AGRICULTURAL AND FOOD CHEMISTRY

Agricultural and Environmental Chemistry

Preparation of acifluorfen-based ionic liquids with fluorescent properties for enhancing biological activities and reducing the risk to the aquatic environment

Gang Tang, Junfan Niu, Wenbing Zhang, Jiale Yang, Jingyue Tang, Rong Tang, Zhiyuan Zhou, Jianqiang Li, and Yongsong Cao

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.0c00842 • Publication Date (Web): 11 May 2020

Downloaded from pubs.acs.org on May 18, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 Preparation of acifluorfen-based ionic liquids with fluorescent properties for

2 enhancing biological activities and reducing the risk to the aquatic environment

- 3 Gang Tang, Junfan Niu, Wenbing Zhang, Jiale Yang, Jingyue Tang, Rong Tang, Zhiyuan Zhou,
- 4 Jianqiang Li, Yongsong Cao*
- 5 College of Plant Protection, China Agricultural University, Beijing, China
- 6 *Corresponding author: NO.2 Yuanmingyuan West Road, China Agricultural University, Beijing,
- 7 China, 100193
- 8 Telephone: 86-10-62734302. Fax: 86-10-62734302.
- 9 Email: caoysong@126.com, caoys@cau.edu.cn

10 ABSTRACT: In this work, twelve novel herbicidal ionic liquids (HILs) based on acifluorfen were 11 prepared by pairing with the fluorescent hydrazides or different alkyl chains for increasing activities 12 and reducing negative impacts on the aquatic environment. The results showed that the fluorescence 13 of coumarin hydrazide in the HILs was applied as the internal and supplementary light source to 14 meet the requirement of light wavelength range of acifluorfen, which improved the phytotoxicity of 15 acifluorfen to weeds by enhancing singlet oxygen generation with increased sunlight utilization. 16 The herbicidal activities of HILs were related positively with the length of chain of cation under 17 high light intensity and depended mainly on fluorescence characteristic of cation under low light 18 intensity. And the double salt IL forms of acifluorfen containing coumarin hydrazide and n-19 hexadecyltrimethylammonium had enhanced efficacies against broadleaf weeds in the field. 20 Compared with acifluorfen sodium, HILs had lower water solubility, better surface activity, weaker 21 mobility in soils, and higher decomposition temperature. These results demonstrated that HILs 22 containing different cations provided a wider scope for fine-tuning of the physicochemical and 23 biological properties of herbicides and established a promising way for the development of 24 environmentally friendly herbicidal formulations.

KEYWORDS: acifluorfen; ionic liquids; physicochemical properties; fluorescence; singlet oxygen; efficacy

28 INTRODUCTION

29 Ionic liquids (ILs), a kind of organic salts composed cations and anions, have more advantageous 30 physicochemical properties such as low volatility, high ionic conductivity, unique solvation 31 capabilities and good stability so on.¹⁻³ More importantly, ILs can be designed easily to meet the 32 requirements of different applications due to the combination diversities of cations and anions.⁴⁻⁶ 33 Over the past two decades, ILs have been studied extensively in various fields and gone through 34 development periods of first generation (ILs with desired physical properties), second generation 35 (ILs with adjustable chemical properties) and third generation (ILs with excellent biological activities).^{7,8} A flexible design of ionic liquid derivatives for herbicides can pose fascinating 36 37 physicochemical properties (increased hydrophobicity and high surface activity), splendid 38 environmental advantages (low volatility and great adsorption capacity) and excellent biological activity by choosing appropriate counterions.^{9,10} Herbicidal ionic liquids (HILs) containing 39 40 herbicidally active anions (e.g., 2,4-D, bentazone, bromoxynil, clopyralid, dicamba, dichlorprop, 41 fomesafen, glyphosate, mesotrione, nicosulfuron, picloram) were prepared to optimize physicochemical properties for improving herbicide efficacies and reducing environmental risks 42 43 caused by evaporation, leaching and the use of large dosage.¹⁰⁻²¹ With the development of HILs, a 44 more effective herbicide formulation, "double salt herbicidal ionic liquids" (DSHILs), shows more designable than single salt HILs.²² DSHILs contain two different herbicidal anions and can't be 45 46 classified as simple IL "mixtures" due to the unique synergistic effect of different ions.²³ The 47 DSHILs can improve herbicidal efficacy, further broaden the spectrum of weed control, and reduce the risk of weed resistance.^{22,24} This double salt approach is not only suitable for two herbicidal 48 49 anions, it can also be used to prepare HILs by pairing one herbicidal anion with two different cations. 50 Therefore, the development of double salt form of single herbicide is worth exploring, which may 51 address the various shortcomings of herbicide and further expand the platform for ionic liquid 52 applications.

According to HRAC herbicide classification system, the action mechanisms of many herbicides including triazines, bipyridyliums, diphenylethers and so on are involved in the process of photosynthesis of plants.²⁵ The activities of these herbicides usually required the participation of light and were directly or indirectly influenced by light intensity.²⁶ As a diphenyl ether herbicide,

57 acifluorfen (ACI) (5-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-nitrobenzoic acid) has been used 58 extensively in postemergence for selectively controlling broadleaf weeds in soybeans and peanuts.^{27,28} It inhibits protoporphyrinogen oxidase (PPO) and consequently induces the 59 60 accumulation of protoporphyrin and other tetrapyrrole derivatives in weed cells in the presence of 61 light.²⁹⁻³³ Photo-excitation of these porphyrin derivatives in the presence of oxygen produces 62 reactive oxygen, lipid peroxides and hydrogen peroxide in plant tissues, all of which are very 63 harmful for cell membranes.^{30,34} Therefore, the activity of ACI was highly affected by sunlight, and 64 irradiating by weak light will lead to poor activity. However, the wavelengths of light required for 65 ACI toxicity to weeds are between 410-615 nm, which means that ultraviolet radiation in sunlight 66 has no impact on its herbicidal activity.³⁵⁻³⁷ ACI is a weak acid (pKa = 3.50) and usually marketed 67 in the form of sodium salt.^{38,39} It has strong leachability (leaching potential index = 3.15) because the water solubilities of ACI acid and sodium salt are 120 mg L⁻¹ and 250, 000 mg L⁻¹ 68 69 respectively.^{40,41} This herbicide is also stable to hydrolysis and difficultly photodegraded, and thus 70 increases the possibility of ground and surface water contamination.⁴² In addition, ACI exhibits a 71 certain extent toxicity to aquatic organisms with LC₅₀ values from 17 mg L⁻¹ to 61 mg L^{-1.43} Therefore, it is an urgent task to construct a novel form of ACI to improve efficacies by increasing 72 73 sunlight utilization and reduce negative impacts on the aquatic environment.

74 ILs could exhibit robust fluorescence properties by introduction of fluorescent groups and afford a broad application prospect in solar cells and organic light-emitting diodes.⁴⁴⁻⁴⁷ In this study, novel 75 76 HILs based on ACI were prepared by paired with cations derived from natural occurring substances 77 with good fluorescence properties, such as salicylic acid and coumarin, to increase efficacies by 78 improving the sunlight utilization and reduce the negative impacts on the aquatic environment by 79 optimizing physicochemical properties. The thermal stability, fluorescence spectrum, singlet 80 oxygen, water solubility, surface activity, leaching and herbicidal activity (greenhouse and field) of 81 prepared HILs were determined and investigated.

82 MATERIALS AND METHODS

Materials. Acifluorfen (99% purity) was purchased from Qingdao Hansen Biologic Science Co.,
Ltd. Methanol, ethanol, dichloromethane, *N, N*-dimethylformamide (DMF), sulfuric acid,
phosphoric acid, sodium carbonate, potassium hydroxide, hydrazine hydrate (80%),

86 tetramethylammonium (Tma) chloride, tetrabutylammonium (Tba) bromide, 87 dodecyltrimethylammonium (Tda) bromide and n-hexadecyltrimethylammonium (Cet) chloride 88 were analytical grade reagent and purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, 89 China). Salicylic acid, 3-hydroxy-2-naphthoic acid, 1,3-diphenylisobenzofuran (DPBF), 90 protoporphyrin IX, and coumarin-3-carboxylic acid were analytical grade and purchased from 91 Tianjin Heowns Biochemical Technology Co., Ltd. Acetonitrile was high performance liquid 92 chromatography (HPLC) grade and supplied from J.T. Baker (Phillipsburg, NJ, USA). The ultrapure 93 water was obtained by using a Millipore water purification system (Millipore, Billerica, MA, USA). 94 Apparatus.¹H and ¹³C NMR data were tested on a Bruker Avance DPX 300 MHz NMR 95 spectrometer (Bruker, Germany) at 25 °C. The NETZSCH STA 449F5 (Germany) was used to 96 conduct the thermogravimetric analysis (TGA). Melting point values were recorded by a SGWX-97 4B microscopic melting point apparatus (SPSIC, China). Surface tension was determined by a JK 98 99B analyzer (Powereach, China, resolution < 0.05 mN m⁻¹). Fluorescence spectrometer 99 (FluoroMax®-4) was applied for the determination of scanned excitation and emission spectra of 100 the sample. LI-6400 portable photosynthesis system (Li-Cor Inc., USA) was used to detect light 101 intensity. Chlorophyll meter SPAD-502 Plus (Konica Minolta Inc., Japan) was used to measure 102 chlorophyll content. A HPLC system, consisting of two LC-20ATvp pumps and an SPD-20Avp 103 ultraviolet detector (Shimadzu, Japan), was used for analysis. A reversed phase kromasil ODS C18 104 column (250 mm \times 4.6 mm, 5 µm) was applied for separation at room temperature. The mobile 105 phases were acetonitrile (eluent A) and water with phosphoric acid (pH = 2.8, eluent B) (70/30, v/v). 106 Injection volume was 20 μ L, and the detection wavelength was 290 nm. The flow rate was constant 107 at 1.0 mL min⁻¹, and the column was kept at normal temperature.

Preparation of HILs. Synthesis of carboxylic esters (Est1-3). Sulfuric acid (1 mmol) was dissolved in organic solvent (methanol or ethanol) (30 mL) at ambient temperature, and then the corresponding carboxylic acid (compounds 1-3) (10 mmol) added. The mixture was heated and stirred under reflux for 10 h. Reaction was monitored by thin layer chromatography (TLC). After reaction being finished, the solvent was evaporated under vacuum and the residue was washed three times with saturated solutions of sodium carbonate. Then, the aqueous solution was extracted with dichloromethane. Finally, the desired compound was obtained after the removal of dichloromethane 115 and used in the next reaction.

Synthesis of carboxylic acid hydrazides (Frc1-3) from Est1-3. Frc1-2: ester (Est1 or Est2) (3 mmol) and hydrazine hydrate (9 mmol) were solubilized in ethanol (30 mL). The mixture was heated and stirred under reflux for 12 h. Reaction was monitored by TLC. After reaction being finished, the solvent was evaporated and crude product was recrystallized in ethanol to obtain the desired hydrazide.

Frc3: ethyl-3-coumarincarboxylate (Est3) (2 mmol) was added into a round-bottom flask containing hydrazine hydrate (2 mmol) and 30 mL of ethanol as the solvent. The mixture was stirred for 24 h at 25 °C. The reaction was monitored by TLC. After reaction being finished, the crude product was recrystallized in the solvent to obtain Frc3.

Synthesis of HIL1-12. The preparation method was performed following the previously reported 125 126 procedure.^{48,24} HIL1-3: ACI (10 mmol), hydrazides (10 mmol), and methanol were mixed in a 127 round-bottom flask. The mixture was heated and stirred under reflux for 3 h. After reaction finished, 128 HILs were obtained via the removal of methanol. HIL4-7: quaternary ammonium chloride or 129 bromide (3 mmol) was dissolved in anhydrous methanol (20 mL) in a round-bottom flask. Next, 130 potassium hydroxide (3 mmol) dissolved in anhydrous methanol (10 mL) was added. The mixture 131 was stirred for 2 h at 25 °C. After the filtration of the potassium chloride or bromide, ACI (3 mmol) 132 was introduced into the methanolic solution of quaternary ammonium hydroxide. The reaction was 133 stirred for another 1 h at 25 °C. HILs (4-7) were obtained via the removal of the solvents. 134 $[ACI][Frc3]_{1-m}[Cet]_m$: HILs(8-12) were studied for m =0.1, 0.3, 0.5, 0.7, and 0.9 respectively. ACI 135 (5 mmol) was dissolved in methanol in a round-bottom flask. Next, the same stoichiometric amount 136 (5 mmol) of a mixture of Frc3 and Cet hydroxide was added and the reaction was heated and stirred 137 under reflux for 3 h. Then, after the removal of the solvents, the desired HIL8-12 were obtained. 138 Thermal analysis of HILs. The studies of thermal stability of HILs were performed using TGA. 139 The analysis consisted of sampling a mass of 3-15 mg, which was heated from room temperature to 140 500 °C at a constant rate of 10 °C min⁻¹ with nitrogen as an insert gas. The mass of every sample was

141 as follows: 8.79 mg (HIL1); 4.72 mg (HIL2); 6.10 mg (HIL3); 5.00 mg (HIL4); 7.11 mg (HIL5);

142 11.47 (HIL6); 6.08 mg (HIL7); 5.63 mg (HIL12).

143 **Procedure of fluorescence measurement of HILs.** HIL1-3 were diluted in methanol to obtain

a final concentration of 20 mg L⁻¹. Fluorescence excitation and emission spectra were recorded using FluoroMax®-4 with a 10 × 10 mm quartz cuvette at room temperature. The excitation and emission wavelengths were set respectively in the range of 200-400 nm and 400-600 nm. The excitation and emission slit widths were both set to 5 nm. Moreover, the fluorescence emission intensities of AS, HIL3, HIL7-12 were also evaluated by observing the fluorescence color at the concentration of 300 mg L⁻¹ of ACI in a mixture of methanol and water (> 99% of total volume) under 366 nm UV light.

Detection of singlet oxygen. The singlet oxygen generation of HIL3 was explored by testing the degradation of DPBF (a singlet oxygen quencher with maximum absorption wavelength at 411 nm).⁴⁹ In a typical experiment, a 1 mL of DMF solution containing HIL3 (1 μ M), protoporphyrin IX (1 μ M), and DPBF (100 μ M) was put into a 1 cm quartz cell in the dark. Then, the ultraviolet lamp (Emax=366 nm) was applied as the irradiation source. After 10 minutes of irradiation, the absorption spectra of the solution were recorded by a UV-Vis spectrophotometer.

Water solubility. The water solubilities of HILs at different pH (pH = 5, 7, and 9) at constant temperature were evaluated in phosphate buffer solutions (PBS) with the classic saturation shakeflask method.⁵⁰ In brief, HILs were weighed into the tubes (each tube with 10 mL PBS) until the emergence of surplus undissolved HILs. Then, these tubes were shaking on a shaker for 48 h. At the end of shaking, the suspensions in the tubes were centrifuged at 8000 rpm for 10 min. And the concentrations of filtered supernatants were determined by HPLC. Each treatment was carried out four times in the test.

164 Surface activity. The surface tensions of the synthetized HILs were determined with the 165 Wilhelmy plate method at room temperature.⁵¹ Before the test, a series of aqueous solutions of HILs 166 with different concentrations were prepared using ultrapure water and the instrument needed to be 167 calibrated with ultrapure water. The sensing platinum plate rinsed and dried was placed 168 perpendicular and then immersed slowly into the prepared liquid sample until the formation of 169 equilibrium between surface tension of the sample and other related forces. The value of surface 170 tension of the synthetized compound was recorded by a tensiometer balance sensor. The value of 171 critical micelle concentration (CMC) was determined from the intersection of two straight lines of 172 surface tension γ versus logarithm bulk concentration (log C) of compound. Each treatment was

173 carried out four times in the test.

174 Leaching test. The mobilities of HILs in the natural soils were evaluated through soil thin layer chromatograph (soil TLC).52 The preparation of soil TLC plates, treatment conditions of test 175 176 samples, and definition of R_t values were similar to our previous researches.^{10,15} Firstly, the fine airdried soil particles were obtained through a 250-µm meshed sieve. Soil TLC plates with 0.5 mm 177 178 thickness were prepared by spreading the air-dried soil/water (4/3, m/m) slurry onto grass plates (20 179 \times 20 cm) with the use of a TLC spreader. Two horizontal lines at distance of 1.5 cm and 11.5 cm 180 were scribed on each plate above the base when the plates had been air-dried at ambient temperature 181 for 24 h. Then the test compound $(3 \mu g)$ dissolved in methanol was spotted on the bottom edge of 182 the plate with a microsyringe at 1.5 cm. After 3 hours, the plates were put into a closed 183 chromatographic tank with ultrapure water at a height of 0.5 cm with angle of inclination of 30°. 184 When the water reached the 11.5 cm line, the plates were taken out and dried at ambient temperature. 185 R_f values were calculated according to the furthest distance traveled by the test HILs divided by the 186 distance traveled by the eluent front.

187 Greenhouse experiment. The herbicidal activity tests were done in the experimental greenhouse 188 of China Agricultural University (the Haidian district, Beijing) in June 2018. Common amaranth 189 (Amaranthus retroflexus) was chosen to evaluate the herbicidal efficacy of HILs. Amaranthus 190 *retroflexus* were grown in square plastic pots with the size of 7 (length) \times 7 (width) \times 8 (height) cm 191 containing nutrition soil and vermiculite (v/v 3:1). The nutrition soil texture is loam with pH=7.14 192 and 5% of organic carbon content. The greenhouse temperature in daytime was 26 ± 2 °C, and the 193 night temperature was 15 ± 2 °C. Average day/night hours were 14/10 in the plant growth stages. 194 Water was used for the irrigation of the plants. Ten days after emergence, the plants were thinned 195 and about four seedlings that grow at the same rate were left in per pot. ACI-sodium (AS) and HILs 196 dissolved in a mixture of methanol and water (> 99% of total volume) were applied using a 197 microaerosol sprayer when the plants were at four-six leaf stage (about 15 days). Each pot was 198 treated with 2.5 mL of drug solution and water was used as the blank controls. The test plants were 199 divided into three groups (group A, group B and group C). Group A was sprayed with drug solutions 200 of AS and HIL1-7 at doses of 50, 150, and 300 mg L⁻¹. Group B and group C were sprayed with 201 drug solutions of HIL3, HIL7-12 at dose of 300 mg L⁻¹, respectively. Then, group A and group B 202 were placed in the sunlight (PAR_{max} = 820 μ mol m⁻² s⁻¹) as high light intensity treatment and group 203 C was placed in the weak light (PAR_{max} = 140 μ mol m⁻² s⁻¹) as low light intensity by the use of two 204 layers of shade nets. Each treatment was carried out four times. At different days after treatment 205 (DAT), the fresh weights and the leaf SPAD values in aboveground parts of plant under different 206 treatments were determined and recorded. In this experiment, herbicidal activities were evaluated 207 by fresh weight reduction (FWR) and chlorophyll content reduction (CCR) of test plants. The FWR 208 and CCR were calculated as follows: $(W_1 - W_2)/W_1 \times 100\%$, where W_1 and W_2 represent control 209 groups and treatment groups, respectively.

210 Field experiments. The research was conducted in no-till farmland located in Chongging China 211 (29°12'42"N 105°46'03"E) in April 2020. The environmental conditions in the region were average 212 temperatures of 23/15 °C day/night, a humidity of about 65%, and a photoperiod of 13/11 hours 213 day/night. Each experimental area size was designed to be identically 10 m² (2 m wide \times 5 m long) 214 covered with broadleaf weeds (Convza canadensis (L.) Crong. and Gnaphalium affine D. Don) and 215 gramineous weeds (Alopecurus aequalis Sobol.). The weeds with a height of about 10 to 20 cm 216 were in a fast growth phase. Based on the actual weed growth and the recommended doses of ACI 217 in practical application, AS and HILs were applied at dose of 180, 270, and 360 g AI ha⁻¹. The 218 spraying solution was prepared by dissolving the test compounds in a mixture of water and methanol 219 (300:1 v/v). About 600 mL of solution was delivered in each area (10 m^2) using a microaerosol 220 sprayer and a solution of water and methanol (300:1 v/v) was used as the control group. Each 221 treatment was carried out in three replications. In this experiment, the herbicidal activity was 222 evaluated by a visual method at 14 days after treatment (DAT). According to the standard developed 223 by the Weed Science Society of America, the weed control efficacy was presented by using a scale 224 of 0% (no visible damage) to 100% (complete death).

225 RESULTS AND DISCUSSION

Preparation of HILs. Twelve novel HILs (Table 1) were synthesized via a multi-step process for the first time. The major synthetic routes and the structures of cations are introduced in Scheme 1. The described compounds were also characterized by ¹H and ¹C NMR spectroscopy and the spectra are provided in the supplementary information. Three carboxylic acid compounds with fluorescence characteristic were esterified and then amidated with hydrazine hydrate to produce the 231 cations containing primary amino groups. These cations were used to react with ACI to create HIL1-232 3. The synthesized HIL1-3 had high yields (exceeding 90%). The synthetic method of HIL1-3 may 233 provide some new thoughts for the preparation of HILs with special function. HIL4-7 were prepared 234 by reaction with quaternary ammonium hydroxide obtained from quaternary ammonium chloride 235 (or bromide) using potassium hydroxide ion-exchange reaction. The counter cations were Tma, Tba, 236 Tda and Cet, which represented quaternary ammonium with hydrocarbons of different lengths. The 237 obtained HIL4-7 also had high yields (exceeding 95%) and their grease forms exhibited differences 238 from the solid form of ACI.

239 HIL8-12 based on ACI were synthesized by merging two cations with different characteristics. 240 ACI was reacted with a mixture of cations with the total molar amount being equal to that of ACI 241 resulting in formation of double salt ILs. HIL8-12 with different Frc3/Cet molar rations (9:1, 7:3, 242 5:5, 3:7, 1:9, respectively) were obtained in high yields (94-98%) and presented the grease forms. 243 HIL1 and HIL4-12 had melting points below 100 °C, being classified as ACI-HIL5. HIL2 and HIL3 244 were solids with melting points above 100 °C, which were classified as new ACI salts. In ¹H NMR 245 spectroscopy, the -COOH peak of ACI disappeared and the hydrogen protons on the benzene ring 246 of ACI nearing the cations shifted to higher field strengths. These changes on ACI supported the 247 ionized nature of HILs. There was no significant variation in the ¹³C NMR spectra of these HILs.

248 The thermal properties of HILs. Thermal stabilities of the HILs were evaluated by TGA and 249 the data are showed in Table 2. The melting points of all prepared HILs were less than 150 °C although acifluorfen has a high-melting solid (melting point being 276 °C).⁴¹ The decomposition 250 251 temperatures of onset to 5% (Tonset5%) and 50% (Tonset) sample were determined to provide accurate 252 assessment of thermal stabilities for the synthesized compounds. On the basis of the obtained data, 253 it can be concluded that HIL1-3 with carboxylic acid hydrazides had better thermal stabilities than 254 HIL4-7 contained quaternary ammonium with different lengths of hydrocarbons. The data of $T_{onset5\%}$ and T_{onset} among HIL4-7 did not show a significant effect of the alkyl chain length on their thermal 255 256 stabilities. The thermal properties of HIL 3 and HIL 7 showed that Frc3 had more effects on Tonset5% 257 and Tonset than Cet, and Frc3 could improve the thermal stability of ACI. HIL 8-12 have the similar 258 structural composition [ACI][Frc3]_{1-m}[Cet]_m and HIL 12 has the biggest amount of Cet among HIL 259 8-12. The Tonset5% and Tonset of HIL12 were 134 °C and 285 °C respectively, which indicated that

double salt forms of ACI had high thermal stability.

261 The fluorescence characteristics of HILs. The activities of ACI required the participation of 262 light and were directly influenced by light intensity. However, ultraviolet radiation in sunlight isn't 263 in the scope of light required for ACI phytoxicity to weeds. Thus, the sunlight utilization for ACI 264 may be increased with the help of the fluorescence characteristics of HILs. Fluorescence excitation 265 and emission spectra of Frc1-3 and HIL1-3 recorded at different emission and excitation 266 wavelengths accordingly are showed in Figure 1A and Figure 1B. Although Frc1-3 were 267 synthesized by multistep reactions from carboxylic acid compounds, they still kept the fluorescence 268 properties. The maximum excitation wavelengths (λ m-ex) of Frc1-3 were 319 nm, 349 nm and 379 269 nm, respectively. The maximum emission wavelengths (λ m-em) of Frc1-3 were 425 nm, 412 nm 270 and 536 nm, respectively. The fluorescence intensity of Frc2 was the strongest, followed by Frc1 271 and Frc3 in the same experimental condition. HIL1-3 obtained by the acid-base reactions between 272 ACI with Frc1-3 still retained the fluorescence properties. HIL1-3 exhibited the similar λ m-ex and 273 λ m-em as Frc1-3 except slight reductions in the fluorescence intensity. Under 366 nm UV light, the 274 fluorescence color of AS, HIL3, HIL7-12 are presented in Figure 1C. HIL3 showed strong yellow 275 fluorescence, while no fluorescence was observed in AS and HIL7 at the same concentration of 276 ACI. HIL8-12 also exhibited yellow fluorescence and their fluorescence intensities were decreased 277 gradually with the decreasing of Frc3/Cet molar rations.

278 **Detection of singlet oxygen.** Usually, DPBF would be readily degraded to endoperoxides in the 279 presence of singlet oxygen and the formed endoperoxides could be decomposed into the irreversible 280 products.⁵³ The reaction between DPBF and singlet oxygen can easily be monitored by recording 281 the change of the DPBF absorption at 411 nm.54 Figure 2 illustrates the UV-Vis spectra and 282 absorption of DPBF at 411 nm in DMF solution under the different treatments with light in 10 283 minutes. The results showed that DPBF treated with HIL3 and protoporphyrin IX had lower 284 absorptions at 411 nm than DPBF treated with protoporphyrin IX under the same light, which 285 indicated that DPBF treated with HIL3 and protoporphyrin IX produced more singlet oxygens. 286 Therefore, it could be concluded that HIL3 enhanced the singlet oxygen generation due to the paired 287 cation containing fluorescence characteristic.

Water solubility. The water solubilities of HIL1-12 at different pH are displayed in Table 3. The

289 solubilities of the prepared HILs in PBS were remarkably lower than that of AS with pH ranging 290 from 5.0 to 9.0. As an important factor to measure the environmental fate of HILs, the water 291 solubilities of HILs could be designed by appropriate selection of counterions. Based on the 292 solubilities of HIL4-7, the water solubilities of HILs were distinctly decreased as the increasing of 293 alkyl chain length of cations. The obtained data on the water solubilities of HILs were also in accord with the results of previous studies.^{10,13,55} The solubilities of HIL8-12 presented a declining trend 294 295 with the decreasing of Frc3/Cet molar rations and were not significantly affected by pH. With the 296 decrease of water solubilities, ionic liquids form of ACI possessing hydrophobic property could 297 reduce the potential risks to the natural aquatic environment.

298 Surface activity. The values of surface tension of the synthesized HIL1-12 at room temperature 299 are also showed in Figure 3. The surface tensions of HIL1-12 were lower than that of AS (63.42 300 mN m⁻¹) except HIL2. Compared with AS, the surface tensions of HIL1-5 ranging in values from 301 50.89 to 64.15 mN m⁻¹ had no change significantly, which indicated that the cations with 302 fluorescence groups and short alkyl chains had little influence on the surface activities. HIL6-12 303 showed the low surface tensions ($< 32 \text{ mN m}^{-1}$) due to the long alkyl chains in the cations. The type 304 of cation in the HILs played an important role in surface tension and these findings were consistent 305 with the previous studies.^{56,57} Therefore, HILs based on ACI with good surface activities were 306 conducive for enhancing absorption of the active ingredient and thus brought a better herbicide 307 activity.

308 Leaching test. The R_f values of the synthesized HIL1-12 are also shown in Figure 3. The R_f 309 values of HILs (ranging from 0.59-0.71) indicated lower leaching possibility than that of AS (0.73). 310 The R_f values of HIL1-7 showed that a long alkyl chain in the cation had obvious relation with the 311 mobility capacity of HILs in soil. HIL7 possessed the lowest mobility with R_f value being 0.63 312 among HIL1-7. This result was also strongly associated with the water solubility. HIL8-12 pairing 313 with two cations also exhibited low mobility with R_f values ranging from 0.59-0.65 and had more 314 potential possibilities for interacting with organic matter in soil. The low R_f values of HILs could 315 contribute to reducing the negative impacts of ACI on the aquatic environment. 316 Greenhouse experiment. The efficacies of HIL1-7 against Amaranthus retroflexus at the doses

of 50, 150, 300 mg L^{-1} in sunlight showed that the fluorescence characteristics in ionic liquids had

318 a positive effect on activities (Figure 4). The excellent efficacies of HILs may be derived from the improvement of the light utilization. Referring to the fluorescence characteristic of HIL3, the λ m-319 320 em at 536 nm belonged to action spectrum of the activity of ACI proposed in the previous study, 321 which was conducive to improvement of the herbicidal activity of ACI.³⁵ HIL7 presented a better 322 efficacy against broadleaf weeds than AS at the concentration of 300 mg L⁻¹, and its FWR and CCR 323 reached 86.23% and 66.68%, respectively. These results could be explained by the good 324 lipophilicity and low surface activity of HIL7. HILs paired with Cet had the best herbicidal activity 325 among HIL4-7, which was consistent with previous study.²²

326 Based on the excellent herbicidal efficacies of HIL3 and HIL7 derived from Frc3 and Cet 327 respectively, Frc3 and Cet were chosen as cations in the preparation of HIL8-12. The herbicidal 328 activities of HIL3, HIL7 (without fluorescence group in cation) and HIL8-12 (with different molar rations of Frc3 and Cet) against Amaranthus retroflexus at the concentration of 300 mg L-1 under 329 330 high and low light intensities respectively are shown in Figure 5. The FWR values of AS, HIL3 and 331 HIL7 were 68.22%, 89.56% and 82.12% respectively in the sunlight, which indicated that HIL3 and 332 HIL7 had higher herbicidal activities than AS under normal lighting conditions. In the weak light, 333 the FWR value of HIL3 was 70.82%, while that of HIL7 was only 46.32%. These results showed 334 the HILs with fluorescence properties had an enhanced efficacy, while low efficacy was found for 335 HILs without fluorescence properties under low light intensity.

336 Compared to the single salt IL forms, double salt ILs with cations of different properties could 337 present more excellent herbicidal activities under high and low light intensity. The FWR value of 338 HIL11 was 94.68% in sunlight and that of HIL8 was 84.73% in the weak light. Although the cation 339 Cet had no effect significantly on the efficacy of ACI in weak light, the fluorescence characteristics 340 of Frc3 in the HIL8-12 could be used as the internal and supplementary light source to increase the 341 efficacy against Amaranthus retroflexus. There was a certain degree of variation in the efficacies of 342 HIL8-12. In the sunlight, HILs with low Frc3/Cet molar rations showed high efficacies with the 343 benefit of the excellent physicochemical properties (e.g., improved lipophilicity and good surface 344 activity). In the weak light, the utilization efficiencies of light were increased by HILs with high 345 Frc3/Cet molar rations, and thus high efficacies were obtained. Therefore, the efficacies of HIL8-

346 12 based on ACI could be improved by controlling Frc3/Cet molar ratio.

347 Field experiment. According to the results from the greenhouse experiment, HIL3, HIL7, and 348 HIL11 were chosen as test HILs to evaluate their herbicidal activities in the field experiments. The 349 biological activities of AS, HIL3, HIL7, and HIL11 against different weeds in no-till farmland are 350 illustrated in Table 4. The results demonstrated that the single salt IL forms (HIL3 or HIL7) of ACI 351 had higher herbicidal activities against broadleaf weeds than AS, especially for Conyza canadensis 352 (L.) Crong. The control efficacies of HIL3 and HIL7 on Conyza canadensis (L.) Crong. were 81.3% 353 and 83.2% respectively at the dose of 360 g AI ha⁻¹ while that of AS was 75.8%. However, this 354 improvement is not obvious in the case of nonsensitive weeds, *Alopecurus aequalis* Sobol. Hence, 355 the impacts of different counter cations on the herbicidal activity of ACI depended on the weed 356 species. Compared to the single salt IL forms, the double salt IL forms (HIL11) of ACI paired with 357 Frc3 and Cet had a better herbicidal activity. In the case of Conyza canadensis (L.) Cronq. and 358 Gnaphalium affine D. Don, HIL11 had higher efficacies about 5.4-11.5% than HIL3 and HIL7 at 359 the dose of 360 g AI ha⁻¹. The results indicated that the double IL forms of ACI containing Frc3 and 360 Cet had enhanced herbicidal activities in the field.

361 In this study, twelve novel HILs based on ACI were synthesized using fluorescence characteristic 362 groups and alkylamines as cations. Five double salt ILs were prepared by using coumarin hydrazide 363 and n-hexadecyltrimethylammonium as the pairing cations due to their strong fluorescence 364 characteristic and lipophilicity, respectively. The results showed that the prepared HILs had 365 excellent physicochemical properties, such as good thermal stability and surface activity, low water 366 solubility, strong fluorescence characteristic, and weak mobility in soils, which could contribute to 367 the enhancement of herbicidal activity as well as minimization of the adverse impact on aquatic 368 environment. The phytotoxic activities against weeds in the greenhouse showed that HIL11 was the 369 best compound under high light conditions and HIL8 would be the best one under low light 370 conditions. Due to the presence of two different cations, the efficacies of HILs could be optimized 371 by variation of coumarin hydrazide/n-hexadecyltrimethylammonium molar ratio. The results of 372 field studies confirmed HILs with coumarin hydrazide and n-hexadecyltrimethylammonium as 373 cations had the excellent herbicidal activity against broadleaf weeds. Hence, HILs containing 374 different cations provided a wider scope for fine-tuning of the physicochemical and biological 375 properties of herbicides.

376						
377	AS	SOCIATED CONTENT				
378	Sup	porting Information				
379	The	e ¹ H and ¹³ C NMR of synthesized compounds; the CMC value and surface tension isotherms for				
380	HIL	S.				
381						
382	AU	THOR INFORMATION				
383	Cor	responding Authors				
384	* Y	ongsong Cao. E-mail: caoysong@126.com, caoys@cau.edu.cn.				
385	ORCID					
386	Yor	gsong Cao: 0000-0003-2110-8072				
387	Funding					
388	The authors acknowledge financial support of this work by the National Natural Science Foundation					
389	of China (31672067).					
390	Notes					
391	The authors declare no competing financial interest.					
392	RE	FERENCES				
393	(1)	Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem.				
394		<i>Rev.</i> 2008 , <i>108</i> , 2238-2264.				
395	(2)	Lei, Z.; Chen, B.; Koo Y. M; MacFarlane D. R. Introduction: ionic liquids. Chem. Rev. 2017,				
396		117, 6633-6635.				
397	(3)	Tang, R.; Tang, T.; Tang, G.; Liang, Y.; Wang, W.; Yang, J.; Niu J.; Tang J.; Zhou Z.; Cao,				
398		Y. Pyrimethanil ionic liquids paired with various natural organic acid anions for reducing its				
399		adverse impacts on the environment. J. Agr. Food Chem. 2019, 67, 11018-11024.				
400	(4)	Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. <i>Chem.</i>				
401		Soc. Rev. 2008, 37, 123-150.				
402	(5)	Zajac, A.; Kukawka, R.; Pawlowska-Zygarowicz, A.; Stolarska, O.; Smiglak, M. Ionic liquids				
403		as bioactive chemical tools for use in agriculture and the preservation of agricultural products.				
		15				

- 404 *Green Chem.* 2018, 20, 4764-4789.
- 405 (6) Yang, J.; Fan, C.; Tang, G.; Zhang, W.; Dong, H.; Liang, Y.; Wang, Y.; Zou M.; Cao, Y.
 406 Relationship between the structure of ionic liquid and its enrichment ability to trace fungicides
 407 from an environmental water sample. *J. Agr. Food Chem.* 2018, *66*, 9418-9425.
- 408 (7) Hough, W. L.; Smiglak, M.; Rodríguez, H.; Swatloski, R. P.; Spear, S. K.; Daly, D. T.; Pernak,
- 409 J.; Grisel, J. E.; Carliss, R. D.; Soutullo, M. D.; Davis Jr, J. H.; Rogers R. D. The third evolution
- 410 of ionic liquids: active pharmaceutical ingredients. *New J. Chem.* **2007**, *31*, 1429-1436.
- 411 (8) Egorova, K. S.; Gordeev, E. G.; Ananikov, V. P. Biological activity of ionic liquids and their
 412 application in pharmaceutics and medicine. *Chem. Rev.* 2017, *117*, 7132-7189.
- 413 (9) Cojocaru, O. A.; Shamshina, J. L.; Gurau, G.; Syguda, A.; Praczyk, T.; Pernak, J.; Rogers, R.
- 414 D. Ionic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility.
 415 *Green Chem.* 2013, *15*, 2110-2120.
- (10) Zhu, J.; Ding, G.; Liu, Y.; Wang, B.; Zhang, W.; Guo, M.; Geng, Q.; Cao, Y. Ionic liquid forms
 of clopyralid with increased efficacy against weeds and reduced leaching from soils. *Chem. Eng. J.* 2015, *279*, 472-477.
- 419 (11) Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Ionic liquids with herbicidal
 420 anions. *Tetrahedron* 2011, 67, 4838-4844.
- 421 (12) Pernak, J.; Syguda, A.; Materna, K.; Janus, E.; Kardasz, P.; Praczyk, T. 2, 4-D based herbicidal
 422 ionic liquids. *Tetrahedron* 2012, *68*, 4267-4273.
- 423 (13) Ding, G.; Liu, Y.; Wang, B.; Punyapitak, D.; Guo, M.; Duan, Y.; Li, J.; Cao, Y. Preparation
 424 and characterization of fomesafen ionic liquids for reducing the risk to the aquatic environment.
- 425 New J. Chem. 2014, 38, 5590-5596.
- 426 (14) Pernak, J.; Niemczak, M.; Giszter, R.; Shamshina, J. L.; Gurau, G.; Cojocaru, O. A.; Praczyk,
- 427 T.; Marcinkowska, K.; Rogers, R. D. Glyphosate-based herbicidal ionic liquids with increased
 428 efficacy. *ACS Sustain. Chem. Eng.* 2014, *2*, 2845-2851.
- 429 (15) Wang, B.; Ding, G.; Zhu, J.; Zhang, W.; Guo, M.; Geng, Q.; Guo, D.; Cao, Y. Development
 430 of novel ionic liquids based on bentazone. *Tetrahedron* 2015, *71*, 7860-7864.
- 431 (16) Tang, G.; Liu, Y.; Ding, G.; Zhang, W.; Liang, Y.; Fan, C.; Dong, H.; Yang J.; Kong, D.; Cao,
- 432 Y. Ionic liquids based on bromoxynil for reducing adverse impacts on the environment and

- 433 human health. New J. Chem. 2017, 41, 8650-8655.
- 434 (17) Tang, G.; Wang, B.; Ding, G.; Zhang, W.; Liang, Y.; Fan, C.; Dong, H.; Yang, J.; Kong, D.;
 435 Cao, Y. Developing ionic liquid forms of picloram with reduced negative effects on the aquatic
 436 environment. *Sci. Total Environ.* 2018, *616*, 128-134.
- 437 (18) Niemczak, M.; Rzemieniecki, T.; Sobiech, Ł.; Skrzypczak, G.; Praczyk, T.; Pernak, J.
 438 Influence of the alkyl chain length on the physicochemical properties and biological activity in
 439 a homologous series of dichlorprop-based herbicidal ionic liquids. *J. Mol. Liq.* 2019, 276, 431440.
- 441 (19) Wang, W.; Zhu, J.; Tang, G.; Huo, H.; Zhang, W.; Liang, Y.; Dong, H.; Yang, J.; Cao, Y.
 442 Novel herbicide ionic liquids based on nicosulfuron with increased efficacy. *New J. Chem.*443 2019, 43, 827-833.
- 444 (20) Wang, W.; Liang, Y.; Yang, J.; Tang, G.; Zhou, Z.; Tang, R.; Dong, H.; Li, J.; Cao, Y. Ionic
 445 liquid forms of mesotrione with enhanced stability and reduced leaching risk. *ACS Sustain*.
 446 *Chem. Eng.* 2019, 7, 16620-16628.
- 447 (21) Pernak, J.; Kaczmarek, D. K.; Rzemieniecki, T.; Niemczak, M.; Chrzanowski, L.; Praczyk, T.
- 448 Dicamba-based herbicides: herbicidal ionic liquids vs. commercial forms. *J. Agr. Food Chem.*449 2020. DOI: 10.1021/acs.jafc.0c00632
- 450 (22) Choudhary, H.; Pernak, J.; Shamshina, J. L.; Niemczak, M.; Giszter, R.; Chrzanowski, Ł.;
- 451 Praczyk, T.; Marcinkowska, K.; Cojocaru, O. A.; Rogers, R. D. Two herbicides in a single
 452 compound: double salt herbicidal ionic liquids exemplified with glyphosate, dicamba, and
- 453 MCPA. ACS Sustain. Chem. Eng. 2017, 5, 6261-6273.
- 454 (23) Chatel, G.; Pereira, J. F.; Debbeti, V.; Wang, H.; Rogers, R. D. Mixing ionic liquids "simple
 455 mixtures" or "double salts"? *Green Chem.* 2014, *16*, 2051-2083.
- 456 (24) Niemczak, M.; Rzemieniecki, T.; Biedziak, A.; Marcinkowska, K.; Pernak, J. Synthesis and
 457 structure-property relationships in herbicidal ionic liquids and their double salts.
 458 *ChemPlusChem* 2018, *83*, 529-541.
- 459 (25) Forouzesh, A.; Zand, E.; Soufizadeh, S.; Samadi Foroushani, S. Classification of herbicides
 460 according to chemical family for weed resistance management strategies–an update, *Weed Res.*
- **461 2015**, *55*, 334-358.

- 462 (26) Hess F.D. Light-dependent herbicides: an overview. *Weed Sci.* 2000, 48, 160-170.
- 463 (27) Johnson, W. O.; Kollman, G. E.; Swithenbank, C.; Yih, R. Y. RH-6201 (Blazer): A new broad
- 464 spectrum herbicide for postemergence use in soybeans. J. Agr. Food Chem. **1978**, 26, 285-286.
- 465 (28) Vulliet, E.; Emmelin, C.; Scrano, L.; Bufo, S. A.; Chovelon, J. M.; Meallier, P.; Grenier-
- 466 Loustalot, M. F. Photochemical degradation of acifluorfen in aqueous solution. J. Agr. Food
 467 Chem. 2001, 49, 4795-4800.
- 468 (29) Jacobs, J. M.; Sinclair, P. R.; Gorman, N.; Jacobs, N. J.; Sinclair, J. F.; Bement, W. J.; Walton,
- 469 H. Effects of diphenyl ether herbicides on porphyrin accumulation by cultured hepatocytes. *J.*470 *Biochem. Toxicol.* 1992, *7*, 87-95.
- 471 (30) Gullner, G.; Dodge, A. D. Accumulation of glutathione in pea leaf discs exposed to the
 472 photooxidative herbicides acifluorfen and 5-aminolevulinic acid. *J. Plant Physiol.* 2000, *156*,
 473 111-117.
- 474 (31) Witkowski, D. A.; Halling, B. P. Accumulation of photodynamic tetrapyrroles induced by
 475 acifluorfen -methyl. *Plant Physiol.* 1988, 87, 632-637.
- 476 (32) Matringe, M.; Camadro, J. M.; Labbe, P.; Scalla, R. Protoporphyrinogen oxidase as a
 477 molecular target for diphenyl ether herbicides. *Biochem. J.* 1989, *260*, 231-235.
- 478 (33) Matringe, M.; Scalla, R. Studies on the mode of action of acifluorfen -methyl in
 479 nonchlorophyllous soybean cells: accumulation of tetrapyrroles. *Plant Physiol.* 1988, *86*, 619480 622.
- 481 (34) Hopf, F. R.; Whitten, D. G. Chemical transformations involving photoexcited porphyrins and
 482 metalloporphyrins. In the Porphyrins, 1978, Volume 2 (pp. 161-195).
- 483 (35) Vanstone, D. E.; Stobbe, E. H. Light requirement of the diphenylether herbicide oxyfluorfen.
 484 *Weed Sci.* 1979, *27*, 88-91.
- 485 (36) Ensminger, M. P.; Hess, F. D. Action spectrum of the activity of acifluorfen -methyl, a
 486 diphenyl ether herbicide, in Chlamydomonas eugametos. *Plant Physiol.* 1985, 77, 503-505.
- 487 (37) Niu, J.; Tang, J.; Tang, G.; Zhou, Z.; Tang, R.; Yang, J.; Jiang, N.; Li, J.; Cao, Y. Enhanced
- 488 phototherapy activity by employing a nanosilica-coumarin-acifluorfen conjugate as the
 489 supplementary light source generator. *ACS Sustain. Chem. Eng.* 2019, *7*, 17706-17713.
- 490 (38) Locke, M. A.; Gaston, L. A.; Zablotowicz, R. M. Acifluorfen sorption and sorption kinetics in

- 491 soil. J. Agr. Food Chem. 1997, 45, 286-293.
- 492 (39) Cahoon, C. W.; York, A. C.; Jordan, D. L.; Seagroves, R. W.; Everman, W. J.; Jennings, K.
 493 M. Fluridone carryover to rotational crops following application to cotton. *J. Cotton Sci.* 2015,
 494 *19*, 631-640.
- 495 (40) Gillespie, W.; Czapar, G.; Hager, A. Pesticide fate in the environment: a guide for field
 496 inspectors. ISWS Contract Report CR 2011-07.
- 497 (41) <u>http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/14.htm</u>
- 498 (42) Gaston, L. A.; Locke, M. A. Acifluorfen sorption, degradation, and mobility in a Mississippi
 499 delta soil. *Soil Sci. Soc. Am. J.* 2000, *64*, 112-121.
- 500 (43) Scrano, L.; Bufo, S. A.; D'Auria, M.; Meallier, P.; Behechti, A.; Shramm, K. W.
 501 Photochemistry and photoinduced toxicity of acifluorfen, a diphenyl-ether herbicide. *J.*502 *Environ. Qual.* 2002, *31*, 268-274.
- 503 (44) Chen, Z.; Zhang, S.; Qi, X.; Liu, S.; Zhang, Q.; Deng, Y. Fluorescent quinolizinium ionic
 504 liquids (salts) with unexpectedly high quantum yields up to >99%. *J. Mater. Chem.* 2011, 21,
 505 8979-8982.
- 506 (45) Pandey, S.; Baker, S. N.; Pandey, S.; Baker, G. A. Fluorescent probe studies of polarity and
 507 solvation within room temperature ionic liquids: A review. *J. Fluoresc.* 2012, *22*, 1313-1343.
- 508 (46) Marwani, H. M. Exploring spectroscopic and physicochemical properties of new fluorescent
 509 ionic liquids. *J. Fluoresc.* 2013, 23, 251-257.
- 510 (47) Yao, M.; Li, Q.; Xia, Y.; Liang, Y. Synthesis, characterization, thermal analyses, and
 511 spectroscopic properties of novel naphthyl-functionalized imidazolium ionic liquids. *Russ. J.*
- 512 *Phys. Chem. A* 2018, *92*, 502-507.
- 513 (48) Belieres, J. P.; Angell, C. A. Protic ionic liquids: preparation, characterization, and proton free
 514 energy level representation. *J. Phys. Chem. B* 2007, 111, 4926-4937.
- 515 (49) Choi, K. H.; Wang, K. K.; Oh, S. L.; Im, J. E.; Kim, B. J.; Park, J. C.; Choi D. H.; Kim H. K.;
- 516 Kim, Y. R. Singlet oxygen generating nanolayer coatings on NiTi alloy for photodynamic
 517 application. *Surf. Coat. Tech.* 2010, *205*, S62-S67.
- 518 (50) No, T. (1995). 105: Water Solubility. Organization for Economic Co-Operation and
- 519 Development (OECD) Guidelines for the Testing of Chemicals.

- 520 (51) Decroos, K.; Vincken, J. P.; Van Koningsveld, G. A.; Gruppen, H.; Verstraete, W. Preparative
- 521 chromatographic purification and surfactant properties of individual soyasaponins from soy
 522 hypocotyls. *Food Chem.* 2007, *101*, 324-333.
- 523 (52) Steurbaut, W.; Pussemier, L. Soil thin layer chromatography. Pesticide/soil interactions: some
 524 current research methods, 2000, 83–84.
- 525 (53) Fujii, M.; Usui, M.; Hayashi, S.; Gross, E.; Kovalev, D.; Künzner, N.; Diener, J.; Timoshenko,
- 526 V. Y. Chemical reaction mediated by excited states of Si nanocrystals—singlet oxygen
 527 formation in solution. J. Appl. Phys. 2004, 95, 3689-3693.
- 528 (54) Gollavelli, G.; Ling, Y. C. Magnetic and fluorescent graphene for dual modal imaging and
 529 single light induced photothermal and photodynamic therapy of cancer cells. *Biomaterials*530 2014, 35, 4499-4507.
- (55) Niu, J.; Zhang, Z.; Tang, J.; Tang, G.; Yang, J.; Wang, W.; Huo, H.; Jiang, N.; Li, J.; Cao, Y.
 Dicationic ionic liquids of herbicide 2, 4-dichlorophenoxyacetic acid with reduced negative
 effects on environment. *J. Agr. Food Chem.* 2018, *66*, 10362-10368.
- 534 (56) Turguła, A.; Materna, K.; Gwiazdowska, D.; Walkiewicz, F.; Marcinkowska, K.; Pernak, J.
 535 Difunctional ammonium ionic liquids with bicyclic cations. *New J. Chem.* 2019, *43*, 4477536 4488.
- 537 (57) Tang, G.; Zhang, W.; Tang, J.; Niu, J.; Yang, J.; Tang, R.; Dong, H.; Liang, Y.; Cao, Y.
- 538 Development of triflumizole ionic liquids containing anions of natural origin for improving the
 539 utilization and minimizing the adverse impacts on aquatic ecosystems. *Sci. Total Environ.* 2019,

540 *670*, 606-612.

542 TABLE AND FIGURE CAPTIONS

- 543 Scheme 1. Synthetic methods of HILs and the chemical structure of cations employed in this study.
- Figure 1. The scanned excitation (A) and emission (B) spectra of HIL1-3. The fluorescence of HILs
 under UV light of 366 nm (C).
- 546 Figure 2. A: UV-Vis spectra (A) and absorption at 411 nm (B) of DPBF in DMF solution with light
- 547 at 10 minutes. (a) DPBF only, (b) DPBF with protoporphyrin IX, and (c) DPBF with HIL3 and
- 548 protoporphyrin IX.
- 549 Figure 3. The interfacial surface tensions and $R_{\rm f}$ values of HILs at 25 °C.
- 550 Figure 4. The chlorophyll content reduction (A) and fresh weight reduction (B) of acifluorfen
- sodium (AS) and HIL1-7 under sunlight at five days after treatment. Each data point represents the
- 552 mean value from at least three independent experiments. Different letters within each column
- 553 indicate statistical differences at P < 0.05.
- 554 Figure 5. The fresh weight reductions of HILs at the concentration of 300 mg L⁻¹ at seven days after
- treatment under high and weak light (upper). The pictures of *Amaranthus retroflexus* seedlings at
- seven days after treating with HILs at the concentration of 300 mg L⁻¹ under high and weak light
- 557 (under). Each data point represents the mean value from at least three independent experiments.
- 558 Table 1. Synthesized HILs based on acifluorfen. Different letters within each column indicate
- 559 statistical differences at P < 0.05.
- 560 Table 2. The thermal properties of HILs.
- 561 Table 3. The water solubilities of HILs at different pH.
- 562 Table 4. The weed control efficacies of acifluorfen sodium (AS) and HILs at 14 days after treatment
- in no-till farmland.
- 564

566 Scheme 1. Synthetic methods of HILs and the chemical structure of cations employed in this study.

569 Figure 1. The scanned excitation (A) and emission (B) spectra of HIL1-3; the fluorescence of HILs

570 under UV light of 366 nm (C).

571

573 Figure 2. A: UV-Vis spectra (A) and absorptions at 411 nm (B) of DPBF in DMF solution with light

at 10 minutes. (a) DPBF only, (b) DPBF with protoporphyrin IX, and (c) DPBF with HIL3 andprotoporphyrin IX.

572

577 578 Figure 3. The interfacial surface tensions and $R_{\rm f}$ values of HILs at 25 °C.

581 Figure 4. The chlorophyll content reduction (A) and fresh weight reduction (B) of acifluorfen 582 sodium (AS) and HIL1-7 under sunlight at five days after treatment. Each data point represents the 583 mean value from at least three independent experiments. Different letters within each column 584 indicate statistical differences at P < 0.05.

586

Figure 5. The fresh weight reductions of HILs at the concentration of 300 mg L⁻¹ at seven days after treatment under high and weak light (upper). The pictures of *Amaranthus retroflexus* seedlings at seven days after treating with HILs at the concentration of 300 mg L⁻¹ under high and weak light (under). Each data point represents the mean value from at least three independent experiments. Different letters within each column indicate statistical differences at P < 0.05.

No.	Abbreviation	Formula [Herb][Cat] _m [Cat] _{1-m}	Color	Physical State	Yield (%)
1	HIL1	[ACI][Frc1]	brown	Solid	97
2	HIL2	[ACI][Frc2]	Yellow	Solid	95
3	HIL3	[ACI][Frc3]	Yellow	Solid	96
4	HIL4	[ACI][Tma]	Yellow	Wax	98
5	HIL5	[ACI][Tba]	Yellow	Wax	95
6	HIL6	[ACI][Tda]	Yellow	Wax	96
7	HIL7	[ACI][Cet]	Yellow	Wax	98
8	HIL8	$[ACI][Frc3]_{0.9}[Cet]_{0.1}$	Yellow	Wax	96
9	HIL9	[ACI][Frc3] _{0.7} [Cet] _{0.3}	Yellow	Wax	98
10	HIL10	[ACI][Frc3] _{0.5} [Cet] _{0.5}	Yellow	Wax	94
11	HIL11	[ACI][Frc3] _{0.3} [Cet] _{0.7}	Yellow	Wax	96
12	HIL12	[ACI][Frc3] _{0.1} [Cet] _{0.9}	Yellow	Wax	97

593 Table 1. Synthesized HILs based on acifluorfen.

No.	Abbreviation	T_m^a (°C)	$T_{onset5\%}^{b}$ [°C]	T_{onset}^{c} [°C]
1	HIL1	72	205	326
2	HIL2	120	204	498
3	HIL3	140	272	323
4	HIL4	_	231	279
5	HIL5	_	164	295
6	HIL6	_	169	290
7	HIL7	_	136	277
8	HIL8	_	_	_
9	HIL9	_	_	_
10	HIL10	_	_	_
11	HIL11	_	_	_
12	HIL12	_	134	285

595 Table 2. The thermal properties of HILs.

596 ${}^{a}T_{m}$, melting point. ${}^{b}T_{onset5\%}$, decomposition temperature of 5% sample. ${}^{c}T_{onset}$, decomposition temperature of 50% sample.

No	Abbroxistion	Solubility at different pH (mg L ⁻¹)					
INU.	Abbreviation	5.0	7.0	9.0			
	AS	> 10 ⁵	> 10 ⁵	> 10 ⁵			
1	HIL1	$(1.29 \pm 0.21) \times 10^3$	$(1.17 \pm 0.12) \times 10^3$	$(9.44 \pm 0.03) \times 10^2$			
2	HIL2	$(2.47 \pm 0.15) \times 10^2$	$(7.11 \pm 0.28) \times 10^3$	$(3.27 \pm 0.06) \times 10^3$			
3	HIL3	$(1.04 \pm 0.06) \times 10^3$	$(1.62 \pm 0.02) \times 10^3$	$(1.10 \pm 0.07) \times 10^3$			
4	HIL4	$(7.85 \pm 0.22) \times 10^4$	$(1.14 \pm 0.14) \times 10^4$	$(1.06 \pm 0.11) \times 10^4$			
5	HIL5	$(8.34 \pm 0.19) \times 10^2$	$(2.93 \pm 0.05) \times 10^3$	$(4.67 \pm 0.13) \times 10^3$			
6	HIL6	$(9.59 \pm 0.05) \times 10^2$	$(1.02 \pm 0.16) \times 10^3$	$(1.06 \pm 0.11) \times 10^3$			
7	HIL7	$(3.94 \pm 0.01) \times 10^2$	$(5.42 \pm 0.13) \times 10^2$	$(9.83 \pm 0.02) \times 10^2$			
8	HIL8	$(6.58 \pm 0.11) \times 10^2$	$(7.98 \pm 0.10) \times 10^2$	$(1.09 \pm 0.15) \times 10^3$			
9	HIL9	$(5.63 \pm 0.03) \times 10^2$	$(6.17 \pm 0.04) \times 10^2$	$(8.53 \pm 0.12) \times 10^2$			
10	HIL10	$(3.29 \pm 0.13) \times 10^2$	$(3.84 \pm 0.01) \times 10^2$	$(4.59 \pm 0.08) \times 10^2$			
11	HIL11	$(4.21 \pm 0.09) \times 10^2$	$(3.95 \pm 0.03) \times 10^2$	$(4.17 \pm 0.09) \times 10^2$			
12	HIL12	$(3.83 \pm 0.08) \times 10^2$	$(4.31 \pm 0.04) \times 10^2$	$(3.78 \pm 0.05) \times 10^2$			

Table 3. The water solubilities of HILs at different pH.

Table 4. The weed control efficacies of acifluorfen sodium (AS) and HILs at 14 days after treatment

602 in no-till farmland.

	Control efficacy (%) with different dosage (g AI ha-1)								
Salt	Conyza canadensis (L.) Cronq.			Gnaphalium affine D. Don			Alopecurus aequalis Sobol.		
	180	270	360	180	270	360	180	270	360
AS	$48.3 \pm 2.7 \text{ c}^*$	63.1 ± 1.6 c	75.8 ± 2.3 d	35.3 ± 0.9 b	54.0 ± 2.8 c	63.2 ± 1.9 c	25.9 ± 0.9 b	38.7 ± 1.8 a	50.8 ± 0.9 a
HIL3	53.5 ± 3.3 bc	$70.6 \pm 2.1 \text{ b}$	$81.3\pm0.4\ c$	$38.6\pm2.8\ b$	55.8 ± 1.8 c	65.4 ± 1.8 c	26.3 ± 3.4 ab	43.5 ± 2.3 a	48.7 ± 2.8 a
HIL7	$57.8\pm1.9~b$	$69.0\pm0.8\ b$	$83.2 \pm 1.1 \text{ b}$	$42.9\pm2.3\ ab$	$60.1\pm0.5\ b$	$71.5\pm2.1~b$	25.1 ± 2.6 b	39.5 ± 0.9 a	50.3 ± 1.6 a
HIL11	62.9 ± 1.2 a	78.5 ± 1.7 a	90.8 ± 1.5 a	45.6 ± 1.4 a	64.7 ± 2.7 a	76.9 ± 1.8 a	28.6 ± 0.7 a	40.8 ± 3.2 a	51.2 ± 1.7 a

^{603 *} Different letters within a column indicate statistical differences at P < 0.05604

605 Table of Contents

