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ABSTRACT
A new julolidine-fused coumarin-NBD prob2 for H,S detection is rationally
designed based on the DFT caculations. This imprquebe exhibits faster and

larger off-on response as well as higher sensitivity compareith whe previous

coumarin-NBD probel. Moreover, 2 possesses excellent selectivity and good

biocompatibility, which can be employed to imageSHin living cells and in

zebrafish.
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1. Introduction

H,S has long been known as a toxic gas, but recertiest indicate that
endogenously produced:8l has important physiological functions, which asned as
the third gasotransmitter after nitric oxide andbca monoxide [1]. In mammals,
endogenous $$ could be enzymatically produced by three distrecpathways,
including cystathionine g-synthase (CBS), cystathioning-lyase (CSE), and
3-mercaptopyruvate sulfur-transferase (3-MST) alamit) cysteine aminotransferase
(CAT) [2]. Accumulative evidence suggests thaiSHnfluences a wide range of
physiological and pathological processes, includimgdulation of blood vessel tone
and cardioprotection [3], endogenous stimulator amgiogenesis [4], and
mitochondrial bioenergetics [5]..8 inhibits nuclear factdkB activation in oxidized
low-density lipoprotein-stimulated macrophage [8}S also plays an important role
in tumor biology, and it is suggested that bothibriton of H,S biosynthesis and
elevation of HS concentration beyond a certain threshold coulerteanticancer
effects [4b,7]. In plants, ¥ participates in different processes includingdsee
germination, plant growth, development and acquoisiof stress tolerance [8-10].
Nevertheless, the pharmacological characters,& &hd the precise mechanisms by
which H,S may be involvedn vivo still remain largely unclear. Therefore, efficient
tools for visualization of biological ¥ should be useful in further exploring3
biology and even for diagnosis op$trelated diseases.

Fluorescence-based method has recently emerged asfieient approach for
in-situ and real-time detection of,B in living biological systems [11-19]. One major
challenge in the development of&iprobes is the discovery of a chemical reaction to
effectively separate the reactivity of biothiolsdar,S in augeous buffer. To address
this challenge, chemical reactions including nuglelic addition [12], HS-triggered
reduction [13], copper precipitation [14], thiolgsiof dinitrophenyl ether [15],
cleavage of C-N bonds (NBD amines) [16], thiolysfSNBD ethers/thioethers [17]
and cleavage of C=C bonds [18] have been succhssiulployed to develop these

molecular probes. For example, we reported theé HgS-specific fluorescence probe
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1 based on cleavage of C-N bonds [16a]. Stoke dhifif of detection (LOD) and
turn-on fluorescence fold (FI) of the prodewere 75 nm, 9uM, and 45-fold,
respectively, which are potentially disadvantage densing the biological 43 that
normally exists in the submicromolar level range.

Recently, Grimm et al. showed that replacing thH-Nialkyl group with azetidine
group can greatly improve the brightness and quranield of the fluorophores [22].
Yang et al. reported that blocking the twisting NiNthylamino group of coumarin
can improve the fluorescence properties of therflpbore, and in turn, enhance
sensing performances [23]. We envision that sucstitvg N,N-diethylamino group of
coumarin could also be employed for the developroéimhproved NBD-based probe.
Herein, we rationally design a new julolidine-fussalimarin-NBD probe for H,S
detection (Scheme. 1). To our delight, the prdbeshowed excellent sensing
performances with green-light emitting and was esstully used for bioimaging in

living cells and in zebrafish.
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Scheme. 1 Rational design of an improved fluorescence pralyeH,S detection based on the
thiolysis of NBD amine. a) The proldewas used for EB-specific detection with production of
blue-emittingla [16a]. b) The julolidine-fused coumarin-NBD dyddvas used for E5-specific
detection with production of green-emittidg and more than 200-foloff-on response during 13
activation.

2. Experimental section

2.1. Reagents and appar atus



All chemicals and solvents used for synthesis warehased from commercial
suppliers and used directly in the experiment withéurther purification (J&K
Scientific Ltd., Beijing, China)'H NMR and**C NMR spectra were recorded on a
Bruker 400 spectrometer with CDCICD,Cl, or DMSO+#s as solvent. Chemical
shifts are reported in parts per million, relatteeinternal standard tetramethylsilane
(0 = 0.00 ppm). High-resolution mass spectra (HRM®yenobtained on a 6520
Q-TOF LC/MS (Agilent, Santa Clara, CA). The UV-Wa spectra were recorded on
a CARY 100 Bio (Varian, USA). Fluorescence studysvearried out using Varian
Cary Eclipse spectrophotometer at 25 °C. The eelsafish bioimaging were

performed on a confocal microscope (Olympus FV10BQSAPO40X).

2.2. Synthesis of probe2
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Scheme 2. Synthesis route for prol#2 Reagents and conditions: a) diethyl malonategrgme,
CHsCN, reflux; b) Conc. HCI; c) 1-boc-piperazine, DAQVIAP, CH,Cl,; d) trifluoroacetic acid,
CH,Cl,; e) 4-chloro-7-nitro-1,2,3-benzoxadiazole;NEtCH,Cl,.

A solution of 8-hydroxyjulolidine-9-carboxaldehydd.36 g, 20 mmol), diethyl
malonate (6.41 g, 40 mmol) and piperidine (2 mLgthanol (60 mL) was refluxed
for 24 h. After cooled to room temperature, thevent was evaporated under vacuum
and the resulting residue was purified by columroetatography (petroleum ether:
ethyl acetate = 4: 1, v/v), yielding an oranged8l{4.95 g, 79%); mp 139-141 %t
NMR (400 MHz, DMSO€s) 6 8.38 (s, 1H), 7.17 (s, 1H), 4.21 @= 7.2 Hz, 2H),
3.34-3.28 (M, 4H), 2.75-2.64 (m, 4H), 1.93-1.80 4i), 1.27 (tJ = 7.2 Hz, 3H).

A solution of 3 (2.0 g, 6.38 mmol) in concentrated HCI solution {@2Q) was
stirred at 25 °C for 24 h. After the reaction wampleted, water (100 mL) was added
to the solution. The mixture was extracted by etmgtate (50 mL) for three times,

the combined organic layer was washed bOH50 mL) and brine, dried over
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anhydrous Ng50O, and concentered under reduced pressure to affongp@und4 as
orange solid (1.55 g, 85%), mp 223-225 4 NMR (400 MHz, DMSOds) 6 12.20
(bs, 1H), 8.46 (s, 1H), 7.24 (s, 1H), 2.72 (dd; 13.2, 6.8 Hz, 4H), 2.51-2.50 (m, 4H),
1.95-1.81 (m, 4H).

A solution of4 (1.0 g, 3.5 mmol), 1-boc-piperazine (0.65 g, 3raat), DCC (1.1 g,
5.26 mmol) and DMAP (4.9 mg, 0.04 mmol) in &b (20 mL) was stirred at room
temperature for 12 h. After the reaction was coneplethe precipitation was filtrated,
and the solvent was removed under reduced pres$tee.resulting residue was
subjected to column chromatography on silica, yngjch yellow solid powder (1.46 g,
92%), which was further treated with 40 mL TFA/&CHL (v/iv= 1/1). After stirred at
room temperature for 3 h, the solvent was removetkbuthe reduced pressure and
the residue was purified by the column to afforéimediate?a (0.65 g, yield 83%),
mp 185-187 °C*H NMR (400 MHz, CDCY) 6 7.81 (s, 1H), 6.90 (s, 1H), 3.86 (bs,
2H), 3.50 (bs, 2H), 3.31 (dd,= 10.8, 5.2 Hz, 4H), 3.09 (bs, 4H), 2.87t 6.4 Hz,
2H), 2.76 (tJ = 6.4 Hz, 2H), 2.02-1.92 (m, 4H). HRMS (ESI): i354.1815 [M+H]
(calcd for GgH24N305", 354.1812).

A mixture of intermediat@a (130 mg, 0.37 mmol), NBD-CI (73.4 mg, 0.37 mmol)
and EtN (100 uL) in CH.Cl, (20 mL) was stirred at room temperature overnight.
After removed the solvent under reduced pressheeresulting residue was subjected
to column chromatography on silica (1% MeOH in L£CH), yielding a red solid
(173 mg, 91%), mp 249-251 °¢4 NMR (400 MHz, CDCl,) 6 8.45 (d,J = 8.8 Hz,
1H), 7.84 (s, 1H), 6.96 (s, 1H), 6.35 (= 8.8 Hz, 1H), 4.21 (s, 4H), 3.97 (s, 2H),
3.71 (s, 2H), 3.37-3.27 (m, 4H), 2.86 Jt= 6.4 Hz, 2H), 2.77 (t) = 6.0 Hz, 2H),
2.06-1.94 (m, 4H).13C NMR (101 MHz, CDQCl,) 6 165.78, 159.46, 152.56, 147.51,
146.11, 145.21, 145.13, 144.95, 135.23, 126.07,0124119.58, 113.99, 107.70,
106.12, 102.91, 50.24, 49.82, 29.76, 27.50, 2129836, 20.17. HRMS (ESI): m/z
299.1006 [M+H] (calcd for G4H14FsN,0,", 299.1002).

2.3. General procedure for spectroscopic studies

Studies were carried out in degassed phosphaterb(FB, 20 mM, pH 7.4).
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Probes were dissolved into DMSO to prepare thekssotutions (5 mM). For the
selectivity study, biologically relevant moleculegre prepared as stock solutions of
500 mM, then appropriate amount of species wereado separate portions of the
probe solution and mixed thoroughly. Each reactiirture was shaken uniformly
before emission spectra were measured. All measmsmvere performed in a 3 mL
corvette with 2 mL solution. Excitation, 448 nm; iesion, 496 nm. The fluorescent
guantum vyields for probesl, la, 2 and 2a were determined using
6-amino-2-butyl-1H-benzo[delisoquinoline-1,3(2Hpde @ = 0.13, PB, 20 mM, pH
7.4) as the standard substance [20]. Time-resdluedescence decay measurements
were carried out at room temperature on a picoskdmde-laser-based,
time-correlated single-photon-counting (TCSPC) feszence spectrometer (FLS
980). All tested samples were dissolved in MeOHitsah. All the decays were fitted

to a double exponential function.

2.4. DFT calculations
DFT calculations of selected compounds were perdrmsing the Gaussian 09
software package [21]. Geometry optimizations anscaled frequency calculations

were carried out at the B3LYP/6-31G* level of theor

Compd. | HOMO/ev| LUMO/ev | AE/eV | Ag/nm | Aefnm | LOD/UM 0] 1(ns)
1 -5.78 -2.69 3.08 405 480 9 0.000073 ND
la -5.44 -1.61 3.83 405 480 / 0.017 3.53
2 -5.59 -2.69 2.90 449 496 0.9 0.00083 ND
2a -5.19 -1.50 3.69 449 496 / 0.81 6.27

Table 1. Summary of frontier molecular orbital energy anudical properties of, 1a, 2, 2a.

2.5. Cédll culture and fluorescence imaging

A549 cells were cultured at 37 °C, 5% £@ F12 supplemented with 10% fetal
bovine serum (FBS), 100 U/ml penicillin, 10&/ml streptomycin, and 4 mM
L-glutamine. HEK-293A cells were cultured at 37 & CQ in DMEM/HIGH
GLUCOSE (GIBICO) supplemented with 10% fetal bovserum (FBS), 100 U/ml
penicillin, 100 pg/ml streptomycin, and 4 mM L-glutamine. The -cellgere
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maintained in exponential growth, and then seedegfass-bottom 35 mm plate at the
density about 2 x TO/well. Cells were passaged every 2-3 days and bsésleen
passages 3 and 10. For living cell imaging, ceksenfirst incubated with N& (100
uM) for 30 min at 37 °C. Then, removed the culturedmm and washed the cells
with PB (10 mM, pH 7.4) for three times, and trelaveth probe2 (10 uM) for 30
min at 37 °C. While the control cells were onlyated with probe at 37 °C for 30

min. Emission was collected at green channel (38®+Bn) under 405 nm excitation.

2.6. Fluorescence imaging of zebrafish

Zebrafishes, 3-7 days postfertilization, were pasgd from Eze-Rinka Company
(Nanjing, China). The zebrafishes were cultured5inmL of embryo medium
supplemented with 1-phenyl-2-thiourea (PTU) in Ghpkates for 24 h at 30 °C. Then
the zebrafish was incubated with #8a(200uM) or L-Cys (200uM) for 4 h. After
removed the embryo medium and washed the zebnaftehPB (10 mM, pH 7.4) for
three times, the zebrafish was further incubatet psiobe2 (10 uM) for 1 h at 30 °C,

and then imaged.

3. Resultsand discussion
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Fig. 1.0ptimized structures and frontier orbital energyi@), 1a (b), 2(c), and2a(d). Data were
calculated by Gaussian 09 with B3LYP/6-31G(d) level

To better understand the superiority of pr@ever probel in this work, density
functional theory (DFT) calculations were perform&d shown in Table 1 and Fig. 1,

the energy difference\g) of the highest occupied molecular orbital (HOM&DY the
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lowest unoccupied molecular orbital (LUMO) of preldeand2 are 3.08 eV and 2.90
eV, respectively, which are lower than thatlaf(AE = 3.83 ev) an@a (AE = 3.69 ev),
suggesting that fluorescence resonance energyfarat$RET) could occur between
coumarin and NBD within both probes. Fluorescerfceoomarin and absorbance of
NBD have an obvious overlap (Fig. S1), which algspp®rts the possible occurrence
of the FRET effect between the two fluorophores.e Ténergy difference of
fluorophore2a is lower thanla, suggesting that under light excitation, the etett
of 2a in HOMO orbital can be more easily transferred.t¥MO orbital thanla to
give longer emission wavelength. Moreover, the tedbeedensity in the HOMO or
LUMO orbital is much different foRa, implying that there is an electron flow within
coumarin with a large intramolecular charge trangf€T) effect. Inspired by the
calculation results, we determined to synthesipbg?2 for H,S sensing.

Probe2 can be smoothly prepared in a five-step synthesissing julolidine-fused
phenyl 3-carbaldehydeas the starting material witbtal yield of 47% (Scheme 2).
The probe2 was well characterized By and**C{1H} NMR spectroscopy as well as
high-resolution mass spectrometry (HRMS). The sgnsnechanism of the prolie
should be the thiolysis of NBD amine [16], whichsa@nfirmed by HRMS (Fig. S2).
The time-dependent absorbance spectr@ ofith H,S also implied the thiolysis
product NBS-SH (Fig. S3) [17b].

With probe2 in hand, we first tested the fluorescence of pbethe absence and
presence of 8. The result showed that prabexhibited nearly non-fluorescence (
= 0.00083) in the PB buffer (20 mM, pH 7.4) compiate that of its fluorophor@a
(@ = 0.81). This should be majorly due to the stronictamolecular FRET effect if,
though the photo-induced electron transfer (PETyveen nitro group in NBD and
coumarin could also contribute to a certain quemgleffect [16d]. Upon reaction
with H,S, the FRET effect disappeared and significantréscence increase was
observed for the prob2 implying the great potency for,B sensing. The emission

peak of fluorophor@a was 496 nm, showing a notable red shift thandhaa.
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Fig. 2. (A) Time-dependent spectra change2dbuM) when treated with N& (500uM) in PB
buffer (20 mM, pH 7.4) at room temperature. Inpéibtographs o2 without (left) and with (right)
NaS under UV analyzeigx = 365 nm). (B) Time-dependent fluorescent intgnait496 nmof

in the absence (red dot) or presence (back daf,8fThe red line represents the best fitting to
give koys Of 0.23 min'. (C) Spectra change @f(5 uM) when treated with N& (0-500uM) in PB
buffer (20 mM, pH 7.4) at room temperature. (D) Tlnerescence life-time dfa and2a.

Encouraged by the primary results, we examinedithe-dependent fluorescence
response oPwith H,S (NaS was used as an equivalent). As shown in Fig. 2A,
strong emission peak appeared at 496 nm. The #oer¢ intensity of increased
about 40-fold within 1 min; and the fluorescencacied the steady state at 15 min
with more than 200-fold intensity enhancement & Aéh (Fig. 2B). The LOD o2
for H,S detection was determined as M using the 3/k method [16]. Compared to
its parent probd, probe2 showed much improved response tihedd min vs.2: 15
min), LOD (1: 9 uM vs. 2: 0.9 uM) and fluorescent enhancemeft 45 folds vs.2:
200 folds). Specifically, compared wifla (¢ = 0.017), the quantum yield @& (@ =

0.81) improved more than 47 folds, and the fluazese life-time oRa (r = 6.27 ns)
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was also much longer thd@a (r = 3.53 ns) (Fig. 2D and Table 1). These data are
consistent with the theoretical calculations, iatiieg that the twisting-blockage of
N,N-diethylamino group can significantly improve ethperformances of the

fluorescence prob2
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[ probe+H_S+species
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Fig. 3. Fluorescence intensity at 496 nm2qbuM) upon reacting with species (1 mM, black bar)
or H;S and species (1 mM, red bar) in PB (pH 7.4) fomli&: 1)2 only; 2) SQ%; 3) CHCOO; 4)
C2042'; 5) F; 6) NO,; 7) I; 8) HCGs; 9) H,O,; 10) CIO; 11) Cys; 12) Hey; 13) GSH; 14)
mercaptoethanol.

One of the major requirements for a fluorescentbercs that it must exhibit a
selective response towards the targeted analytesdbdor other competing species.
In order to confirm that the turn-on response avas selectively caused by.$ we
investigated the selectivity @against other commonly encountered analytes (Fig. 3
Different biologically relevant species, such ag’S@nercaptoethanol, GSH, cysteine,
Hcy, H0O,, CIO, CHCOO, C,0,%, NO,, F, I and HCQ were evaluated. The
results showed that prol2eexhibited high selectivity toward 23 among the selected
analytes. Although four species (mercaptoethan@O¥ I and SG%) induced a
slight fluorescence enhancement, which was mucledow comparison with that of
H,S. We also tested the fluorescence of the probe tivése analytes in the presence

of HoS (Fig. 3, red bar). The results implied that akilgtes did not interfere with the
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selective sensing of the probe towargSHFurthermore, pH-dependent experiment
indicated tha® could sense 6 within a wide pH range 6-11 (Fig. S4). Obviously,
the largest fluorescence enhancement was appeaaeduad pH 7.4, suggesting that
2 could work efficiently at physiological conditions.

Inspired by the excellent properties of pr@yave further explored its feasibility in
detection of HS in living biological systems. Firstly, methyl #éziolyl tetrazolium
(MTT) assays were carried out, which indicated tRadlid not possess obvious
cytotoxicity against HEK293A cells even at the cemtcation up to 2@M (Fig. S5).
Subsequently, we examined whetl2ecould be used to detect intracellulagSHin
living cells. HEK293A cells were incubated with #a(100 uM) for 30 min, washed
by PB, then stained witl2 (10 uM) and imaged using a confocal fluorescence
microscopy immediately. Cells incubated wit{10 puM) alone were used as control
experiment. The results indicated that no fluoreseevas observed f@loaded cells
(Fig. 4A), while cells treated with 33 showed significantly bright green fluorescence
(Fig 4B). Similar tests were also performed in A®&s (Fig. 4C, 4D). The results
suggest that prob2 is cell-permeable and can be used for imaging £8 H both

A549 and HEK293A cells.

Fig. 4. Fluorescence images for exogenouS Hetection in HEK293A and A549 cells usibdd)

HEK293A Cells were incubated with(10 uM) for 30 min and imaged in fluorescence lafid

bright field (right). B) HEK293A Cells were inculeat with NaS (100 uM) for 30 min, washed,

then treated witl2 (10 pM) for 30 min and imaged in fluorescence Ylaftd bright-field (right). C)

A549 Cells were incubated with(10 pM) for 30 min and imaged in fluorescence Ylafid bright

field (right). D) A549 Cells were incubated with }$a(100 uM) for 30 min, washed, then treated
11



with 2 (10 uM) for 30 min and imaged in fluorescence Ylaftd bright-field (right).

Encouraging with these results, we further deteechithe applicability of prob2
in visualizing BHS in vivo, and zebrafish larvae were selected as the bxdbgiodel
[19c]. The zebrafish was first incubated walior 1 h, washed, and then treated with
Na&S (200 uM) for another 4 h. The zebrafish stained w&halone was used as
control group. As shown in Fig. 5A, no obvious flescence was observed in the
2-loaded control group, whereas a strong green dkgmnce was seen in venter and
eyes of the bEB-treated zebrafish (Fig. 5B). These results intpit probe2 can be
used to visualize $B in vivo. To further explore the potential & in sensing
endogenous % in situ, L-Cys (20@M) was introduced to th2-stained zebrafish. To
our delight, a significant green fluorescence enbarent was observed in the eyes
and the venter of the larva (Fig. 5C). The locatiohH,;S in zebrafish observed by us

are in consisted with the reported literature [2ZBdken together, the above results

indicated that prob2is an effective tool for k& detection in the living organisms.

A) B) C)

| +Na-S +L-Cys

e

e

Fig. 5. Confocal microscopy images for exogenous and &-@gluced endogenous$idetection
in zebrafish larvae. A) The zebrafish was incubatétl probe2 (10 uM) for 1 h and imaged in
green field (up) and bright field (down). B) Thebrafish was incubated with proBg10 uM) for
1 h, then with Ng& (200uM) for 4 h and imaged in green field (up) and btigéld (down). C)
The zebrafish was incubated with préb€ 0 uM) for 1 h, then with L-Cys (20QiM) for another
4 h, and imaged in green field (up) and brightfi@own).
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4. Conclusion

In summary, we rationally designed a julolidineddscoumarin-based prolie
based on DFT calculations. This new probe is higleective and sensitive towards
H,S, and can be used fop$idetection in living cells and in zebrafish. Congaato
its parent probd, probe2 shows significantly improved properties, includilogver
LOD, higher fluorescence response and higher $eihsiiThis work further indicates
that the twisting-blockage of N,N-diethylamino gpogan significantly improve the
sensing performances of the fluorescence probeswork not only offers a useful
strategy to enhance the properties gSHluorescence probes, but also provides an

excellent probe tool for imaging of.8 in living biological systems.
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A new julolidine-fused coumarin-NBD probe for H,S detection is rationally
designed based on the DFT caculations.

This new probe exhibits faster and larger off-on response as well as higher
sensitivity compared with the previous coumarin-NBD probe.

This new probe possesses excellent selectivity and good biocompatibility, which

can be employed to image H,S in living cells and in zebrafish.



