were influenced by the carbon linker, such as antibacterial, anti-HIV
214	and anti-parasites [30-32]. Indeed, the length of carbon chain was crecial to the antibacterial activities.
215	Table 3

216 Subsequently, the substituents at R^2 position also occupied an important place in the efficacy of

217 antibacterial. The coumarin derivatives which coupled with imidazole, 2-methylimidazole, 218 4-methylimidazole or triazole revealed superiority in against bacteria to the compounds coupled with 219 2-phenylimidazole, benzimidazole, and so on. In **30**, coupled with a triazole group, activities at F. 220 cloumnare and S. agalactiae were 128 and 64 µM MBC values respectively while other four 221 derivatives (29, 31, 32, 33) did not show efficacy against the two strians of bacteria. 222 Moreover, imidazole analogues had reported other antibacterial activities which was consistent to 223 our result that it could increase the activity against bacteria [33,34]. Furthermore, its derivatives are of 224 great importance in medicinal chemistry and can be used for the synthesis of myriad heterocyclic 225 compounds with different biological activities such as anti-tumor, antithrombotic, antioxidative [35-38]. 226 These studies indicated that synthesis of coumarin-imidazole hybrid derivatives is a right guidance for 227 further researches. The presence of 2-methyl was the structural feature exerting the more evident effect, 228 as suggested by activity data on 14.

229 Lastly, it was also confirmed that introducing a methyl group in the distal ring of the O-biphenyl 230 moiety led to a slight influence in activities by the results of 34-39. Similarly, compound 35 showed anti-F. cloumnare, S. agalactiae and S. aureus activities with the MBC values of 16, 16, 256 µM while 231 232 9 which had the same carbon chain was 8, 16, 128 µM MBC values, respectively. Consistently, 233 compounds 36 and 37 decreased the activities against F. cloumnare, S. agalactiae and S. aureus to 8, 16, 234 256 μ M and 16, 32, 256 μ M, respectively. Conversely, compound **38** increased the activity at S. 235 agalactiae to 64 μ M compared to 28 (512 μ M). Derivative 39 was 64 μ M against F. cloumnare while 236 its analogue 30 exhibited the activity with MIC value of $128 \,\mu$ M.

237

Table 4

238 2.4 Expression and characterization of recombinant protein

239	The amplification of the FabI gene (expected size 760 bp) of E. coli isolate ATCC 35150 and the
240	FabK gene (expected size 960 bp) of S. agalactiae isolate WB1445 were shown in Fig. 1A and Fig. 2A,
241	respectively. The plasmids pET32a-FabI and pET32a-FabK were confirmed by restriction enzyme
242	digestion (Fig. 1B and Fig. 2B) and sequence analysis (data not show). Both results confirmed that
243	recombinant plasmids were successfully constructed. Expression analysis of abundant FabI protein and
244	FabK protein were performed after 4 h of induction with 1 mM IPTG. And SDS-PAGE analysis
245	showed that the molecular size of recombinant protein containing 6-histidine tag were estimated to be
246	approximately 43 kDa and 48 kDa, respectively. (Fig. 1C, Fig. 2C). Western blot analysis using
247	anti-His-tag monoclonal antibody confirmed the authenticity of the FabI and FabK as clear bands at the
248	expected position on polyvinylidene fluoride membrane (Fig. 1D, Fig. 2D).
249	Figure 1
250	Figure 2
251	2.5 Identification of (E)-2-octenoyl-acyl-N-acetylcysteamine (t-O-NAC)
252	By analyzing the data of ¹ H NMR (nuclear magnetic resonance) (500.23 MHz, MeOD), ¹³ C NMR
253	(125.78 MHz, MeOD), t-O-NAC was identified and its chemical structure was shown in Scheme 6. In
254	addition, the date of general nuclear magnetic resonance spectrum was shown in supplementary date.
255	Scheme 6
256	2.6 E. coli Fabl and S. agalactiae FabK inhibitory activity
257	In order to investigate the structural requirements involving the pyridoindole core, we have chose
258	10 derivatives with a substituent of diverse functionalities to rationalize the FabI and FabK inhibitory
259	activities of these compounds in terms of structural modifications. The IC_{50} values of these ten

260	compounds which showed superior antibacterial activities to inhibit the recombinant FabI and FabK
261	enzyme were shown in Table 5. All derivatives showed the activities of inhibitory FabI and FabK to
262	varying degrees. In 13, activity at FabI was 1.20 μ M IC ₅₀ value which was the highest inhibitory
263	efficacy. Similarly, in line with result reported for 14, exhibited the best inhibitory FabK activity with
264	IC_{50} value of 1.13 μ M. Conversely, compounds 10 and 12, displayed the lowest activities inhibitory
265	FabI and FabK, respectively. In light with these results, we suggested a rationale for the chemical
266	features required for potent inhibitory FabI and FabK activities. When the coumarin derivatives
267	coupled with a six methylene units, it would show the balanced perferable inhibitory efficacy of the
268	two enzymes. Interestingly, extending the length of alkyl chain led a change in the balance of inhibitory
269	two proteins. When the length of linker was more than six carbon atoms, derivatives showed the better
270	inhibitory FabK activity than FabI. In comparison, narrowing the length of chain made a converse
271	result. Namely, when the length of alkyl chain was less than six methylene units, activity of derivatives
272	would be led a enhancement at FabI but a drop at FabK.

273

Table 5

The results of FabI and FabK inhibitory activity of the test compounds were corresponding to the structure-activity relationships of their antibacterial activities. It demonstrated that the potent antibacterial activities of the synthetic compounds were probably correlated to their FabI and FabK inhibitory activities.

278 3. Conclusions

The coumarin derivatives were structurally designed by employing a molecular hybridization of the coumarin group with the heterocyclic ring imidazole. Thirty-nine coumarin derivatives were synthesized and their antibacterial activity was evaluated against *E. coli*, *F. cloumnare*, *S. aureus* and *S.*

Moreover the inhibitory activity was evaluated against Fabl and Fabl. The most

202	agained against rabe and rabk. The most
283	promising compounds showed both antibacterial and inhibitory activity and, in particular, the
284	compounds 9, 13, 14, 18 and 19, also exhibited remarkable activity against F. cloumnare, S. aureus and
285	S. agalactiae. The ensuing structure-activity relationships study predictably identified antimicrobial
286	activity represented by the R^1 and R^2 substituent group. Eight carbon atoms length of linker (R^1
287	substitute position) and imidazole could significantly increase the antimicrobial activity. In addition,
288	six carbon atoms length of linker could be the suitable choice for the inhibitory activity against Fabl
289	and FabK. Furthermore, derivative 14, the most potent compound, showed broad range activity in all in
290	vitro experiments and might represent a good starting point for optimizing the structure to develop
291	more active antibacterials.
292	In conclusion, the results obtained in this work highlight imidazole substituted coumarin as very

- promising antibacterial scaffolds acting through enoyl-acyl carrier protein reductases inhibition. This
 study suggests that the development of more potent enoyl-acyl carrier protein reductases inhibitors
 could lead to novel broad-spectrum antibacterial drug candidates.
- 296 4. Experimental section

282

agalactian

297 *4.1 Bacterial strain and growth conditions*

Bacterial reference strains of *E. coli* ATCC 35150 and *S. aureus* ATCC 29213 were kindly provided by Prof. Jin-you Duan in college of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China. Bacterial reference strain of *S. agalactiae* WB1445 was kindly provided by Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China. Bacterial reference strain of *F. cloumnare* FC-G1 was preserved in our laboratory

with 20% glycerol at -80 °C. For experimental work, E. coli and S. aureus were cultured in Broth

304 medium (BM) at 28 °C and grown overnight with constant shaking. Brain heart infusion (BHI) broth 305 and Shieh broth were chosed for culturing S. agalactiae and F. cloumnare, respectively. 306 4.2 Minimal inhibitory concentration (MIC) 307 The minimal inhibitory concentration (MIC) of the synthetic compounds were tested against two 308 Gram-negative bacterial strains: E. coli and F. cloumnare, two Gram-positive bacterial strains: S. aureus and S. agalactiae, using method recommended by Clinical and Laboratory Standards Institute 309 310 (CLSI) guidelines (CLSI, 2009, 2012). In vitro activities of the compounds were tested in Nutrient 311 broth (NB) for bacteria by the two-fold serial dilution method. Seeded broth (broth containing microbial spores) was prepared in NB from 24 h old bacterial cultures on corresponding broth at 28 \pm 312 1 °C. The bacterial suspension was adjusted with sterile saline to a concentration of $1 \times 10^7 - 2 \times 10^7$ 313 cfu/mL and diluted with corresponding broth to a concentration of 1×10^5 - 2×10^5 cfu/mL. The tested 314 compounds and reference drugs were prepared by two-fold serial dilution to obtain the required 315 316 concentrations of 256.00, 128.00, 64.00, 32.00, 16.00, 8.00, 4.00, 2.00, 1.00, 0.50 µM and even lower 317 concentration. The tubes were incubated in BOD incubators at 28 ± 1 °C for bacteria. The MICs were 318 recorded by visual observations after 24 h (for bacteria) of incubation. Enrofloxacin and norfloxacin 319 were used as standards for bacteria.

320 *4.3 Minimal bactericidal concentration (MBC)*

303

The method used and described below is an amended version of the procedure described in the BSAC Guide to Sensitivity Testing and can be adapted for determining the minimal bactericidal concentration (MBC) of coumarin derivatives by substituting IsoSensitest broth (ISA;Oxoid) with

324 corresponding broth. After MIC determination of the compounds tested, an aliquot of 100 µl from all 325 tubes in which no visible bacterial growth was observed were seeded in Nutrient Agar (NA) plates not 326 supplemented with coumarin derivatives. The plates were then incubated for overnight at 28 ± 1 °C. 327 The MBC endpoint is defined as the lowest concentration of antimicrobial agent that kills >99.9% of 328 the initial bacterial population where no visible growth of the bacteria was observed on the NA plates. 329 4.4 Expression and purification of the recombinant FabI and FabK protein Primers were designed according to the FabI sequence of E. coli ATCC 35150 (Genebank 330 331 accession: YP_006119687). The FabI gene amplification was carried out using genomic DNA of E. coli 332 template oligonucleotide 5'as and two primers (Forward: AGGAGATATACCATGGGTTTTCTTTCCGGTAAGCGCATTCTG 333 -3'; Reverse: 5'-CGCCGAGCTCGAATTCTTATTTCAGTTCGAGTTCGTTCATTGC -3') which introduced BamH 334 335 I and Hind III restriction enzyme sites, respectively. The PCR products were ligated with the cloning 336 vector pMD19T (Takara, Dalian, China) to generate the pMD19T-FabI, which was confirmed by sequence analysis (Sangon, Shanghai, China). 337 338 Similarly, primers were designed according to the FabK sequence of S. agalactiae WB1445 (Genbank accession: NC_004116.1). The FabK gene amplification was carried out using genomic 339 340 agalactiae as template and two oligonucleotide primers (Forward: 5'-DNA of S. 341 ATCG<u>CCATGG</u>TTGATCGGTACTCACTCTTCTTC 5'--3'; Reverse: 342 ATCGGAATTCTTATAAATCTGACCAGCGGC-3') which introduced BamH I and Hind III restriction 343 enzyme sites, respectively. The PCR products were ligated with the cloning vector pMD19T (Takara, 344 Dalian, China) to generate the pMD19T-FabK, which was confirmed by sequence analysis (Sangon, 345 Shanghai, China).

346	The FabI (FabK) gene excised from pMD19T-FabI (pMD19T-FabK) by digestion with BamH
347	I/Hind III restriction enzyme (Takara, Dalian, China) was inserted into expression plasmid pET32a (+)
348	(Novagen, Madison, USA) to generate pET32a-FabI (pET32a-FabK). The resulting recombinant
349	plasmid was transformed into E. coli BL21 (DE3) (Novagen, Madison, USA), and the recombinant
350	constructs pET32a-FabI (pET32a-FabK) were sequenced by Sangon Biological Company (Shanghai,
351	China). The positive recombinant E. coli was grown in Luria bertani (LB) broth with ampicillin (100
352	mg/mL) at 37 °C with shaking, and the expression of recombinant FabI (Fabk) protein was induced by
353	1 mM isopropyl-b-D-thiogalacto-pyranoside (IPTG; SigmaeAldrich Trading Co., Ltd, Shanghai,
354	China). The obtained fusion proteins were determined by sodium dodecyl sulfate-polyacrylamide gel
355	electrophoresis (SDS-PAGE) and visualized after staining with Coommassie brilliant blue R-250
356	(Sigma, USA). Then the recombinant proteins were assessed by western blotting analysis using diluted
357	anti-His-tag monoclonal antibody (1:2000, Abcam, Cambridge, MA, USA) and HRP-conjugated goat
358	anti-mouse IgG (1:2000, Beijing CoWin Biotech Corp., Beijing, China) as antibodies. The result was
359	visualized by staining with DAB (3,3-diamonobenzidine tetrahydrochloride) horseradish peroxidase
360	color development kit (Qiagen, Hilden, Germany).
361	Owning to the hexa-histidine tag at the N-terminus, the recombinant proteins from the constructs
362	were purified using nickelnitrilotriacetic acid (Ni-NTA) column (Qiagen, Shanghai, China) under
363	native conditions as recommended by the manufacturer. After affinity chromatography, the fractions

- were pooled and dialysed using urea gradient dialysis method. The protein concentration was
 determined by Micro BCA Protein Assay Kit (Beijing CoWin Biotech Corp., Beijing, China).
- 366 *4.5 The procedure for the synthesis of (E)-2-octenoyl-acyl-N-acetylcysteamine (t-O-NAC)*

367 To a solution of (*E*)-2-octenoic acid (569 mg, 4 mmol) in dichloromethane (20 mL) was added N,

368 N-diisopropylcarbodiimide (528 mg, 4mmol) and 4-dimethylaminopyridine (200 mg, 2mmol) at room 369 temperature. After stirring at room temperature for 10 min, N-Acetylcysteamine (300 mg, 3 mmol) was 370 added to the reaction mixture, and whole was stirred under room temperature for 24 h. The precipitate was filtered off and washed with dichloromethane (3×40 mL). The solvent was evaporated under 371 372 reduced pressure, and the residue was treated with water (30 mL) and extracted with ethyl acetate 373 (3×40 mL). The organic layer were combined, dried with anhydrous Na₂SO₄, and concentrated under 374 reduced pressure. The crude product was purified via silica gel column chromatography with mixed 375 petroleum ether and ethyl acetate (3:1, v/v) as eluent.

376 4.6 E. coli FabI and S. agalactiae FabK inhibitory activity

The measurements of *E. coli* FabI inhibitory activity were performed on an Infinit eM200 pro plate reader (Tecan, Switzerland) in 100 μ L of 0.1 M PBS-DTT PH 7.5. The compounds were dissolved in 0.1 M PBS-DTT with a series of concentration as 128, 64, 32, 16, 8, 4, 2 and 1 μ M, respectively, then tested in the presence of 20 μ L (100 μ g/mL) FabI and 10 μ L (4 mM) *t*-O-NAC. The reaction was started by addition of 20 μ L (2 mM) NADH. The reaction mixture was read spectrophotometrically for 1 min by follow the oxidation of NADH to NAD⁺ at 340 nm. IC₅₀ values were estimated from graphically plotted dose–response curves.

The measurements of *S. agalactiae* FabK inhibitory activity were performed on an Infinit eM200 pro plate reader (Tecan, Switzerland) in 100 μ L of 0.1 M ADA-DTT PH 6.5. The compounds were dissolved in 0.1 M ADA-DTT with a series of concentration as 128, 64, 32, 16, 8, 4, 2 and 1 μ M, respectively, then tested in the presence of 20 μ L (150 μ g/mL) FabK and 10 μ L (4 mM) *t*-O-NAC. The reaction was started by addition of 20 μ L (2 mM) NADH. The reaction mixture was read spectrophotometrically for 1 min by follow the oxidation of NADH to NAD⁺ at 340 nm. IC₅₀ values

- 390 were estimated from graphically plotted dose–response curves.
- 391 Notes
- 392 The authors declare no competing financial interest.
- 393 Acknowledgement
- 394 This work was supported by the National Natural Science Foundation of China (No. 31372559).
- 395 References
- 396 [1] H. Yoneyama, R. Katsumata, Antibiotic resistance in bacteria and its future for novel antibiotic
- development, Bioscience Biotechnology & Biochemistry, 70 (2006) 1060.
- 398 [2] J.S. Molton, P.A. Tambyah, B.S. Ang, M.L. Ling, D.A. Fisher, Apropos "The global spread of
- healthcare-associated multidrug-resistant bacteria: a perspective from Asia", Clinical Infectious
- 400 Diseases, 56 (2013) 1310-1318.
- 401 [3] S. Ichiyama, [Genomic DNA fingerprinting by pulsed-field gel electrophoresis for study of
- 402 nosocomial infection caused by methicillin-resistant Staphylococcus aureus], Nippon Rinsho
- 403 Japanese Journal of Clinical Medicine, 50 (1992) 992-997.
- 404 [4] K. Yasunaka, K. Kono, Epidemiological study of methicillin-resistant Staphylococcus aureus at
- 405 Fukuoka University Hospital, Microbial Drug Resistance, 5 (1999) 207-213.
- 406 [5] S. Takeda, K. Yasunaka, K. Kono, K. Arakawa, Methicillin-resistant Staphylococcus aureus (MRSA)
- 407 isolated at Fukuoka University Hospital and hospitals and clinics in the Fukuoka city area,
- 408 International Journal of Antimicrobial Agents, 14 (2000) 39-43.

409 [6] D.E. Goldberg, R.F. Siliciano, J.W. Jr, Outwitting evolution: fighting drug-resistant TB, malaria,

410 and HIV, Cell, 148 (2012) 1271.

- 411 [7] D.H. Hahm, M.J. Yeom, E.H. Lee, I. Shim, H.J. Lee, H.Y. Kim, Effect of Scutellariae radix as a
- 412 novel antibacterial herb on the ppk(Polyphosphate kinase) mutant of Salmonella typhimurium,
- 413 Biochemical Society Transactions, 28 (2001) 1061-1065.
- 414 [8] S.-H. Lee, C.-J. Kim, Antibacterial activity of antimycotic miconazole against methicillin-resistant
- 415 Staphylococcus aureus, Journal of microbiology and biotechnology, 9 (1999) 572-575.
- 416 [9] I. Weinmann, History of the development and applications of coumarin and coumarin-related
- 417 compounds, Coumarins: biology, applications and mode of action. John Wiley & Sons, Inc., New
- 418 York, NY, (1997).
- 419 [10] W. Li, Y.N. Sun, X.T. Yan, S.Y. Yang, E.J. Kim, H.K. Kang, Y.H. Kim, Coumarins and Lignans
- 420 from Zanthoxylum schinifolium and Their Anticancer Activities, Journal of Agricultural & Food
- 421 Chemistry, 61 (2013) 10730-10740.
- 422 [11] S. Maiti, N. Park, J.H. Han, H.M. Jeon, J.H. Lee, S. Bhuniya, C. Kang, J.S. Kim,
- 423 Gemcitabine-coumarin-biotin conjugates: a target specific theranostic anticancer prodrug, Journal
- 424 of the American Chemical Society, 135 (2013) 4567-4572.
- 425 [12] G.L. Xi, Z.Q. Liu, Coumarin-fused coumarin: antioxidant story from n,n-dimethylamino and
- 426 hydroxyl groups, Journal of Agricultural & Food Chemistry, 63 (2015) 3516-3523.
- 427 [13] G. Mazzone, A. Galano, J.R. Alvarezidaboy, N. Russo, Coumarin-Chalcone Hybrids as Peroxyl
- 428 Radical Scavengers: Kinetics and Mechanisms, Journal of Chemical Information & Modeling, 56

429 (2016) 662.

430	[14] C.A. Kontogiorgis, D.J. Hadjipavlou-Litina, Synthesis and antiinflammatory activity of coumarin
431	derivatives, Journal of Medicinal Chemistry, 48 (2005) 6400-6408.

- 432 [15] T. Symeonidis, K.C. Fylaktakidou, D.J. Hadjipavloulitina, K.E. Litinas, Synthesis and
- anti-inflammatory evaluation of novel angularly or linearly fused coumarins, European Journal of
- 434 Medicinal Chemistry, 44 (2009) 5012.
- 435 [16] J. Neyts, C.E. De, R. Singha, Y.H. Chang, A.R. Das, S.K. Chakraborty, S.C. Hong, S.C. Tsay, M.H.
- 436 Hsu, J.R. Hwu, Structure-activity relationship of new anti-hepatitis C virus agents:
- 437 heterobicycle-coumarin conjugates, Journal of Medicinal Chemistry, 52 (2009) 1486-1490.
- [17] M.Z. Hassan, H. Osman, M.A. Ali, M.J. Ahsan, Therapeutic potential of coumarins as antiviral
 agents, European Journal of Medicinal Chemistry, 123 (2016) 236-255.
- 440 [18] K.B. Puttaraju, K. Shivashankar, Chandra, M. Mahendra, V.P. Rasal, P.N. Venkata Vivek, K. Rai,
- 441 M.B. Chanu, Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones;
- 442 synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted
- dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones, European Journal of Medicinal Chemistry, 69
- 444 (2013) 316-322.
- 445 [19] M. Basanagouda, K. Shivashankar, M.V. Kulkarni, V.P. Rasal, H. Patel, S.S. Mutha, A.A. Mohite,
- 446 Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin,
- European Journal of Medicinal Chemistry, 45 (2010) 1151-1157.
- 448 [20] L. Bonsignore, A.D. Logu, G. Loy, S.M. Lavagna, D. Secci, Synthesis and antimicrobial activity

- 449 of coumarin and benzodioxazepine-, diazazepine- and benzoxazepine-substituted penicillins,
- 450 Cheminform, 25 (2010) no-no.
- 451 [21] Y.M. Zhang, Y.J. Lu, C.O. Rock, The reductase steps of the type II fatty acid synthase as
- 452 antimicrobial targets, Lipids, 39 (2004) 1055.
- 453 [22] C.Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S. Lin, A mesoporous
- 454 silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for
- 455 stimuli-responsive controlled release of neurotransmitters and drug molecules, Journal of the
- 456 American Chemical Society, 125 (2003) 4451.
- 457 [23] L. Shi, R.Q. Fang, Z.W. Zhu, Y. Yang, K. Cheng, W.Q. Zhong, H.L. Zhu, Design and synthesis of
- 458 potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH) as potential antibacterial
- 459 agents, European Journal of Medicinal Chemistry, 45 (2010) 4358-4364.
- 460 [24] A. Surolia, T.N. Ramya, V. Ramya, N. Surolia, 'FAS't inhibition of malaria, Biochemical Journal,
 461 383 (2004) 401-412.
- 462 [25] R.F. Waller, S.A. Ralph, M.B. Reed, V. Su, J.D. Douglas, D.E. Minnikin, A.F. Cowman, G.S.
- 463 Besra, G.I. Mcfadden, A type II pathway for fatty acid biosynthesis presents drug targets in
- 464Plasmodium falciparum, Antimicrobial Agents & Chemotherapy, 47 (2003) 297-301.
- 465 [26] S. F. Wang, Y. Yin, X. Wu, F. Qiao, S. Sha, P. C. Lv, J. Zhao, H. L. Zhu, Synthesis, molecular
- docking and biological evaluation of coumarin derivatives containing piperazine skeleton as
- 467 potential antibacterial agents, Bioorganic & medicinal chemistry, 22 (2014) 5727-5737.
- 468 [27] T.G. Kraljević, A. Harej, M. Sedić, S.K. Pavelić, V. Stepanić, D. Drenjančević, J. Talapko, S.

- 469 Raić-Malić, Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 470 4-substituted 1, 2, 3-triazole-coumarin hybrids, European journal of medicinal chemistry, 124 471 (2016) 794-808. [28] R.M. Mohareb, E. Ezz EL-ARAB, K.A. El-Sharkawy, The reaction of cyanoacetic acid hydrazide 472 with 2-acetylfuran: Synthesis of coumarin, pyridine, thiophene and thiazole derivatives with 473 474 potential antimicrobial activities, Scientia Pharmaceutica, 77 (2009) 355-366. 475 [29] Y. Shi, C.-H. Zhou, Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents, Bioorganic & medicinal chemistry letters, 21 (2011) 956-960. 476
- 477 [30] D. Tang, Y. Gai, A. Polemeropoulos, Z. Chen, Z. Wang, Y.S. Or, Design, synthesis, and
- 478 antibacterial activities of novel 3, 6-bicyclolide oximes: Length optimization and zero carbon
- 479 linker oximes, Bioorganic & medicinal chemistry letters, 18 (2008) 5078-5082.
- 480 [31] W.M. Golebiewski, R.F. Keyes, M. Cushman, Exploration of the effects of linker chain
 481 modifications on anti-HIV activities in a series of cosalane analogues, Bioorganic & medicinal
 482 chemistry, 4 (1996) 1637-1648.
- [32] G.-L. Liu, Y. Hu, X.-H. Chen, G.-X. Wang, F. Ling, Synthesis and anthelmintic activity of
 coumarin-imidazole hybrid derivatives against Dactylogyrus intermedius in goldfish, Bioorganic
 & Medicinal Chemistry Letters, 26 (2016) 5039-5043.
- 486 [33] S. Sharma, S. Gangal, A. Rauf, Convenient one-pot synthesis of novel 2-substituted
 487 benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro
 488 antibacterial and antifungal activities, European Journal of Medicinal Chemistry, 44 (2009) 1751.

- 489 [34] V. Padmavathi, K.C. Prema, B.C. Venkatesh, A. Padmaja, Synthesis and antimicrobial activity of
- 490 amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles, European Journal of
 491 Medicinal Chemistry, 43 (2012) 5317-5326.
- 492 [35] L.X. Liu, X.Q. Wang, J.M. Yan, Y. Li, C.J. Sun, W. Chen, B. Zhou, H.B. Zhang, X.D. Yang,
- 493 Synthesis and antitumor activities of novel dibenzo[b,d]furan-imidazole hybrid compounds,
- 494 European Journal of Medicinal Chemistry, 66 (2013) 423.
- 495 [36] F. Bellina, S.S. Cauteruccio, R. Rossi, Novel Imidazole-Based Combretastatin A-4 Analogues:
- 496 Evaluation of Their in vitro Antitumor Activity and Molecular Modeling Study of Their Binding
- 497 to the Colchicine Site of Tubulin, Bioorganic & Medicinal Chemistry Letters, 16 (2006)
 498 5757-5762.
- 499 [37] J.C. Barrow, P.G. Nantermet, S.R. Stauffer, P.L. Ngo, M.A. Steinbeiser, S.S. Mao, S.S. Carroll, C.
- 500 Bailey, D. Colussi, M. Bosserman, Synthesis and evaluation of imidazole acetic acid inhibitors of
- 501 activated thrombin-activatable fibrinolysis inhibitor as novel antithrombotics, Journal of
- 502 Medicinal Chemistry, 46 (2003) 5294.
- 503 [38] M. Alaiz, R. Zamora, F.J. Hidalgo, Antioxidative Activity of Pyrrole, Imidazole, Dihydropyridine,
- and Pyridinium Salt Derivatives Produced in Oxidized Lipid/Amino Acid Browning Reactions,
- Journal of Agricultural & Food Chemistry, 44 (1996) 686-691.
- 506

507

508

509 Figure captions

510	Figure 1. Analysis of FabI expression. (A) PCR amplification of FabI: lane M, DNA marker; lane 1,
511	FabI. (B) Analysis of recombinant plasmid: lane M, DNA marker; lane 1, double enzymes digested
512	pET32a-FabI with BamH I and Hind III.(C) SDS-PAGE analysis of expressed pET32a-FabI: lane M,
513	Standard protein marker; lane 1, Soluble lysates from uninduced cells containing recombinant
514	pET32a-FabI; lane 2, Insoluble lysates from uninduced cells containing recombinant pET32a-FabI;
515	lane 3, Soluble lysates from induced cells containing recombinant pET32a-FabI; lane 4, Insoluble
516	lysates from induced cells containing recombinant pET32a-FabI. (D) Western blotting analysis of
517	purified FabI using anti-his-tag monoclonal antibody.
518	
519	Figure 2. Analysis of FabK expression. (A) PCR amplification of FabK: lane M, DNA marker; lane 1,
520	FabK. (B) Analysis of recombinant plasmid: lane M, DNA marker; lane 1, double enzymes digested
521	pET32a-FabK with BamH I and Hind III.(C) SDS-PAGE analysis of expressed pET32a-FabI: lane M,
522	Standard protein marker; lane 1, Empty pET32a control (uninduced by IPTG); lane 2, Insoluble lysates
523	from induced cells containing recombinant pET32a-FabK; lane 3, Soluble lysates from induced cells
524	containing recombinant pET32a-FabK; lane 4, Insoluble lysates from uninduced cells containing
525	recombinant pET32a-FabK; lane 5, Soluble lysates from uninduced cells containing recombinant
526	pET32a-FabK. (D) Western blotting analysis of purified FabK using anti-his-tag monoclonal antibody.
527	
528	Scheme 1. Synthetic route of initial compounds 7-hydroxycoumarin and 4-methyl-7-hydroxycoumarin.

529 Reagents and conditions: (a) $ClCH_2COOC_2H_5$, Ph_3^+ - $CH_2COOC_2H_5$, CH_3CH_2OH , 80 °C, 2 h; (b) Ethyl

530 acetoacetate, H_2SO_4 , ice bath, 16 h.

531

- 532 Scheme 2. Synthetic route of coumarin derivatives 1-28. Reagents and conditions: (c) alkyl dibromide,
- 533 K₂CO₃, dry acetone, reflux, 20-24 h; (d) imidazole / 2-methylimidazole / 4-methylimidazole /
- 534 2-phenylimidazole / benzimidazole, K₂CO₃, CH₃CN, r.t., 20-24 h.

535

- 536 Scheme 3. Synthetic route of coumarin derivatives 29. Reagents and conditions: (e) Phthalimide
- 537 potassium salt, DMF, 100 °C, 20-24 h; (f) NH₂NH₂·H₂O, CH₃CH₂OH, 80 °C, 6-8 h.

538

- Scheme 4. Synthetic route of coumarin derivatives 30-33. Reagents and conditions: (c)
 1,6-dibromohexane, K₂CO₃, dry acetone, reflux, 20-24 h; (d) triazole / piperazine / parazole /
 piperidine, K₂CO₃, CH₃CN, r.t., 20-24 h.
- Scheme 5. Synthetic route of coumarin derivatives 34-39. Reagents and conditions: (c)
 1,6-dibromohexane, K₂CO₃, dry acetone, reflux, 20-24 h; (d) imidazole / 2-methylimidazole /
 4-methylimidazole / benzimidazole / triazole, K₂CO₃, CH₃CN, r.t., 20-24 h.
- 547 Scheme 6. Synthetic route of (*E*)-2-octenoyl-acyl-N-acetylcysteamine. Reagents and conditions: (g)
- 548 N-Acetylcysteamine, DMAP, DIC, CH₂Cl₂, r.t., 24 h.

Table 1. MIC	values of	coumarin	derivatives	1-28.
--------------	-----------	----------	-------------	-------

0、.0.	$\sim 0^{\prime}$	$R^1 R^2$
\sim	\checkmark	

	Substitu	ent group		MIC (µM)			
Compound	D1	\mathbf{p}^2	Gram-ne	egative	Gram-p	m-positive	
	K K		F.cloumnare	E. coli	S.agalactiae	S. aureus	
1	-		>256.00	>256.00	>256.00	>256.00	
2	-C ₂ H ₄ -		>256.00	>256.00	>256.00	>256.00	
3	$-C_4H_8$ -	-Br	>256.00	>256.00	>256.00	>256.00	
4	$-C_6H_{12}-$		>256.00	>256.00	>256.00	>256.00	
5	$-C_8H_{16}-$		>256.00	>256.00	>256.00	>256.00	
					CY		
6	-		>256.00	128.00	>256.00	>256.00	
7	$-C_2H_4-$	<u>کې</u>	>256.00	128.00	>256.00	64.00	
8	$-C_4H_8-$	N [×] N [×]	64.00	32.00	>256.00	64.00	
9	$-C_6H_{12}-$		4.00	>256.00	8.00	16.00	
10	$-C_8H_{16}-$		16.00	>256.00	8.00	64.00	
					27 < 00	27 < 00	
11	-		>256.00	64.00	>256.00	>256.00	
12	-C ₂ H ₄ -		>256.00	64.00	>256.00	256.00	
13	-C ₄ H ₈ -	N N N ''	16.00	8.00	128.00	64.00	
14	-C ₆ H ₁₂ -		2.00	>256.00	4.00	16.00	
15	$-C_8H_{16}-$		8.00	>256.00	8.00	64.00	
16	-		>256.00	16.00	>256.00	>256.00	
17	-C ₂ H ₄ -	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>256.00	16.00	>256.00	>256.00	
18	-C ₄ H ₈ -	N N	32.00	16.00	128.00	32.00	
19	-C ₆ H ₁₂ -		4.00	>256.00	4.00	8.00	
20	-C ₈ H ₁₆ -		16.00	>256.00	8.00	32.00	
21	C .		>256.00	128.00	>256.00	>256.00	
22	$-C_{2}H_{4}-$	\bigcirc	>256.00	32.00	>256.00	>256.00	
23	-C ₄ H ₈ -	N N	>256.00	>256.00	>256.00	>256.00	
24	-C ₆ H ₁₂ -		>256.00	>256.00	>256.00	>256.00	
25	1		> 256 00	129.00	> 256 00	64.00	
25	- C II	N∽N-Ն	>256.00	128.00	>256.00	04.00	
20	$-C_2H_4$ -		>230.00	8.00	>230.00	32.00	
21	-C4H8-		32.00 8.00	>230.00	32.00 256.00	52.00 22.00	
28	$-C_6H_{12}$ -		8.00	>256.00	256.00	32.00	
Enrofloxacin			2.00	1.00	8.00	2.00	
Norfloxacin			32.00	1.00	64.00	32.00	

"-" Means none carbon atom.

$O \qquad O \qquad O \qquad R^{1} \qquad R^{2}$							
	Sı	ubstituent group	p		MIC	(µM)	
Compound	D ¹	\mathbf{D}^2	D ³	Gram-ne	gative	Gram-po	ositive
	K	ĸ	ĸ	F.cloumnare	E. coli	S.agalactiae	S. aureus
29		NH2		>256.00		>256.00	
30		N N N N		64.00		32.00	
31	-C ₆ H ₁₂ -	HN J	Н	>256.00	Ċ	>256.00	
32		N-N-		>256.00	S	>256.00	
33		N		>256.00		>256.00	
34	-C ₆ H ₁₂ -	-Br	CH ₃	>256.00	>256.00	>256.00	>256.00
35		N N N		4.00	>256.00	8.00	64.00
36		N N N		4.00	>256.00	16.00	64.00
37	-C ₆ H ₁₂ -	N N Z	CH ₃	8.00	>256.00	8.00	32.00
38	0	N ^{N-L}		16.00	>256.00	16.00	32.00
39		N N N		32.00	64.00	32.00	32.00
Enrofloxacin				2.00	1.00	8.00	2.00
Norfloxacin				32.00	1.00	64.00	32.00

Table 2. MIC va	alues of o	coumarin	derivatives	29-39	
-----------------	------------	----------	-------------	-------	--

Table 3. MBC values	of coumarin	derivatives 1-28.

Substituent group		MBC (µM)				
Compound	\mathbf{p}^1	\mathbf{p}^1 \mathbf{p}^2 –		Gram-negative		ositive
	K	ĸ	F.cloumnare	E. coli	S.agalactiae	S. aureus
1	-		>256.00	>256.00	>256.00	>256.00
2	-C ₂ H ₄ -		>256.00	>256.00	>256.00	>256.00
3	$-C_4H_8-$	-Br	>256.00	>256.00	>256.00	>256.00
4	-C ₆ H ₁₂ -		>256.00	>256.00	>256.00	>256.00
5	-C ₈ H ₁₆ -		>256.00	>256.00	>256.00	>256.00
6	-		>256.00	256.00	>256.00	>256.00
7	-C ₂ H ₄ -	NANZ	>256.00	256.00	>256.00	256.00
8	$-C_4H_8-$		256.00	64.00	>256.00	64.00
9	$-C_6H_{12}-$		8.00	>256.00	16.00	128.00
10	$-C_8H_{16}-$		32.00	>256.00	16.00	128.00
11	-		>256.00	256.00	>256.00	>256.00
12	-C ₂ H ₄ -	y yr	>256.00	256.00	>256.00	256.00
13	$-C_4H_8-$	N ^{//} N [/]	32.00	64.00	256.00	256.00
14	-C ₆ H ₁₂ -		8.00	>256.00	16.00	128.00
15	-C ₈ H ₁₆ -		16.00	>256.00	16.00	128.00
16	-		>256.00	64.00	>256.00	>256.00
17	$-C_2H_4-$	NN	>256.00	32.00	>256.00	>256.00
18	$-C_4H_8-$		128.00	64.00	256.00	128.00
19	$-C_6H_{12}-$		8.00	>256.00	16.00	64.00
20	-C ₈ H ₁₆ -		16.00	>256.00	16.00	128.00
21	(-		>256.00	512.00	>256.00	>256.00
22	-C ₂ H ₄ -	Ģ	>256.00	128.00	>256.00	>256.00
23	-C ₄ H ₈ -	NNN	>256.00	>256.00	>256.00	>256.00
24	$-C_6H_{12}-$		>256.00	>256.00	>256.00	>256.00
X						
25	-	۰ ^۲	>256.00	256.00	>256.00	256.00
26	$-C_2H_4-$	N‴N⁻∿ \/	>256.00	64.00	>256.00	256.00
27	-C ₄ H ₈ -	$\langle \rangle$	128.00	>256.00	128.00	256.00
28	$-C_6H_{12}$ -	ت ــــَ	32.00	>256.00	512.00	128.00
Enrofloxacin			2.00	2.00	16.00	4.00
Norfloxacin			128.00	2.00	128.00	64.00

"-" Means none carbon atom.

$O O O R^{1} R^{2}$							
	Si	ubstituent group	R^3		MB	<u>ς (μΜ</u>)	
Compound			_ 3	Gram-neg	gative	Gram-p	ositive
-	R^1	\mathbf{R}^2	R	F.cloumnare	E. coli	S.agalactiae	S. aureus
29		NH2 ~~~		>256.00		>256.00	
30		N N N		128.00		64.00	
31	-C ₆ H ₁₂ -	HN	Н	>256.00		>256.00	
32		N-N ⁻		>256.00	5	>256.00	
33		N		>256.00		>256.00	
34	-C ₆ H ₁₂ -	-Br	CH ₃	>256.00	>256.00	>256.00	>256.00
35		N N N		16.00	>256.00	16.00	256.00
36		N N N		8.00	>256.00	16.00	256.00
37	-C ₆ H ₁₂ -	N N N	CH ₃	16.00	>256.00	32.00	256.00
38	0	N ^N ^N		64.00	>256.00	64.00	256.00
39		N N N N		64.00	128.00	64.00	256.00
Enrofloxacin				2.00	2.00	16.00	4.00
Norfloxacin				128.00	2.00	128.00	64.00

Table 4. MBC values of coumarin derivatives **29-39**.

Compound	Structure	FabI IC ₅₀	FabK IC ₅₀
Compound	Structure	(μM)	(μM)
9		158.12	2.74
10		>256	5.03
12		4.46	>256
13		1.20	3.44
14		111.55	1.13
15		107.70	4.21
18		1.35	3.59
19		116.53	1.75
20		114.84	4.37
30		79.53	7.68

Table 5. The IC₅₀ value of FabI and FabK enzyme catalytic activity inhibited by coumarin compounds.

Fig. 1

Fig. 2

Scheme 2

Highlights

Novel coumarin-imidazoles with antibacterial properties were synthesized.

Coumarin derivatives showed the antibacterial activity by inhibiting the FabI and FabK.

Structure-activity relationship showed the importance of the alkyl linker and imidazole.