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ABSTRACT: Stimuli-responsive polymers that release small 
molecules under mechanical stress are appealing targets for appli-
cations ranging from drug delivery to sensing. Here, we describe a 
modular mechanophore design platform for molecular release via a 
mechanically triggered cascade reaction. Mechanochemical activa-
tion of a furan–maleimide Diels–Alder adduct reveals a latent fur-
furyl carbonate that subsequently decomposes under mild condi-
tions to release a covalently bound cargo molecule. The computa-
tionally guided design of a reactive secondary furfuryl carbonate 
enables the decomposition and release to proceed quickly at room 
temperature after unmasking via mechanical force. This general 
strategy is demonstrated using ultrasound-induced mechanical ac-
tivation to release a fluorogenic coumarin payload from a polymer 
incorporating a chain-centered mechanophore. 

Mechanical to chemical transduction is a powerful strategy for 
achieving materials with stimuli-responsive properties. The emerg-
ing field of polymer mechanochemistry aims to harness mechanical 
forces in polymers to promote productive chemical transformations 
in stress-responsive molecules known as mechanophores.1 Me-
chanical force is delivered to mechanophores through covalently 
attached polymer chains using a variety of techniques including so-
lution-phase ultrasonication,2 tension/compression in solid materi-
als,3 atomic force microscopy,4 laser-induced stress waves,5 and 
high intensity focused ultrasound.6 Mechanically coupled chemical 
activation has been demonstrated for covalent bond transfor-
mations to engender a wide range of functional responses including 
changes in color or fluorescence,3a,7 chemiluminescence,8 switch-
ing of electrical conductivity,9 activation of catalysts,10 and gener-
ation of reactive functional groups.11 

Polymers that release small molecules under stress are particu-
larly appealing targets for a number of applications including catal-
ysis, sensing, self-healing, and drug delivery.12 However, mech-
anophores capable of releasing functional small molecules are still 
limited. An oxanorbornadiene mechanophore was demonstrated to 
release a benzyl furfuryl ether molecule from polymeric materials 
under compression,13 while a gem-dichlorocyclopropanated indene 
mechanophore was shown to generate HCl.14 In addition, mecha-
nochemical chain scission of poly(o-phthalaldehyde) results in an 
unzipping reaction above its ceiling temperature to regenerate mon-
omer.15 Metal ion release from the mechanical dissociation of fer-
rocene was also recently demonstrated.16 Nevertheless, a more 
modular and general mechanophore design platform capable of the 
triggered release of functional organic molecules would enable new 
opportunities for polymer mechanochemistry. 

Cascade reactions initiated by external stimuli offer a unique ap-
proach for controlling molecular release. For example, retro-Diels–
Alder reactions have served as thermal triggers for the depolymer-
ization of self-immolative polymers. Boydston and coworkers re-
ported a 1,2-oxazine linker,17 while Gillies and coworkers reported 
a furan–maleimide adduct that initiated a depolymerization reac-
tion at elevated temperatures by invoking the thermal decomposi-
tion of a furfuryl carbonate intermediate.18 The photogating con-
cept has also been used to control cascade reactions. Branda and 
coworkers designed a diarylethene photoswitch that allowed elec-
tronic conjugation between a remote electron donating group and a 
labile carbonate group to be modulated with light, resulting in car-
bonate fragmentation upon photochemical electrocyclization.19 We 
recently extended the concept of mechanochemical gating20 to reg-
ulate a photochemical transformation in which a mechanically fa-
cilitated retro-Diels–Alder reaction unmasked a diarylethene pho-
toswitch.21 

Here we report a mechanophore platform based on a furan–ma-
leimide Diels–Alder adduct that leverages the instability of a judi-
ciously designed furfuryl carbonate for small molecule release via 
a mechanically gated reaction cascade. As illustrated in Scheme 1, 
mechanochemical activation of the kinetically stable adduct results 
in a retro-Diels–Alder reaction, revealing a metastable furfuryl car-
bonate that quickly decomposes in polar protic media to release 
carbon dioxide and a covalently bound alcohol molecule. The sec-
ondary furfuryl carbonate structure is a key design feature that sig-
nificantly increases the rate of decomposition and small molecule 
release, enabling the transformation to proceed spontaneously un-
der mild conditions, but only after the prerequisite mechanochem-
ical cycloelimination reaction. We describe the computationally 

Scheme 1. Mechanically Triggered Reaction Cascade Re-
sulting in Small Molecule Release. 
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supported design and reactivity of the furfuryl carbonate, and as a 
proof-of-concept, demonstrate the mechanically triggered release 
of a model fluorogenic coumarin probe via ultrasound-induced 
mechanochemical activation of a polymer chain-centered mech-
anophore. 

We initially set out to investigate the effect of substitution on the 
decomposition reaction of furfuryl carbonates. Activation energies 
for the reaction of a series of three model furfuryl carbonates (FC1–
FC3) were calculated at the M06-2X/6-311+G** level of density 
functional theory (DFT) to gauge the effect of substitution on the 
rate of decomposition (Figure 1a, see the SI for details). The acti-
vation energy for the fragmentation of FC1, which is analogous to 
Gillies’ design,18 was calculated to be 29.4 kcal/mol, suggesting 
very slow reaction at room temperature. Addition of a methyl group 
at the 5-position of the furan (FC2) reduces the reaction barrier to 
25.8 kcal/mol, although this is still insufficient for rapid release. In 
fact, model compounds with analogous structures to FC1 and FC2 
were synthesized and the half-lives for decomposition at room tem-
perature were estimated to be on the order of several weeks (Fig-
ures S1 and S2). DFT calculations indicate that substitution with an 
α-methyl group, however, results in a pronounced decrease in acti-
vation energy for FC3 (ΔG‡ = 22.0 kcal/mol) as might be expected 

from stabilization of the putative furfuryl cation intermediate sug-
gested by the mechanism in Scheme 1. We therefore identified the 
general structure of furfuryl carbonate FC3 as a promising target 
for mechanically triggered small molecule release from a furan–
maleimide Diels–Alder adduct using the 5-position of the furan for 
polymer attachment. Additional DFT calculations using the simple 
constrained geometries simulate external force (CoGEF) tech-
nique22 indicate that mechanical elongation of an appropriately 
substituted furan–maleimide adduct generates the expected furfuryl 
carbonate (Figure 1b, see the SI for details). The retro-Diels–Alder 
reaction occurs with an estimated rupture force of 4.0 nN, which is 
comparable to rupture forces calculated with the CoGEF method 
for other active furan–maleimide mechanophores.23 While these 
forces are typically overestimated compared to experiments,24 they 
provide a useful framework for predicting relative mechanochemi-
cal activity. 

We synthesized fluorogenic furfuryl carbonate model compound 
1 with an analogous structure to computational model FC3 and in-
vestigated its reactivity experimentally (Figure 2). The coumarin 
payload exhibits enhanced photoluminescence (PL) upon release, 
allowing reaction progress to be tracked using fluorescence spec-
troscopy in addition to NMR spectroscopy. Furfuryl carbonate 1 is 
relatively stable in chloroform and acetonitrile (Figures S3 and S4); 
however, the addition of methanol to an acetonitrile solution of 1 

leads to fast decomposition at room temperature and clean for-
mation of hydroxycoumarin 2 and furfuryl ether 3 (Figure 2a). The 
generation of furfuryl ether 3 under these conditions is consistent 
with a mechanism involving initial fragmentation of the carbonate 
group to form a furfuryl cation, which is subsequently attacked by 
methanol followed by proton transfer. Figure 2b shows the decom-
position of furfuryl carbonate 1 in a 3:1 (v/v) mixture of acetoni-
trile-d3 and methanol monitored by 1H NMR spectroscopy. Signals 
corresponding to 1 fully disappear in a few hours with the concom-
itant formation of two new sets of resonances that match the spectra 
of the isolated hydroxycoumarin and furfuryl methyl ether prod-
ucts. The generation of hydroxycoumarin 2 from a room tempera-
ture solution of furfuryl carbonate 1 in MeCN:MeOH (3:1) was 
also monitored over time using fluorescence spectroscopy (Figure 
2c). Excitation at 330 nm revealed an emission peak around 380 
nm that increased in intensity over time and matches the emission 
spectrum of hydroxycoumarin 2 (Figure S5). Approximately 98% 
of the theoretical yield of hydroxycoumarin 2 is released over about 
6 h (Figure 2d). The conversion of furfuryl carbonate 1 and the gen-
eration of hydroxycoumarin 2 follow exponential decay under 
these conditions with the reaction half-life estimated from NMR 
measurements to be t1/2 = 79 min. We note that decomposition of 
furfuryl carbonate 1 occurs even faster in a water/acetonitrile mix-
ture (t1/2 < 10 min), indicating the potential of this system for mo-
lecular release in aqueous environments (Figure S6). 

Having identified a suitable furfuryl carbonate structure for 
small molecule release we next set out to synthesize a furan–malei-
mide Diels–Alder adduct and incorporate it into a polymer to study 
its mechanochemical behavior. Polymers containing a chain-cen-
tered mechanophore are mechanically activated in solution using 
ultrasonication, which produces elongational forces that are max-
imized near the chain midpoint.2 Furan–maleimide adduct (±)-4 
equipped with two α-bromoester initiating sites and a modular al-
cohol functional group for cargo attachment was prepared on gram 
scale in four steps from commercially available reagents (Scheme 
2, see the SI for details). Starting from a racemic mixture of α-
methylfurfuryl alcohol resulted in four diastereomeric Diels–Alder 
adducts. Although both endo and exo isomers exhibited mechano-
chemical reactivity in an initial screening as expected from previ-
ous studies of furan–maleimide mechanophores,23 here we focus on 
one particular endo racemate shown in Scheme 2. The absolute 
configuration of the Diels–Alder adduct was confirmed by single 
crystal X-ray diffraction. Precursor (±)-4 was converted to 

Figure 1. Density functional theory (DFT) calculations of (a)
activation energies for carbonate fragmentation from a series of
furfuryl carbonates at the M06-2X/6-311+G** level of theory, and
(b) mechanical elongation of a truncated furan–maleimide Diels–
Alder adduct using the constrained geometries simulate external
force (CoGEF) method at the B3LYP/6-31G* level of theory. 
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mechanophore bis-initiator (±)-6 via installation of the fluorogenic 
coumarin payload by reaction with the corresponding chlorofor-
mate, and then subsequently employed in the controlled radical 

polymerization of methyl acrylate using Cu wire/Me6TREN in 
DMSO to afford the chain-centered polymer PMA-1 (Mn = 100 
kg/mol; Ð = 1.06). Chain-end functional control polymer PMA-

Figure 2. Characterization of the room temperature decomposition reaction of furfuryl carbonate 1. (a) Decomposition of 1 in 3:1 
MeCN:MeOH generates fluorescent hydroxycoumarin 2 and furfuryl methyl ether 3 via a putative furfuryl cation intermediate. (b) 1H NMR 
spectra (3:1 MeCN-d3:MeOH) demonstrating the clean conversion of 1 to products ([1]0 = 12 mM). (c) Photoluminescence spectra ([1]0 = 
6.1 μM in 3:1 MeCN:MeOH, λex = 330 nm) monitoring the generation of hydroxycoumarin 2 over time. (d) Quantification of data from 
panels b and c illustrating the time-dependent conversion of furfuryl carbonate 1 and the generation of hydroxycoumarin 2 as measured by 
NMR and fluorescence spectroscopy, respectively. 

Scheme 2. Synthesis of Poly(Methyl Acrylate) (PMA) Containing a Chain-Centered Mechanophore Equipped with a Fluoro-
genic Coumarin Probe and a Chain-End Functional Control Polymer. 
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control (Mn = 86 kg/mol; Ð = 1.14) was synthesized similarly start-
ing from (±)-5 containing a single α-bromoester initiating group 
(see the SI for details). 

Mechanically triggered molecular release from PMA-1 was 
evaluated using pulsed ultrasonication (1s on/2s off, 0 °C, 20 kHz, 
8.2 W/cm2) in the same polar protic solvent mixture employed in 
the small molecule model studies (3:1 MeCN:MeOH). Aliquots 
were periodically removed from the sonicated polymer solution 
and measured with gel permeation chromatography (GPC) to de-
termine changes in molecular weight and fluorescence spectros-
copy to monitor the generation of hydroxycoumarin 2 (Figure 3). 
The Mn decreased steadily over 150 min of ultrasonication, with the 
GPC chromatograms exhibiting characteristic features of midchain 
scission (Figure 3a and Figure S7). Photoluminescence measure-
ments also showed a predictable increase in intensity indicating the 
successful release of hydroxycoumarin 2, reaching approximately 
64% of the theoretical yield after 150 min (Figure 3a). By fitting 

the time-dependent PL data to a first-order rate expression, the ex-
tent of release is projected to plateau at a maximum value of ap-
proximately 87% (Figure S8). The reduced efficiency compared to 
the small molecule decomposition study likely stems from the in-
herent competition between mechanophore activation and nonspe-
cific chain scission, resulting in part from a distribution in the po-
sition of mechanophores in the polymer backbones.26 The fluores-
cence data presented in Figure 3 was acquired after incubating each 
aliquot at room temperature for approximately 20 h to ensure com-
plete decomposition of the mechanically generated furfuryl car-
bonate. However, PL measurements taken immediately after sam-
ple removal from the sonicated solution exhibit appreciable fluo-
rescence, indicating that a significant degree of release occurs 
quickly even at lower temperatures (Figure S9). Importantly, chain-
end functional control polymer PMA-control subjected to the 
same ultrasonication conditions exhibits negligible changes in flu-
orescence compared to PMA-1 (Figure 3b). These results indicate 
that ultrasound-induced release of hydroxycoumarin 2 from PMA-
1 is indeed a mechanically triggered cascade reaction process. 

In summary, we have demonstrated a mechanophore platform 
for release of small molecules via a mechanically triggered cascade 
reaction. The strategy relies on the mechanochemically activated 
retro-Diels–Alder reaction of a furan–maleimide adduct, which re-
veals a latent furfuryl carbonate that subsequently decomposes in 
polar protic solvents to release a covalently bound cargo molecule. 
The computationally guided design of a reactive α-methylfurfuryl 
carbonate enabled small molecule release via a well-defined de-
composition reaction that proceeds efficiently under mild condi-
tions. Ultrasound-induced mechanical activation of a chain-cen-
tered furan–maleimide mechanophore loaded with a fluorogenic 
coumarin probe illustrates the power of this approach for a wide 
range of mechanically triggered cascade reactions. We anticipate 
that this general strategy will be useful for the mechanically trig-
gered release of functional molecules in drug delivery, stress sens-
ing, depolymerization, and other applications. 
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