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ABSTRACT: The proof-of-concept for conditionally activatable photocages is demonstrated on a new vinyltetrazine-
derivatized coumarin. The tetrazine form is disabled in terms of light-induced cargo release, however, bioorthogonal 
transformation of the modulating tetrazine moiety results in fully restored photoresponsivity. Irradiation of such a 
“click-armed” photocage with blue light leads to fast and efficient release of a set of caged model species, conjugated 
via various linkages. Live-cell applicability of the concept was also demonstrated by the conditional release of a 
fluorogenic probe using mitochondrial pretargeting. 

INTRODUCTION
The past decade has brought remarkable advances in light-
related techniques allowing them to grow from simple 
means of observation to a precision tool in biology and 
medical sciences.1–3 Its non-invasive nature, remote action 
together with easy control, fast and cost efficient operation 
make these techniques very appealing. These processes 
became possible by the development of photoresponsive 
materials that efficiently convert light to chemical energy. 
Among photoresponsive materials, photolabile protecting 
groups (PPGs) or photocages (PCs) play increasing role 
both in chemical biology studies and in therapeutic 
applications.4–8 These photosensitive groups may be used to 
mask the biological function of small-molecular effectors,8–

15 proteins,3,16 nucleotides17,18 or drugs,19–22 rendering them 
inactive. Light induced removal of these photolabile 
moieties by irradiation with a suitable wavelength, the 
activity of the caged substrate is restored. Manipulation of 
biological systems via photocaging has already 
revolutionized chemical biology. Nevertheless, the full 
potential of photocaging is yet to be exploited. To extend the 
use of these photoresponsive elements especially in the 
context of chemical biology, several limitations should be 
addressed, such as UV light activation,23–26 poor water 
solubility,19,27,28 and the lack of potential for targeting.20,29–31 
In addition to the impact on chemical biology, photocaging-
based drug delivery systems, especially photoactivated 
chemoterapy (PACT) could also benefit from the 
development of such improved photocages possessing 
specific targeting elements.23,32

In recent years, a few notable examples were presented as 
’clickable’ photocages targeting various intracellular 
compartments.31,33,34 However, in these instances click-
chemistry (i.e., copper-catalyzed azide alkyne 

cycloaddition) was only used to facilitate the assembly of 
the organelle-targeting photocage, rather than to serve as 
the key element of the targeting process.35-37 To the best of 
our knowledge, such clickable photocages where the 
clickable moiety is also the targeting element are not 
reported yet. Redefining the role of the clickable function, 
however, is rather an incremental step towards improved 
photocages. Exploiting the modulation power that certain 
biocompatible click handles (i.e., bioorthogonal functions) 
exert on chromophores, gives an extra twist to the story. 
Based on our extensive work on the development of 
bioorthogonal fluorogenic (turn on) probes,38–40 we 
hypothesized that a similar concept can be applied to 
modulate the photoresponsivity of photocages. According 
to our foreseen concept termed “conditional photocaging”, 
such switchable constructs become photocages solely by 
‘arming’ by chemical transformation of the quencher moiety 
in a specific chemical reaction (i.e., a bioorthogonal 
reaction). Following this highly specific bioorthogonal 
ligation step to the target, the caged, biologically active 
molecule can be released upon light irradiation 
(‘activation’). Non-specifically bound or free (disabled) 
constructs on the other hand, remain inactive even on 
exposure to light. 
Lately, several accounts reported on the development of so-
called click-and-release systems that rely on the 
spontaneous elimination of caged compounds upon a 
bioorthogonal reaction (i.e., inverse electron demand Diels-
Alder, IEDDA, reaction of tetrazines and strained 
alkenes).37,41 Though it seems similar at first sight, our 
approach is conceptually different. Our click-and-uncage 
constructs are based on the quenched activity of the 
photocage, which is reinstated after the reaction of the 
quencher moiety. 
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Scheme 1 Synthesis and Structure of the Model Photocages

Moreover, the further necessity of light irradiation enables 
an extra level of temporal and spatial control over the 
release of the caged active species. During the course of this 
work, Vázquez et al. reported on the bioorthogonal 
modulation of the 1O2 sensitizing potential of BODIPY 
derivatives allowing conditional photodynamic 
applications (i.e., PDT).42,43 The above hypothesized 

biorthogonal modulation of photocages would enable the 
oxygen independent, complementary concept of 
conditional photoactivated chemotherapy (PACT). 
Herein, we demonstrate the proof of concept of conditional 
photoactivation by disclosing the development and study of 
a bioorthogonal moiety- (tetrazine-) modulated, visible-
light sensitive click-and-uncage platform with various 
caged compounds. Besides in vitro experiments, live-cell 
applicability of the concept is also demonstrated through 
the pretargeting-dependent conditional photorelease of a 
fluorogenic probe. 

RESULTS AND DISCUSSION
Prompted by the above considerations, we turned our 
attention to coumarin-based photocages13,23,24,28,45 and 
tetrazine quenched fluorogenic probes.38,40,46,47 We 
assumed that both the fluorescence and light-induced bond 
dissociation originate from the same excited state, thus, we 
hypothesized that similarly to fluorescence, the 
photoresponsivity of photocages can also be modulated by 
the bioorthogonal and quencher tetrazine moiety. We have 
recently observed48 that vinylene-linked methyl-tetrazine 
completely quenches the fluorescence of the 7-
diethylaminocoumarin chromophore, which is then fully 
restored upon transforming the tetrazine in a 
bioorthogonal reaction. It was also observed that the 
vinylene linkage shifts the absorption wavelength of the 
related coumarin with ca. 60 nm towards the red range 

resulting in visible light absorption. Therefore, we designed 
compound 1, which combined elements of coumarinyl 
photocages and bioorthogonally activatable vinylene linked 
coumarinyl-tetrazine fluorogenic probes.
Cage 1 was accessed through a synthetic route starting from 
3-bromo-7-diethylamino-4-hydroxymethylcoumarin using 
the previously established procedure for the synthesis of 
vinyltetrazinylated frames49 and further conjugated with 
three different amino acids as model caged molecules 
(Scheme 1). Boc-phenylalanine, Fmoc-lysine and Boc-
tyrosine-tBu-ester were readily converted to their 
corresponding caged derivatives resulting in ester (2), 
carbamate (3) and carbonate (4) linked species, 
respectively. In accordance with our previous observations, 
absorption spectra of all derivatives were red-shifted 
compared to plain coumarin-caged congeners, with 
absorption maxima around 475 nm (tetrazine form) and 
medium molar absorption coefficients (35-40 000 M-1cm-1) 
in acetonitrile-HEPES 2:1 (pH 7.0). As expected, 
fluorescence of the tetrazine derivatives was found to be 
practically zero. Reaction with a strained alkyne, BCN 
((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol) resulted 
in blue-shifted absorption maxima (around 445 nm) and, 
very importantly, a ca. 1000-fold increase in bright green 
emission intensity at around 535 nm. 
Next, we have compared the photo-uncaging features of the 
tetrazines and their respective BCN-conjugated congeners. 
Based on the near quantitative fluorescence quenching, we 
anticipated that the photo-dissociation is also suppressed. 
Gratifyingly, when the samples were irradiated with blue 
LED (463 nm, for details, please refer to the SI), neither the 
release of the caged amino acids nor photo-destruction 
could be observed in case of the unarmed (tetrazine) 
constructs. Irradiation, ‘activation’ of the BCN-conjugated, 
‘clicked and armed’ forms under the same conditions, 
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Table 1. Spectroscopic Properties and Photochemical Quantum Yields of the Compounds in MeCN-HEPES 2:1 (pH 7.0). 

max (nm) em (nm)  (M-1cm-1) flu
a u

b deg
c  × u (M-1cm-1)

1 / 1-BCN 463 / 436
470 / 442d

527 / 531
536 / 538d

45 800 / 44 700    
44 100 / 42 800

61% - - -

2 / 2-BCN 470 / 442 535 / 534 34 500 / 30 100 69% 0.44%e 0.74% 107

3 / 3-BCN 468 / 440 534 / 535 42 600 / 40 800 62% 0.10% 0.42% 31

4 / 4-BCN 470 / 442 - / 553 37 600 / 30 800 38% 3.50% 4.40% 875
afluorescence quantum yield b uncaging (release) quantum yield c degradation quantum yield d measured in HEPES buffer. Quantum 
Yields were Determined Only for the Clicked Derivatives. e see also Table S1

Figure 1. Scheme of the Conditional Uncaging and Degradation and Release Profiles of the Photocages Determined by HPLC

however, led to rapid release of all three amino acids, as 
seen by HPLC-MS (see Fig. 1 for the traces, Fig. S5-S7 for the 
HPLC chromatograms). Moreover, the tetrazine forms were 
found quite photostable, and no release of the amino acids 
could be detected after 30 minutes of irradiation. 
Comparison of the different linkages between the 
photocage and the amino acids suggests that carbonate 4-
BCN was the most photolabile with an uncaging quantum 
yield of 3.5%, followed by ester 2-BCN and carbamate 3-
BCN. The uncaging quantum yields and efficiencies are 
summarized in Table 1. Solvent-dependency of the 
uncaging of 2-BCN was also elaborated (Table S1). These 
results showed that higher water content results in 
increased photochemical quantum yields, which is 
advantageous for in vivo applications. It should be noted, 
however, that the release was not quantitative and slower 
photolysis resulted in lower efficiency, such as in the case of 
3-BCN. This can be rationalized by unwanted, rapid 
recombination of the photocage and the leaving group 
following homolytic bond cleavage as reported recently by 
Choi and coworkers.50 This hypothesis was corroborated by 
the appearance of small peaks in the HPLC-MS 
chromatograms of the irradiated reaction mixtures of 3-
BCN with similar m/z values as the starting material. 

Comparison of the photochemical quantum yields of 
uncaging (release) with the degradation quantum yields 
(Table 1) suggest the occurrence of multiple 
photoreactions, which is more profound in the case of 
smaller efficiencies such as in the case of 3-BCN. Increasing 
the distance between the cargo and the photocage by 
incorporating a self-immolative linker can be effective in 
enhancing the quantum yield by suppressing 
recombination (see below).50 

We also wished to provide theoretical evidence for the 
experimental results. To this end, the low-lying excited states 
of a vinylene linked tetrazine-coumarin model system and its 
cyclooctyne conjugate were studied. We used the acetic acid 
ester of 1 for the calculations. The –NEt2 group was replaced 
with –NMe2 in order to decrease the number of conformers to 
be considered. The results showed that the vinylene linkage 
participates in the -system of the chromophore, which 
explains the red-shifted absorbance. Furthermore, it was 
revealed that the S1 state of the vinylene-linked tetrazine-
coumarin corresponds to the dark n → * excitation of tetrazine 
(HOMO-1 → LUMO transition of the model compound, see Fig. 
2), while the S2 state is dominantly formed by promoting an 
electron from the highest  orbital of the vinylcoumarin to the 
lowest-lying * orbital of the tetrazine-vinylcoumarin system 
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Figure 2. Low-Lying Excited States of the Model Tetrazine and 
its BCN-Clicked Product

(HOMO → LUMO+1 transition of the model). The probabilities 
of both the S0 → S2 and the S0 ← S2 transitions are high, which 
suggests that the molecule gets into its S2 state upon irradiation 
with blue light, followed by a rapid internal conversion to the 
dark S1 and then to the ground state. The photoreaction 
presumably also take place on the S2 surface, thus the presence 
of the tetrazine ring precludes both the reaction and the 
radiative decay of the excited state. After conjugation with 
cyclooctyne, the n → * type state does not exist anymore, and 
the  → * state of the vinylcoumarin (HOMO → LUMO 
transition of the cyclooctyne-conjugated model compound) 
becomes the lowest singlet excited state enabling both the 
fluorescence and the bond-dissociation.

As discussed above, not only do the constructs become 
photoresponsive after the click reaction, but their 
fluorescence is also restored (1000 × increase, see FigS1 in 
the SI). Such an inherently fluorogenic system is itself 
suitable to indicate the localization of the conjugated 
constructs, however, it does not provide any evidence of the 
uncaging process. In order to investigate the applicability of 
our concept in living systems, we wished to visualize both 
the pretargeting and uncaging processes through the 
liberation of a fluorogenic substrate that does not interfere 
with the activation/excitation of the coumarin cage. The use 
of rhodols as quenched fluorogenic markers is quite rare 
despite the fact that they are bright, easily accessible, and 
very importantly, require only one acyl/carbamoyl 
functionalization of the phenolic OH to render it fully 
quenched.51,52 Taking spatial separation of the coumarin 
and the rhodol moieties into consideration in order to 
suppress recombination, we have designed compound 5 
(Fig. 3). The well-established dimethylethylenediamine-
carbamoyl self-immolative linker provides enough spatial 
separation and fast release kinetics (SI section 4).53 
Moreover, the carbamoyl-derived rhodol is practically non-
emissive. LED irradiation of construct 5 and its ‘click-
armed’ 5-BCN congener was monitored by fluorescence 
spectroscopy and HPLC-MS. Both experiments revealed 
that unarmed construct 5 is not photoresponsive, while its 
click-armed BCN conjugate allows liberation of the rhodol 
upon LED activation. 

Figure 3. (a) Structure of 5 (b) Scheme for the Conditional Uncaging of 5 (c) Emission Spectra of the Uncaging of 5-BCN upon Various 
Irradiation and Wait Time (1 M in PBS, ex = 515 nm); the Arrows Indicate Subsequent Irradiation of the Sample (d) Fluorescence 
Intensity of 5-BCN at 566 nm, the Blue Lines Represent the Irradiation Time, and (e) Photographs of the Samples under Ambient 
and UV Light.
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Figure 4. Confocal Images of the Colocalization of a) Cells 
Treated Only with Tetrazine 5 for 1h (200 nM); b) Cells 
Pretargeted with TPP-BCN (10 M) for 1h, then with 5 (200 
nM) c) Cells Treated with TPP-5 (200 nM). The Colors Refer 
to the Corresponding Emission Channels (Green: Coumarin 
with 488 nm Excitation, Red: MitoTracker Deep Red (10 
nM) with 638 or 552 nm Excitation, Yellow: Rhodol with 
552 nm Excitation). The Brightness of the Insets is 
Enhanced for Better Visibility

Gratifyingly, uncaging of the rhodol resulted in an overall 
1000 × increase of fluorescence intensity at the rhodol 
channel (exc = 515 nm) after 15 minutes of irradiation. 
Fluorescence spectroscopy monitoring of the uncaging 
process revealed further information regarding the kinetics 
of the self-immolative destruction of the linker, i.e., 
following photolysis of the linkage between the coumarin 
and the linker. The self-immolation process requires a few 

more extra minutes to go to completion (Fig. 3c and d, Fig. 
S3 for further details on the kinetics). 
Based on the excellent ability of 5 for monitoring the 
uncaging process, we selected mitochondria as an 
intracellular target due to its well established targetability 
with triphenylphosphonium (TPP) moiety.54 In order to 
achieve specific organelle localization, we synthesized TPP-
BCN (Scheme S3) for delivering a bioorthogonal platform 
into the mitochondria. Conditional uncaging was 
investigated using confocal fluorescence microscopy 
imaging of A-431 (skin cancer) cells either with or without 
pretreatment with TPP-BCN. We also investigated the 
effects of extracellularly pre-assembled TPP-5. In each case, 
the cells were treated with the photocaged-constructs for 1 
hour (200 nM) then imaged directly without removal of 
unreacted tetrazines (no-wash condition). As can be seen in 
Figure 4, only cells pretargeted with TPP-BCN show clear 
colocalization with MitoTracker Deep Red (present in all 
experiments), confirming successful biorthogonal-targeting 
of the photocage inside the mitochondria. It can also be seen 
that the green emission of the coumarin upon excitation 
with the blue laser (488 nm) is only visible in the case of 
pretargeting demonstrating the fluorogenicity of the 
coumarin photocage upon bioorthogonal conjugation. In 
contrast, pre-assembled derivative TPP-5 was not taken up 
by the cells indicating the often overlooked importance of 
the 2-step assembly of active species inside cells. Possibly 
due to its large size and increased molecular weight, the 
pre-clicked triphenylphosphonium-containing conjugate is 
unable to cross the cell membrane.
Live-cell photo uncaging of the fluorogenic rhodol was 
investigated using the built-in blue metal halide lamp of the 
microscope (max~488 nm). Each field-of-view was 
irradiated for 5s, then the images were taken at least 1 
minute after irradiation. To clearly see the highly localized 
effect of uncaging, we obtained 3 x 3 tile scans before and 
after irradiation of the central area (Fig. 5). The cells treated 
only with tetrazine 5 showed a small fluorescence 
enhancement in the yellow (rhodol) channel that is 
dispersed evenly throughout the cells. Contrary to this, cells 
pretargeted with TPP-BCN displayed bright fluorescence 
after irradiation that is mostly located inside the 
mitochondria. Similar results were obtained by visualizing 
the uncaging process in real time, using the built-in laser 
(488 nm with continuous imaging at both the red and the 
yellow channels, see the Supporting Videos and Figure S22). 
Importantly, the confined irradiation area combined with 
the subcellular pre-targeting can serve as dual control for 
highly localized manipulation as demonstrated by our 
fluorogenic click and uncage platform. 
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Figure 5. Tile Scan Experiments Before (Upper Image) and After (Lower Image) Irradiation of the Central Area (Marked with the 
Dotted Circle) with the Built-in Blue Lamp (488 nm, 5 s) of the Microscope. a) Cells Treated Only with Tetrazine 5 for 1h (200 nM); 
b) Cells Pretargeted with TPP-BCN (10 M) for 1h, then with 5 (200 nM). The Colors Refer to the Corresponding Emission Channels 
(Yellow: Rhodol, Red: MitoTracker Deep Red). The White Squares Indicate the Magnified Area of the Images. Further Images are 
Shown in SI Section 7 

CONCLUSION
In conclusion, we have demonstrated the proof of concept 
study of a bioorthogonal click reaction activatable 
photocage system. Experimental evidence and theoretical 
calculations suggested that the presence of the 
bioorthogonal tetrazine motif efficiently quenches the 
excited state of the coumarin necessary for photolysis 
resulting in disabled photoresponsivity (both in terms of 
photocaging and fluorescence). Transformation of the 
tetrazine moiety in a bioorthogonal click-reaction fully 
restores its sensitivity for light. Since bioorthogonal 
reactions enable highly specific targeting of cells or cellular 
structures, such conditionally activatable photocages 
provide an extra level of spatial and temporal control. This 
was demonstrated in live cells using a fluorogenic, 
conditionally activatable construct that solely became light 
sensitive when the cells were pretargeted with a 
mitochondria directed, complementary bioorthogonal 
function. These results confirm the applicability of our 
concept in biological systems and also clearly demonstrate 
the advantage of pretargeting and bioorthogonal chemistry. 
The applicability of this system in photoactivated 
chemotherapy involving the conditional release of drugs is 
currently under investigation in our laboratory and results 
will be reported in due course.
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