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A B S T R A C T 

A new julolidine-fused coumarin-NBD probe 2 for H2S detection is rationally 

designed based on the DFT caculations. This improved probe exhibits faster and 

larger off-on response as well as higher sensitivity compared with the previous 

coumarin-NBD probe 1. Moreover, 2 possesses excellent selectivity and good 

biocompatibility, which can be employed to image H2S in living cells and in 

zebrafish. 

 

Keywords: Julolidine-fused coumarin-NBD probe, H2S detection, Cell imaging, 

Zebrafish imaging 
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1. Introduction 

H2S has long been known as a toxic gas, but recent studies indicate that 

endogenously produced H2S has important physiological functions, which is named as 

the third gasotransmitter after nitric oxide and carbon monoxide [1]. In mammals, 

endogenous H2S could be enzymatically produced by three distinctive pathways, 

including cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 

3-mercaptopyruvate sulfur-transferase (3-MST) along with cysteine aminotransferase 

(CAT) [2]. Accumulative evidence suggests that H2S influences a wide range of 

physiological and pathological processes, including modulation of blood vessel tone 

and cardioprotection [3], endogenous stimulator of angiogenesis [4], and 

mitochondrial bioenergetics [5]. H2S inhibits nuclear factor-kB activation in oxidized 

low-density lipoprotein-stimulated macrophage [6]. H2S also plays an important role 

in tumor biology, and it is suggested that both inhibition of H2S biosynthesis and 

elevation of H2S concentration beyond a certain threshold could exert anticancer 

effects [4b,7]. In plants, H2S participates in different processes including seed 

germination, plant growth, development and acquisition of stress tolerance [8-10]. 

Nevertheless, the pharmacological characters of H2S and the precise mechanisms by 

which H2S may be involved in vivo still remain largely unclear. Therefore, efficient 

tools for visualization of biological H2S should be useful in further exploring H2S 

biology and even for diagnosis of H2S-related diseases. 

Fluorescence-based method has recently emerged as an efficient approach for 

in-situ and real-time detection of H2S in living biological systems [11-19]. One major 

challenge in the development of H2S probes is the discovery of a chemical reaction to 

effectively separate the reactivity of biothiols and H2S in auqeous buffer. To address 

this challenge, chemical reactions including nucleophilic addition [12], H2S-triggered 

reduction [13], copper precipitation [14], thiolysis of dinitrophenyl ether [15], 

cleavage of C-N bonds (NBD amines) [16], thiolysis of NBD ethers/thioethers [17] 

and cleavage of C=C bonds [18] have been successfully employed to develop these 

molecular probes. For example, we reported the first H2S-specific fluorescence probe 
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1 based on cleavage of C-N bonds [16a]. Stoke shift, limit of detection (LOD) and 

turn-on fluorescence fold (FI) of the probe 1 were 75 nm, 9 µM, and 45-fold, 

respectively, which are potentially disadvantage for sensing the biological H2S that 

normally exists in the submicromolar level range. 

Recently, Grimm et al. showed that replacing the N,N-dialkyl group with azetidine 

group can greatly improve the brightness and quantum yield of the fluorophores [22]. 

Yang et al. reported that blocking the twisting N,N-diethylamino group of coumarin 

can improve the fluorescence properties of the fluorophore, and in turn, enhance 

sensing performances [23]. We envision that such twisting N,N-diethylamino group of 

coumarin could also be employed for the development of improved NBD-based probe. 

Herein, we rationally design a new julolidine-fused coumarin-NBD probe 2 for H2S 

detection (Scheme. 1). To our delight, the probe 2 showed excellent sensing 

performances with green-light emitting and was successfully used for bioimaging in 

living cells and in zebrafish. 

 

 

Scheme. 1 Rational design of an improved fluorescence probe for H2S detection based on the 

thiolysis of NBD amine. a) The probe 1 was used for H2S-specific detection with production of 

blue-emitting 1a [16a]. b) The julolidine-fused coumarin-NBD dyad 2 was used for H2S-specific 

detection with production of green-emitting 2a and more than 200-fold off-on response during H2S 

activation. 

 

2. Experimental section 

2.1. Reagents and apparatus 
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All chemicals and solvents used for synthesis were purchased from commercial 

suppliers and used directly in the experiment without further purification (J&K 

Scientific Ltd., Beijing, China). 1H NMR and 13C NMR spectra were recorded on a 

Bruker 400 spectrometer with CDCl3, CD2Cl2 or DMSO-d6 as solvent. Chemical 

shifts are reported in parts per million, relative to internal standard tetramethylsilane 

(δ = 0.00 ppm). High-resolution mass spectra (HRMS) were obtained on a 6520 

Q-TOF LC/MS (Agilent, Santa Clara, CA). The UV-visible spectra were recorded on 

a CARY 100 Bio (Varian, USA). Fluorescence study was carried out using Varian 

Cary Eclipse spectrophotometer at 25 °C. The cells/zebrafish bioimaging were 

performed on a confocal microscope (Olympus FV1000 UPLSAPO40X). 

 

2.2. Synthesis of probe2 

 
Scheme 2. Synthesis route for probe 2. Reagents and conditions: a) diethyl malonate, piperidine, 

CH3CN, reflux; b) Conc. HCl; c) 1-boc-piperazine, DCC, DMAP, CH2Cl2; d) trifluoroacetic acid, 

CH2Cl2; e) 4-chloro-7-nitro-1,2,3-benzoxadiazole, Et3N, CH2Cl2. 

 

A solution of 8-hydroxyjulolidine-9-carboxaldehyde (4.36 g, 20 mmol), diethyl 

malonate (6.41 g, 40 mmol) and piperidine (2 mL) in ethanol (60 mL) was refluxed 

for 24 h. After cooled to room temperature, the solvent was evaporated under vacuum 

and the resulting residue was purified by column chromatography (petroleum ether: 

ethyl acetate = 4: 1, v/v), yielding an orange solid 3 (4.95 g, 79%); mp 139-141 ºC;1H 

NMR (400 MHz, DMSO-d6) δ 8.38 (s, 1H), 7.17 (s, 1H), 4.21 (q, J = 7.2 Hz, 2H), 

3.34-3.28 (m, 4H), 2.75-2.64 (m, 4H), 1.93-1.80 (m, 4H), 1.27 (t, J = 7.2 Hz, 3H). 

A solution of 3 (2.0 g, 6.38 mmol) in concentrated HCl solution (20 mL) was 

stirred at 25 ºC for 24 h. After the reaction was completed, water (100 mL) was added 

to the solution. The mixture was extracted by ethyl acetate (50 mL) for three times, 

the combined organic layer was washed by H2O (50 mL) and brine, dried over 
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anhydrous Na2SO4 and concentered under reduced pressure to afford compound 4 as 

orange solid (1.55 g, 85%), mp 223-225 ºC, 1H NMR (400 MHz, DMSO-d6) δ 12.20 

(bs, 1H), 8.46 (s, 1H), 7.24 (s, 1H), 2.72 (dd, J = 13.2, 6.8 Hz, 4H), 2.51-2.50 (m, 4H), 

1.95-1.81 (m, 4H). 

A solution of 4 (1.0 g, 3.5 mmol), 1-boc-piperazine (0.65 g, 3.5 mmol), DCC (1.1 g, 

5.26 mmol) and DMAP (4.9 mg, 0.04 mmol) in CH2Cl2 (20 mL) was stirred at room 

temperature for 12 h. After the reaction was completed, the precipitation was filtrated, 

and the solvent was removed under reduced pressure. The resulting residue was 

subjected to column chromatography on silica, yielding a yellow solid powder (1.46 g, 

92%), which was further treated with 40 mL TFA/CH2Cl2 (v/v= 1/1). After stirred at 

room temperature for 3 h, the solvent was removed under the reduced pressure and 

the residue was purified by the column to afford intermediate 2a (0.65 g, yield 83%), 

mp 185-187 ºC, 1H NMR (400 MHz, CDCl3) δ 7.81 (s, 1H), 6.90 (s, 1H), 3.86 (bs, 

2H), 3.50 (bs, 2H), 3.31 (dd, J = 10.8, 5.2 Hz, 4H), 3.09 (bs, 4H), 2.87 (t, J = 6.4 Hz, 

2H), 2.76 (t, J = 6.4 Hz, 2H), 2.02-1.92 (m, 4H). HRMS (ESI): m/z 354.1815 [M+H]+ 

(calcd for C20H24N3O3
+, 354.1812). 

A mixture of intermediate 2a (130 mg, 0.37 mmol), NBD-Cl (73.4 mg, 0.37 mmol) 

and Et3N (100 µL) in CH2Cl2 (20 mL) was stirred at room temperature overnight. 

After removed the solvent under reduced pressure, the resulting residue was subjected 

to column chromatography on silica (1% MeOH in CH2Cl2), yielding a red solid 2 

(173 mg, 91%), mp 249-251 ºC, 1H NMR (400 MHz, CD2Cl2) δ 8.45 (d, J = 8.8 Hz, 

1H), 7.84 (s, 1H), 6.96 (s, 1H), 6.35 (d, J = 8.8 Hz, 1H), 4.21 (s, 4H), 3.97 (s, 2H), 

3.71 (s, 2H), 3.37-3.27 (m, 4H), 2.86 (t, J = 6.4 Hz, 2H), 2.77 (t, J = 6.0 Hz, 2H), 

2.06-1.94 (m, 4H). 13C NMR (101 MHz, CD2Cl2) δ 165.78, 159.46, 152.56, 147.51, 

146.11, 145.21, 145.13, 144.95, 135.23, 126.07, 124.01, 119.58, 113.99, 107.70, 

106.12, 102.91, 50.24, 49.82, 29.76, 27.50, 21.28, 20.36, 20.17. HRMS (ESI): m/z 

299.1006 [M+H]+ (calcd for C14H14F3N2O2
+, 299.1002). 

 

2.3. General procedure for spectroscopic studies 

Studies were carried out in degassed phosphate-buffer (PB, 20 mM, pH 7.4). 
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Probes were dissolved into DMSO to prepare the stock solutions (5 mM). For the 

selectivity study, biologically relevant molecules were prepared as stock solutions of 

500 mM, then appropriate amount of species were added to separate portions of the 

probe solution and mixed thoroughly. Each reaction mixture was shaken uniformly 

before emission spectra were measured. All measurements were performed in a 3 mL 

corvette with 2 mL solution. Excitation, 448 nm; emission, 496 nm. The fluorescent 

quantum yields for probes 1, 1a, 2 and 2a were determined using 

6-amino-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (Φ = 0.13, PB, 20 mM, pH 

7.4) as the standard substance [20]. Time-resolved fluorescence decay measurements 

were carried out at room temperature on a picosecond-diode-laser-based, 

time-correlated single-photon-counting (TCSPC) fluorescence spectrometer (FLS 

980). All tested samples were dissolved in MeOH solution. All the decays were fitted 

to a double exponential function. 

 

2.4. DFT calculations 

DFT calculations of selected compounds were performed using the Gaussian 09 

software package [21]. Geometry optimizations and unscaled frequency calculations 

were carried out at the B3LYP/6-31G* level of theory. 

Compd. HOMO/ev LUMO/ev ∆E/ev λex/nm λem/nm LOD/µM Φ τ(ns) 

1 -5.78 -2.69 3.08 405 480 9 0.000073 ND 

1a -5.44 -1.61 3.83 405 480 / 0.017 3.53 

2 -5.59 -2.69 2.90 449 496 0.9 0.00083 ND 

2a -5.19 -1.50 3.69 449 496 / 0.81 6.27 

Table 1. Summary of frontier molecular orbital energy and optical properties of 1, 1a, 2, 2a. 

 

2.5. Cell culture and fluorescence imaging 

A549 cells were cultured at 37 ºC, 5% CO2 in F12 supplemented with 10% fetal 

bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin, and 4 mM 

L-glutamine. HEK-293A cells were cultured at 37 ºC, 5% CO2 in DMEM/HIGH 

GLUCOSE (GIBICO) supplemented with 10% fetal bovine serum (FBS), 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 4 mM L-glutamine. The cells were 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

maintained in exponential growth, and then seeded in glass-bottom 35 mm plate at the 

density about 2 × 104 /well. Cells were passaged every 2-3 days and used between 

passages 3 and 10. For living cell imaging, cells were first incubated with Na2S (100 

µM) for 30 min at 37 °C. Then, removed the culture medium and washed the cells 

with PB (10 mM, pH 7.4) for three times, and treated with probe 2 (10 µM) for 30 

min at 37 ºC. While the control cells were only treated with probe 2 at 37 ºC for 30 

min. Emission was collected at green channel (510-550 nm) under 405 nm excitation.  

 

2.6. Fluorescence imaging of zebrafish 

Zebrafishes, 3-7 days postfertilization, were purchased from Eze-Rinka Company 

(Nanjing, China). The zebrafishes were cultured in 5 mL of embryo medium 

supplemented with 1-phenyl-2-thiourea (PTU) in 6-well plates for 24 h at 30 °C. Then 

the zebrafish was incubated with Na2S (200 µM) or L-Cys (200 µM) for 4 h. After 

removed the embryo medium and washed the zebrafish with PB (10 mM, pH 7.4) for 

three times, the zebrafish was further incubated with probe 2 (10 µM) for 1 h at 30 °C, 

and then imaged.  

 

3. Results and discussion 

 
Fig. 1.Optimized structures and frontier orbital energy of 1(a), 1a (b), 2(c), and 2a(d). Data were 

calculated by Gaussian 09 with B3LYP/6-31G(d) level. 

 

To better understand the superiority of probe 2 over probe 1 in this work, density 

functional theory (DFT) calculations were performed. As shown in Table 1 and Fig. 1, 

the energy difference (∆E) of the highest occupied molecular orbital (HOMO) and the 
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lowest unoccupied molecular orbital (LUMO) of probes 1 and 2 are 3.08 eV and 2.90 

eV, respectively, which are lower than that of 1a (∆E = 3.83 ev) and 2a (∆E = 3.69 ev), 

suggesting that fluorescence resonance energy transfer (FRET) could occur between 

coumarin and NBD within both probes. Fluorescence of coumarin and absorbance of 

NBD have an obvious overlap (Fig. S1), which also supports the possible occurrence 

of the FRET effect between the two fluorophores. The energy difference of 

fluorophore 2a is lower than 1a, suggesting that under light excitation, the electrons 

of 2a in HOMO orbital can be more easily transferred to LUMO orbital than 1a to 

give longer emission wavelength. Moreover, the electron-density in the HOMO or 

LUMO orbital is much different for 2a, implying that there is an electron flow within 

coumarin with a large intramolecular charge transfer (ICT) effect. Inspired by the 

calculation results, we determined to synthesize probe 2 for H2S sensing. 

Probe 2 can be smoothly prepared in a five-step synthesis by using julolidine-fused 

phenyl 3-carbaldehydeas the starting material with a total yield of 47% (Scheme 2). 

The probe 2 was well characterized by 1H and 13C{1H} NMR spectroscopy as well as 

high-resolution mass spectrometry (HRMS). The sensing mechanism of the probe 2 

should be the thiolysis of NBD amine [16], which was confirmed by HRMS (Fig. S2). 

The time-dependent absorbance spectra of 2 with H2S also implied the thiolysis 

product NBS-SH (Fig. S3) [17b]. 

With probe 2 in hand, we first tested the fluorescence of probe 2 in the absence and 

presence of H2S. The result showed that probe 2 exhibited nearly non-fluorescence (Φ 

= 0.00083) in the PB buffer (20 mM, pH 7.4) compared to that of its fluorophore 2a 

(Φ = 0.81). This should be majorly due to the strong intramolecular FRET effect in 2, 

though the photo-induced electron transfer (PET) between nitro group in NBD and 

coumarin could also contribute to a certain quenching effect [16d]. Upon reaction 

with H2S, the FRET effect disappeared and significant fluorescence increase was 

observed for the probe 2, implying the great potency for H2S sensing. The emission 

peak of fluorophore 2a was 496 nm, showing a notable red shift than that of 1a. 
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Fig. 2. (A) Time-dependent spectra change of 2 (5µM) when treated with Na2S (500 µM) in PB 

buffer (20 mM, pH 7.4) at room temperature. Inset: photographs of 2 without (left) and with (right) 

Na2S under UV analyzer (λex = 365 nm). (B) Time-dependent fluorescent intensity at 496 nmof 2 

in the absence (red dot) or presence (back dot) of H2S.The red line represents the best fitting to 

give kobs of 0.23 min-1. (C) Spectra change of 2 (5 µM) when treated with Na2S (0-500 µM) in PB 

buffer (20 mM, pH 7.4) at room temperature. (D) The fluorescence life-time of 1a and 2a.  

 

Encouraged by the primary results, we examined the time-dependent fluorescence 

response of 2with H2S (Na2S was used as an equivalent). As shown in Fig. 2A, a 

strong emission peak appeared at 496 nm. The fluorescent intensity of 2 increased 

about 40-fold within 1 min; and the fluorescence reached the steady state at 15 min 

with more than 200-fold intensity enhancement at 496 nm (Fig. 2B). The LOD of 2 

for H2S detection was determined as 0.9 µM using the 3σ/k method [16]. Compared to 

its parent probe 1, probe 2 showed much improved response time (1: 45 min vs. 2: 15 

min), LOD (1: 9 µM vs. 2: 0.9 µM) and fluorescent enhancement (1: 45 folds vs. 2: 

200 folds). Specifically, compared with 1a (Φ = 0.017), the quantum yield of 2a (Φ = 

0.81) improved more than 47 folds, and the fluorescence life-time of 2a (τ = 6.27 ns) 
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was also much longer than 1a (τ = 3.53 ns) (Fig. 2D and Table 1). These data are 

consistent with the theoretical calculations, indicating that the twisting-blockage of 

N,N-diethylamino group can significantly improve the performances of the 

fluorescence probe 2. 

 
Fig. 3. Fluorescence intensity at 496 nm of 2 (5µM) upon reacting with species (1 mM, black bar) 

or H2S and species (1 mM, red bar) in PB (pH 7.4) for 15 min: 1) 2 only; 2) SO3
2-; 3) CH3COO-; 4) 

C2O4
2-; 5) F-; 6) NO2

-; 7) I-; 8) HCO3
-; 9) H2O2; 10) ClO-; 11) Cys; 12) Hcy; 13) GSH; 14) 

mercaptoethanol. 

 

One of the major requirements for a fluorescent probe is that it must exhibit a 

selective response towards the targeted analytes but not for other competing species. 

In order to confirm that the turn-on response of 2 was selectively caused by H2S, we 

investigated the selectivity of 2 against other commonly encountered analytes (Fig. 3). 

Different biologically relevant species, such as SO3
2-, mercaptoethanol, GSH, cysteine, 

Hcy, H2O2, ClO-, CH3COO-, C2O4
2-, NO2

-, F-, I- and HCO3
- were evaluated. The 

results showed that probe 2 exhibited high selectivity toward H2S among the selected 

analytes. Although four species (mercaptoethanol, HCO3
-, I- and SO3

2-) induced a 

slight fluorescence enhancement, which was much lower in comparison with that of 

H2S. We also tested the fluorescence of the probe with these analytes in the presence 

of H2S (Fig. 3, red bar). The results implied that all analytes did not interfere with the 
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selective sensing of the probe toward H2S. Furthermore, pH-dependent experiment 

indicated that 2 could sense H2S within a wide pH range 6-11 (Fig. S4). Obviously, 

the largest fluorescence enhancement was appeared at around pH 7.4, suggesting that 

2 could work efficiently at physiological conditions. 

Inspired by the excellent properties of probe 2, we further explored its feasibility in 

detection of H2S in living biological systems. Firstly, methyl thiazolyl tetrazolium 

(MTT) assays were carried out, which indicated that 2 did not possess obvious 

cytotoxicity against HEK293A cells even at the concentration up to 20 µM (Fig. S5). 

Subsequently, we examined whether 2 could be used to detect intracellular H2S in 

living cells. HEK293A cells were incubated with Na2S (100 µM) for 30 min, washed 

by PB, then stained with 2 (10 µM) and imaged using a confocal fluorescence 

microscopy immediately. Cells incubated with 2 (10 µM) alone were used as control 

experiment. The results indicated that no fluorescence was observed for 2-loaded cells 

(Fig. 4A), while cells treated with H2S showed significantly bright green fluorescence 

(Fig 4B). Similar tests were also performed in A549 cells (Fig. 4C, 4D). The results 

suggest that probe 2 is cell-permeable and can be used for imaging of H2S in both 

A549 and HEK293A cells. 

 

Fig. 4. Fluorescence images for exogenous H2S detection in HEK293A and A549 cells using 2. A) 

HEK293A Cells were incubated with 2 (10 µM) for 30 min and imaged in fluorescence (left) and 

bright field (right). B) HEK293A Cells were incubated with Na2S (100 µM) for 30 min, washed, 

then treated with 2 (10 µM) for 30 min and imaged in fluorescence (left) and bright-field (right). C) 

A549 Cells were incubated with 2 (10 µM) for 30 min and imaged in fluorescence (left) and bright 

field (right). D) A549 Cells were incubated with Na2S (100 µM) for 30 min, washed, then treated 
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with 2 (10 µM) for 30 min and imaged in fluorescence (left) and bright-field (right). 

 

Encouraging with these results, we further determined the applicability of probe 2 

in visualizing H2S in vivo, and zebrafish larvae were selected as the biological model 

[19c]. The zebrafish was first incubated with 2 for 1 h, washed, and then treated with 

Na2S (200 µM) for another 4 h. The zebrafish stained with 2 alone was used as 

control group. As shown in Fig. 5A, no obvious fluorescence was observed in the 

2-loaded control group, whereas a strong green fluorescence was seen in venter and 

eyes of the H2S-treated zebrafish (Fig. 5B). These results imply that probe 2 can be 

used to visualize H2S in vivo. To further explore the potential of 2 in sensing 

endogenous H2S in situ, L-Cys (200µM) was introduced to the 2-stained zebrafish. To 

our delight, a significant green fluorescence enhancement was observed in the eyes 

and the venter of the larva (Fig. 5C). The locations of H2S in zebrafish observed by us 

are in consisted with the reported literature [24]. Taken together, the above results 

indicated that probe 2 is an effective tool for H2S detection in the living organisms. 

 

Fig. 5. Confocal microscopy images for exogenous and L-Cys-induced endogenous H2S detection 

in zebrafish larvae. A) The zebrafish was incubated with probe 2 (10 µM) for 1 h and imaged in 

green field (up) and bright field (down). B) The zebrafish was incubated with probe 2 (10 µM) for 

1 h, then with Na2S (200 µM) for 4 h and imaged in green field (up) and bright field (down). C) 

The zebrafish was incubated with probe 2 (10 µM) for 1 h, then with L-Cys (200 µM) for another 

4 h, and imaged in green field (up) and bright field (down). 
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4. Conclusion 

In summary, we rationally designed a julolidine-fused coumarin-based probe 2 

based on DFT calculations. This new probe is highly selective and sensitive towards 

H2S, and can be used for H2S detection in living cells and in zebrafish. Compared to 

its parent probe 1, probe 2 shows significantly improved properties, including lower 

LOD, higher fluorescence response and higher sensitivity. This work further indicates 

that the twisting-blockage of N,N-diethylamino group can significantly improve the 

sensing performances of the fluorescence probes. Our work not only offers a useful 

strategy to enhance the properties of H2S fluorescence probes, but also provides an 

excellent probe tool for imaging of H2S in living biological systems. 
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A new julolidine-fused coumarin-NBD probe for H2S detection is rationally 

designed based on the DFT caculations.  

This new probe exhibits faster and larger off-on response as well as higher 

sensitivity compared with the previous coumarin-NBD probe.  

This new probe possesses excellent selectivity and good biocompatibility, which 

can be employed to image H2S in living cells and in zebrafish. 

 


