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A B S T R A C T   

External-stimuli-responsive rewritable paper has attracted significant attention for application in secure 
information. However, to encrypt information on papers which can not be read out under visible light is 
still challenging. In this work, recessive rewritable paper for security information handling was realized via 
sectional intramolecular charge transfer (SICT) manipulating in a delicately designed coumarin derivative 
CMNT. By rational arranging a thiophenyl group and a diethylamino group as electron donors at the 3- and 7- 
position of coumarin skeleton, respectively, CMNT exhibited obvious fluorescence switching upon BF3 and tri
methylamine stimuli. After impregnating a filter paper into CMNT solution with low concentration (1 × 10− 6 M), 
no color change of the paper could be observed under visible light. Meanwhile, when writing and erasing the 
information on the paper by BF3 ink and trimethylamine eraser, respectively, the process can only be witnessed 
under UV light. Studies revealed the ICT effect from diethylamino group to chromen-2-one was suppressed after 
adding BF3, while the ICT channel from thiophenyl group to chromen-2-one was retained, thus producing such 
unique phenomenon.   

1. Introduction 

Confidential communication is vitally important in information 
transmission in fields of economic development, military and national 
security [1,2]. At present, many kinds of materials, including poly
oxometalates, transition metal oxides, nanomaterials, organic fluores
cent compounds and inorganic-organic composite materials show 
response to external stimuli such as light, heat, mechanical stress and 
magnetism [3–9], and the molecular structure and absorption wave
length changed after stimulation. The emergence of rewritable paper has 
brought a huge change in the way of communication. Among them, the 
rewritable paper based on fluorescence effect on which the information 
is not visible by naked eyes has received extensive attention in data 
encryption for its simple operation, convenient use, low cost, quick and 
intuitive detection [10–12]. 

Recent studies on the media of rewritable paper focus on the com
pounds that respond to specific ions, for example, using CN− as the ink to 

leave notes on rewritable paper, when it was overwritten by trifluoro
acetic acid (TFA), the fluorescence was “off”, thus making a simple 
rewritable paper, the specific mechanism is that when hydrogen bonds 
are formed, both π conjugation and ICT effects are blocked [13]; The 
Khazi group developed an erasable paper based on mechanically 
induced fluorescence discoloration. The force-induced crystal structure 
changes from a crystalline to an amorphous state [14,15]. A new type of 
rewritable paper was developed based on the tetraphenyl ethylene Schiff 
base derivative media, which used 410 nm ultraviolet light that could 
promote the conversion of the compound structure from enol type to 
ketone type as a pen, and 420–590 nm visible light or white light that 
could speed up the recovery process as an eraser [16–18]; Chen’s group 
developed a thermochromic material that changed its color from blue to 
colorless when the temperature was higher than 65 ◦C, remained 
colorless at room temperature, and returned to blue when the temper
ature was lower than − 10 ◦C [19,20]. In addition, some acidic, alkaline 
or photochromic molecules were also designed, of which their chemical 
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and physical structures were changed by external stimuli to achieve the 
purpose of color conversion, enabling a variety of erasable writing [21]. 
Although these rewritable papers have realized rewritable functions in 
various ways, there are few rewritable papers that can be used for 
encryption [22–24]. Recessive rewritable paper refers to potential 
handwriting that cannot be directly observed by naked eyes after 
writing, including secret handwriting, automatically faded magic 
handwriting, and erasable neutral handwriting [25–28]. The hidden 
handwriting can only be colored and read out under certain conditions 
to realize information encryption application. 

Herein, a D-A-D′ structured coumarin derivative CMNT was devel
oped with diethylamino (D) and thiophenyl (D’) substituted on position 
7 and 3 of the coumarin skeleton (A), respectively (Scheme 1). The 
intramolecular charge transfer (ICT) effect was rationally controlled by 
BF3. It was demonstrated that the ICT effect from diethylamino group to 
chromen-2-one was suppressed by adding BF3, while the ICT channel 
from thiophenyl group to chromen-2-one was retained, which leading to 
an obvious ratiometric fluorescence change. In comparison, a control 
compound CMT without the diethylamino group was synthesized to 
demonstrate the supposed sensing mechanism. Additionally, the color 
and fluorescence change of CMNT caused by BF3 could be recovered by 
TEA. More importantly, there is no color change of the paper during this 
writing and cleaning process under visible light. Therefore information 
transmission confidentially on a recessive rewritable paper was realized 
by using BF3 as ink and TEA as eraser under UV light. 

2. Results and discussion 

2.1. Crystal analysis 

The molecular packing pattern in crystal was analyzed through X-ray 
diffraction experiments (Fig. 1) and the corresponding crystallographic 
data was summarized in Table S1. CMNT (CCDC: 2060124) crystallized 
in triclinic P-1 symmetry, and the planar molecules formed herringbone 
packing in a face to edge pattern without any π-π overlap between two 
adjacent molecules which would activate nonradiative pathways of 
excited states [29,30]. Several O⋯H hydrogen bonds with distances of 
2.547 and 2.659 Å were observed between the carbonyl groups and the 
aromatic H of adjacent molecules. The existed O⋯H hydrogen bonds, as 
well as S⋯H hydrogen bonds between the adjacent molecules, rigidified 
the molecular conformation of CMNT in the solid. The stable confor
mation, as well as the face-to-edge packing, suppress the nonradiative 
pathways, resulting in strong emission in the crystals. 

2.2. Photo-luminescence and UV–vis spectra in solution 

The UV–visible and fluorescent spectra of the CMNT treated with BF3 
were shown in Fig. 2. CMNT exhibited a maximum absorption peak 
centered at 427 nm with a color of light yellow under visible light. Upon 
adding BF3, the intensity of the original absorption peak was decreased, 

and a new peak centered at 368 nm appeared with intensity increased 
gradually. The reaction between CMNT and BF3 got equilibrium when 
11 equiv. of BF3 were added. Similar phenomenon was observed in the 
fluorescent spectra. The solution of CMNT exhibited cyan color under 
UV light centered at 485 nm with a moderate fluorescence quantum 
yield (Φ) of 25.3%. With the addition of BF3, a new emission peak 
centered at 431 nm emerged with the intensity increased, and the so
lution color turned to dark blue (fluorescence quantum yield Φ =
53.68%) (Fig. 2b). The spectra were recorded in less than 90 s after the 
addition of BF3, implying the rapid response of CMNT to BF3. (Fig. S1). 
The intensity ratio I431/I485 exhibited a good linear relationship with the 
BF3 concentration between 1 × 10− 5 M to 4 × 10− 5 M (Fig. S2). The 
detection limit was determined to be 9.7 × 10− 8 M based on LOD = 3σbi/ 
m [31]. “σbi” is the standard deviation of 11 blank samples; “m” is the 
slope of the linear relationship obtained. 

Moreover, as one of the important properties of a chemosensor, 
reversibility was also investigated. Interestingly, when another Lewis 
base triethylamine (TEA) was added to a mixture of CMNT and BF3, the 
fluorescent spectra, as well as the solution color was recovered to the 
original state (Fig. 2c and d). The process could be repeated at least 8 
times without any attenuation (Fig. S3). 

In order to evaluate the selective property of CMNT to BF3, other 
acids (20 equiv.) including boric acid, benzoic acid, salicylate acid, 
acetic acid and formic acid were added to the solutions of CMNT, 
respectively. As shown in Fig. S4, except for their characteristic ab
sorption at 273 and 309 nm of benzoic acid and salicylate acid, no 
evidence-based change in both absorption and emission spectra of 
CMNT were observed after these analytes were added. Furthermore, 
competitive experiments with these species in the same environment 
were also carried out, and the signaling of CMNT toward BF3 (1 equiv.) 
was not affected by the presence of 20 equiv. of coexisting species 
(Fig. S5). All of the results suggested that CMNT was an efficient 
specialized and ratiometric signaling probe for BF3 detection in DCM 
solution. 

2.3. Sensing mechanism 

To illustrate the sensing process of CMNT to BF3, 19F NMR spectra 
were performed. As shown in Fig. 3a, in comparison with BF3 signaling 
at − 153 ppm, a new signal peak at − 132 ppm appeared with the 
addition of insufficient amount of CMNT, suggesting that BF3 was 
indeed reacted with CMNT, producing a new molecule. To further 
manifest the exact binding site of CMNT to BF3, a control molecule CMT 
without diethylamino substituent was synthesized (Scheme 1). Despite 
electronic-rich oxygen in the structure which can potentially form 
borate complexes, there was no influence on the fluorescence spectra 
when CMT was treated with BF3 (Fig. 3b). As a result, it proved the 
binding site for BF3 was the nitrogen in diethylamino rather than oxygen 
in carbonyl group, resulting in form a new borate complex. 

Based on the results above, the sensing mechanism was deduced and 

Scheme 1. Synthetic routes of CMNT and the control compound CMT.  
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illustrated in Fig. 3c. CMNT was constructed as a D-A-D’ molecule with 
the coumarin skeleton as the electron acceptor, and the diethylamino 
and thiophenyl substitutes as the electron donors, respectively. When 
excited by UV light, intramolecular charge transfer (ICT) occurred from 
both of the electron donor sites to the central electron acceptor, leading 
to green fluorescence peaking at 485 nm. With the addition of BF3, the 
diethylamino substituent as a Lewis base was reacted with BF3 to form a 
new borate complex, and the sectional intramolecular charge transfer 
(SICT) within the molecule would be cut off in this process. However, 
the other part of ICT process from thiophenyl group to carbonyl moieties 
was not affected. It plays as the dominant role in fluorescence regulation 
after the interaction of CMNT with BF3, leading to the remarkable blue- 
shifts in both UV–visible and fluorescence spectra after the formed Lewis 
acid-base complexes between BF3 and the diethylamino group blocked 
the ICT process. As much as we know, most of the published work of BF3 
detection are based on the same mechanism, that is the ring forming 
process of B with N or O [32–34], and inevitably this type of probes 
tends to be bulky and complex. The BF3 chemosensor reported here is a 
novel smart ICT molecule, and the detection is based on a novel 
mechanism. 

2.4. Rewritable paper and encryption application 

CMNT powder showed yellow fluorescence peaking at 558 nm under 
UV irradiation (Fig. S6). To expand the practical application of CMNT, a 
preliminary paper strip testing system was developed by dipping the test 
strip into the solution of CMNT (1 × 10− 3 M) and then dried at room 
temperature. The yellow colored test strip emitted yellowish green 
fluorescence at 493 nm under UV irradiation. After contacting to the 
vapor of BF3, the paper was faded and the fluorescence wavelength was 
blue-shifted to 450 nm with emitting color of bright blue (Fig. 4a). Just 
like in solution, the color could be recovered when the test paper was 
contacted with TEA vapor. The fully reversible process guaranteed the 
paper to be reused over at least 5 cycles (Fig. 4b). 

When the white strip was dipped into the CMNT solution of different 
concentrations, the yellow color on the paper faded gradually with the 
concentration decreased (Fig. S7). Finally, no color change was observed 
before and after interaction with BF3 by naked eyes under visible light at 
a concentration of 1 × 10− 6 M. However, the test strip exhibited obvious 
fluorescent color switching between cyan and blue under a UV lamp, 
implying the potential application ability of recessive erasable paper for 

Fig. 1. ORTEP diagram, weak interactions in the crystal and molecular pattern of CMNT.  

Fig. 2. UV–visible (a) and fluorescence (b) spectra 
of CMNT in DCM with addition of BF3. Inset of b: 
fluorescence change photograph under illumination 
using a 365 nm UV lamp. CMNT: 2 × 10− 5 M. The 
equivalent of BF3 in the UV–visible spectra are: 0, 
0.5, 1, 1.5, 2, 3, 5, 7, 9 and 11. The equivalent of BF3 
in the fluorescence spectra are: 0, 0.5, 1, 1.5, 2, 3, 5, 
7, 9, 11 and 13. UV–Visible (c) and fluorescence (d) 
spectra of CMNT in DCM with the addition of BF3 
and TEA. Inset: Visual fluorescence change photo
graph under illumination using a 365 nm UV lamp. 
CMNT: 2 × 10− 5 M, BF3: 2.2 × 10− 4 M, TEA: 1 ×
10− 3 M.   
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encryption (Fig. 5a). A dilute concentration of CMNT (1 × 10− 6 M) was 
chosen to carry out the recessive rewritable test. Some paper masks were 
made and overlaid on the white strips treated with CMNT as described 
above. And then treated them with BF3 vapor. As was expected, there is 
nothing on the strip under the visible light. However, once put the strip 
under the UV light, a fine picture appeared with abundant details. 
Moreover, the picture would vanished when the strip treated with TEA 
vapor. It is noted that the paper can be reused at least 5 times (Fig. 5b). 

3. Conclusion 

In summary, a D-A-D′ coumarin derivative CMNT was developed 

with thiophenyl group and diethylamino group as the electron donors 
substituted at the 3- and 7- positions of coumarin skeleton, respectively. 
Based on the Lewis acid-base reaction between diethylamino group of 
CMNT and BF3, CMNT showed high selectivity and sensitivity to BF3 in 
dichloromethane solution with a detection limit to be 9.7 × 10− 8 M. The 
ICT effect from diethylamino group to chromen-2-one was suppressed 
after adding BF3, while the ICT channel from thiophenyl group to 
chromen-2-one was retained, leading to an obvious ratiometric fluo
rescence change. Contributed from this, recessive rewritable paper 
impregnated with CMNT was realized under UV light by using BF3 as ink 
and TEA as eraser. More importantly, the color of the paper didn’t 
change during this writing and cleaning process under visible light, 

Fig. 3. (A) 19F NMR spectra. Red: BF3 only, and cyan: CMNT with exceed BF3. (b) Fluorescence spectra of CMNT and CMT treated with BF3. CMNT: 2 × 10− 5 M, 
CMT: 2 × 10− 5 M, BF3: 2.2 × 10− 4 M. (c) The mechanism of SCIT manipulating in CMNT. 

Fig. 4. (A) Fluorescence of CMNT (1 × 10− 3 M) on the test strip. (b) The ratio intensity of the CMNT test strip recorded after adding BF3⋅Et2O and TEA for continuous 
5 cycles. 
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enabling this rewritable paper as media for security information 
handling in portable way. 

4. Experimental section 

4.1. Materials and instruments 

All the reagents and starting materials were purchased from com
mercial suppliers and used without further purification unless otherwise 
noted. NMR spectra measurements were carried out on a Bruker Avance 
400 MHz for 1H NMR, 100 MHz for 13C NMR and 376 MHz for 19F NMR. 
Fluorescence and UV–vis absorption spectra were recorded on a Hitachi 
F-4700 fluorescence spectrophotometer and a Shimadzu UV-1800 UV 
spectrophotometer, respectively. High resolution mass spectra were 
obtained on a Thermo Scientific Q Exactive Mass spectrometer. X-ray 
single-crystal diffractions was carried out on a Bruker SMART APEX II 
diffractometer with Mo Ka radiation (λ = 0.71000 Å). The structures 
were solved with direct method (SHELX-97) and refined with full-matrix 
least-squares technique. All non-hydrogen atoms were refined aniso
tropically and hydrogen atoms were geometrically placed. Relevant 
crystal collection data, refinement data for the crystal structures were 
listed in the electronic supporting information (ESI). 

4.2. Synthesis of CMNT [3-thienyl-7-diethylamino coumarin] 

An acetic anhydride (10 mL) solution of compound 4-(dieth
ylamino)-2-hydroxy-benzaldehyde (0.50 g, 2.60 mmol), 2-thiophene 
acid (0.47 g, 2.80 mmol) and several drops of triethylamine (3 mL) 
were charged sequentially into a three-necked flask. The reaction 
mixture was stirred for 8 h at 139 ◦C. After cooling to room temperature, 

the reaction mixture was poured into water and NaHCO3 was added to 
neutralize the acetic anhydride. The water phase was extracted with 
dichloromethane. The organic extracts were combined and dried over 
anhydrous MgSO4. After filtration and concentration under reduced 
pressure, the crude product was purified using a silica column with 
petroleum: ethyl acetate (20: 1, v: v) as eluent to afford CMNT as a 
yellow powder (0.55 g, yield 71%). 1H NMR (400 MHz, DMSO d6) δ 
8.37 (s, 1H), 7.74–7.65 (m, 1H), 7.61–7.47 (m, 2H), 7.13 (dd, J = 5.0, 
3.8 Hz, 1H), 6.76 (dd, J = 8.9, 2.4 Hz, 1H), 6.59 (d, J = 2.2 Hz, 1H), 3.45 
(q, J = 7.0 Hz, 4H), 1.14 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, DMSO) 
δ 172.6, 160.6, 156.1, 151.4, 138.3, 137.7, 130.5, 128.0, 127.4, 125.1, 
113.9, 110.5, 109.0, 97.1, 45.1, 13.3 (Fig. S8). FTMS + p ESI: m/z [M +
H]+ cacld: C17H18NO2S, 300.10528, found: 300.10535. 

4.3. Synthesis of CMT [3-thienyl coumarin] 

An acetic anhydride (10 mL) solution of 2-hydroxybenzaldehyde 
(0.32 g, 2.6 mmol), 2-thiophene acid (0.47 g, 2.80 mmol) and triethyl
amine (3 mL) were charged sequentially into a three-necked flask. The 
reaction mixture was stirred overnight at 110 ◦C. After cooling to room 
temperature, the reaction mixture was poured into water and neutralize 
by NaHCO3. The water phase was extracted with dichloromethane. The 
organic extracts were combined and dried over anhydrous MgSO4. After 
filtration and concentration under reduced pressure, the product CMT 
was obtained as a yellow powder by a silica column with hexane/EtOAc 
(9: 1, v: v) as eluent (0.55 g, yield 71%). 1H NMR (400 MHz, CDCl3): δ 
7.99 (s, 1H), 7.80 (dd, J = 3.8, 1.1 Hz, 1H), 7.56–7.48 (m, 2H), 7.42 (dd, 
J = 5.1, 1.1 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.30 (td, J = 7.6, 1.1 Hz, 
1H), 7.12 (dd, J = 5.1, 3.8 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 159.4, 
152.6, 135.9, 135.5, 131.2, 127.7, 127.5, 127.1, 124.7, 121.8, 119.3, 

Fig. 5. (A) The impregnated paper of different CMNT concentrations treated with BF3 under the visible light and 365 nm UV lamp. (b) Writing-erasing-rewriting 
process of one filter paper circularly treated with CMNT, BF3, and TEA, displayed under 365 nm UV lamp. 
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116.4, 77.3, 77.0, 76.7.(Fig. S9). FTMS + p ESI: m/z [M + H]+ cacld: 
C13H9O2S, 229.03178, found: 229.03181. 

4.4. Spectra measurements 

The stock solution of CMNT was prepared in anhydrous dimethyl 
sulfoxide (DMSO) to afford a concentration of 1 × 10− 3 M stock solution, 
and then diluted to 2 × 10− 5 M with DCM. BF3⋅Et2O was used as the 
source of BF3, and diluted with anhydrous Et2O to concentrations of 1 ×
10− 3 M and 2 × 10− 5 M, respectively. Other analytes (1 × 10− 3 M and 2 
× 10− 5 M) were prepared with anhydrous ethanol. The titrations were 
performed in 10-mm quartz cuvettes at room temperature. The excita
tion and emission slit widths were 5.0 nm and 5.0 nm, respectively. 

4.5. Preparation of test strip and rewritable paper 

Test strips were prepared by soaking neutral filter paper to the so
lution of CMNT in dichloromethane (1 × 10− 3 or 1 × 10− 6 M) and 
drying in air at room temperature. 
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