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ABSTRACT: A transition metal-free cross-dehydrogenative coupling of coumarins with acetonitrile or acetone has been es-

tablished. A series of coumarins were subjected to reaction with acetonitrile or acetone in the presence of tert-butyl benzoper-

oxoate (TBPB) and potassium fluoride (KF) for direct synthesis 3-cyanomethyl (or acetomethyl) coumarins. The method ex-

hibits good functional group tolerance and desired products were obtained in moderate to good yields. Meanwhile, a radical 

pathway was proposed to describe the cross-dehydrogenative coupling of coumarins with acetonitrile. 

INTRODUCTION 

Direct cross-dehydrogenative-coupling reactions via trans-

formations of C-H bond into other bonds have established as 

effective and robust methods for the preparation of valuable 

fragments of pharmaceuticals and intermediates of natural 

products.
1
 Among them, the oxidative C-H activation of ace-

tonitrile and acetone has been received extensively attention 

because these groups not only play an important role in bioac-

tive molecules
2
, pharmaceuticals

3
, and specialty chemicals

4
, 

but also it can be good approaches toward other valuable 

synthons
5
. As a consequence, the development of novel and 

effective strategies to realize C-H activation of acetonitrile and 

acetone leading to useful structures usually remains to be ex-

tremely attractive and significant.
6
 Previously, various 2-

cyanomethylation of olefins with acetonitrile were described 

via metal-catalyzed di-functionalization leading to organocya-

nides.
7
 Very recently, Rao

8
 reported iron-catalyzed cross-

dehydrogenative coupling of acetonitrile with 2-

phenylimidazo[1,2-a] pyridine, and iron-catalyzed 2-

cyanomethylation of indoles and pyrroles were developed by 

Guo
9
 group. 

 

Figure 1. Representative bioactive coumarins. 

Coumarins and chalcones possessing α,β-unsaturated keton-

ic fragment in their structures have widely emerged as natural 

products
10

, fluorescent materials
11

 and bioactive molecules 

(Figure 1).
12

 Therefore, it is greatly challengable and signifi-

cant for molecular modification of coumarins and chalcones.
13

 

In recent years, various metal-catalyzed cross-

dehydrogenative-coupling reactions for coumarins and chal-

cones have been described
14-15

, for example, Jafarpour and oth-

er research groups
14 

reported the metal-catalyzed regioselec-

tive C-3 alkylation of coumarins and Prof. Huang
15a 

has real-

ized the copper-catalyzed dehydrogenative coupling of 

methylarylenes with α, β-unsaturated ketones. On the basis of 

the fact that the 3-cyanomethylation (or 3-acetmethyl) of cou-

marins and chalcones have not yet been reported, herein, we 

described a nonmetal-catalyzed cross-dehydrogenative-

coupling reaction of coumarins with acetonitrile or acetone via 

direct oxidative Csp
3
-H activation. (Scheme 1). 

Scheme 1. Metal-Transition-Free Catalyzed Cross-

Dehydrogenative Coupling Reaction of Coumarins with 

Acetonitrile or Acetone. 
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RESULTS AND DISCUSSION 

Initially, our research began with the cyanomethylation for 

synthesis of 3aa using coumarin (0.20 mmol) 1a and acetoni-

trile (5 mL) 2a to conduct model reaction in the presence of 

various oxidants (2.5 equiv.) and nitrogen (N2) at 110 ℃ for 16 

h (Table 1, entries 1-4). The desired product 3aa was obtained 

in 36 % yield when tert-butyl benzoperoxoate (TBPB) was 

employed as radical initiator and in these cases either low 

yields were gain or no reaction occurred for other radical initi-

ators such as TBHP, DTBP, DCP. To improve the yield of 

3aa, different bases were employed as additives and inorganic 

bases (Na2CO3, KF NaHCO3) exhibiting more health effect 

than organic bases (NEt3, DBU) for synthesis of 3aa (Table 1, 

5-9). Among them the yield of 3aa was increased to 67 % 

when KF (1.0 equiv.) was selected as an additive, but no de-

sired product was obtained when NaOH was selected as an 

additive (Table 1, entry 10). To our delight, the yield of 3aa 

was improved to 78 % when the amount of acetonitrile was 

increased to 10 mL (Table 1, entry 11). However, cyanometh-

ylation of coumarin 1a was conducted when 10 % mol FeCl2 

was added in the reaction system showed a downtrend in yield 

of 3aa (Table 1, entry 12), and the desired product 3aa was not 

detected with employment of 10 % mol Cu(OAc)2 as catalyst 

(Table 1, entry 13). Likewise, the use of 1.5 equiv. or 3.5 equiv. 

of TBPB showed an obvious downtrend in yield of 3aa (Table 1, 

entries 12-15).  

Table 1. Optimization of the Reaction Conditions
a 

 
entry Oxidants 

(equiv.) 

Base  

(equiv.) 

Catalyst (% 

mol) 

Yieldb 

 (%) 

1 TBHP(2.5) - - N.R. 

2 DTBP(2.5) - - trace 

3 DCP (2.5) - - 21 

4 TBPB (2.5) - - 37 

5 TBPB (2.5) NEt3 - 23 

6 TBPB (2.5) DBU - trace 

7 TBPB (2.5) Na2CO3 - 61 

8 TBPB (2.5) NaHCO3 - 43 

9 TBPB (2.5) KF - 67 

10 TBPB (2.5) NaOH - trace 

11 TBPB (2.5) KF - 78c 

12  TBPB (2.5) KF FeCl2(10) 72 

13  TBPB (2.5) KF Cu(OAc)2(10) trace 

14  TBPB (1.5) KF - 52 

15  TBPB (3.5) KF - 71 
aReaction conditions: 1a (0.20 mmol), 2a (5 mL), base (1.0 

equiv.), under N2, 110 ℃, 16 h, isolated yields. c2a (10 mL).  

With the optimized conditions in hand, cyanomethylation of 

various coumarins were explored and the result was summa-

rized in Scheme 2. Cyanomethylation of coumarins bearing 

various groups (e.g., Me, OMe, OEt, NEt2) were realized to 

form 3-cyanomethylcoumarins in moderate to good yields 

(3aa-3ag, 78-58 %). Then, two benzo-coumarins and a fu-

rocoumarin as substrates were used to conduct cyanomethyla-

tion reaction leading to desired products in moderate good 

yields (3ah-3aj, 83-56 %). Surprisingly, the desired product 

was obtained in good yield for cyanomethylation of 4-methyl-

2H,5H-pyrano[3,2-c] chromene-2,5-dione with structure of 

dilactone (3ak, 65 %).  

Scheme 2. 3-Cyanomethylation of Various Coumarins
a
 

 

aReaction conditions: 1a (0.20 mmol), 2a (10 mL), KF (1.0 

equiv.), TBPB (2.5 equiv.) under N2, 16 h, isolated yields. 

Next, the 3-acetmethylation of coumarins was investigated, 

and a series of desired products were isolated in moderated to 

good yields, as shown in Scheme 3. Among them, the target 

products were obtained in moderated yields for 3-

acetmethylation of coumarins with methyl, methoxy, ethoxy, 

cyclohexyl groups on the benzene (3ba-3be, 54-48 %). Simi-

larly, the 3-cyanomethylation, 3-acetmethylation of benzo-

coumarin and 4-methyl-2H,5H-pyrano[3,2-c] chromene-2,5-

dione also work well and the corresponding products were 

obtained in good yields (3bf-3bh, 74-72 %). 

Scheme 3. 3-Acetmethylation of Various Coumarins
a
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aReaction conditions: 1 (0.20 mmol), 2b (10 mL), KF (1.0 equiv.), 

TBPB (2.5 equiv.) under N2, 110 ℃, 16 h, isolated yields. 

To further extend substrates scope, cyanomethylation of α, 

β-unsaturated ketones were carried out (Scheme 4). (E)-4-

phenylbut-3-en-2-one derivatives were also tested as sub-

strates and the desired products were obtained in moderate 

yields (5ab-5ac, 31-58%) for substrates 4b and 4c with elec-

tron-donating groups (OMe, and NEt2) on the benzene ring, 

however, no desired product was obtained for 4a without elec-

tron-donating group on the benzene ring. 

Scheme 4. 3-Cyanomethylation of α, β-Unsaturated Ke-

tones 

 

aReaction conditions: 4a-4c (0.20 mmol), MeCN (10 mL), KF 

(1.0 equiv.), TBPB (2.5 equiv.) under N2, 110 ℃, 6 h, isolated 

yields. 

Some control experiments were carried out to investigate 

the reaction mechanism (Scheme 5). Two different radical 

scavenger, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 

2,6-di-tert-butyl-4-methylphenol (BHT) were introduced into 

cyanomethylation of coumarin under optimized conditions for 

3 h and the result shown that the 3-cyanomethylation was in-

hibited ((a)-(b)) and compound 6aa was detected by GC-MS. 

Therefore, a single-electron-transfer (SET) pathway was con-

sidered and cyanomethyl radical might act as intermediate. 

Meanwhile, a kinetic isotope effect (KIE) was described via an 

intermolecular competition experiment between CH3CN and 

CD3CN and the KH/KD radio was 12.5 ((c)), the KIE experi-

ment suggested that the cleavage of C(sp
3
)-H might be the 

radio-dominant step for this reaction system. 

Scheme 5. Control Experiments and Kinetic Isotope Effect 

(KIE) Study. 

 

Based on the above experimental results and the previous 

literature studies
8, 9, 13d

, a plausible mechanism for cyanometh-

ylation of coumarins has been proposed in Scheme 6. Initially, 

the benzoate radical and tert-butoxy radical were produced by 

the thermal hemolytic cleavage of TBPB. Next, cyanomethyl 

radical B emerged by single-electron-transfer of acetonitrile A 

with benzoate radical or tert-butoxy radical releasing benzoic 

acid or tert-butanol. The cyanomethyl radical attacks the car-

bon-carbon double bond of coumarin C leading to intermedi-

ate D, which is suggested that direct oxidation by benzoate 

radical or tert-butoxy radical and deprotonation to produce 

desired product E. 

Scheme 6. Plausible Mechanism 

 

CONCLUSION 

In summary, we have descried a novel dehydrogenative 

coupling reaction of coumarins with acetonitrile via direct 

C(sp
3
)-H activation of acetonitrile toward 3-cyanomethyl-

coumarins. The method exhibits good functional group toler-

ance and 3-cyanomethyl-coumarins were obtained in moderate 

to good yields. Meanwhile, 3-acetomethyl coumarins were 

obtained in moderate yields when acetonitrile was replaced by 

acetone. Thus, we provided an efficient and novel method for 

synthesis of cyanomethyl (or acetomethyl)-substituted couma-

rins and a radical pathway was put forward to describe the 

oxidative C-H activation of acetonitrile. 

EXPERIMENTAL SECTION 

General Information. The NMR spectra were recorded 400 MHz 

(
1
H) or 600 MHz (

1
H) and 100 MHz (

13
C{

1
H} NMR) or 150 MHz 

(
13

C{
1
H} NMR) in CDCl3 using tetramethylsilane as an internal refer-

ence. NMR multiplicities are abbreviated as follows: s = singlet, d = 

doublet, m = multiplet, br = broad signal. Chemical shifts (δ) and 

coupling constants (J) were expressed in ppm and Hz, respectively. 

Coumarins 1d, 1g, 1h, 1i, 1g, 1k, and α, β-unsaturated ketones 4a, 4b, 

4c were prepared according to the literature procedure
16

. The rest of 
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chemicals were purchased from the Sinopharm Chemical Reagent 

Co., Adamas, Aladdin and TCI used as received. Q-TOF were used 

for the HRMS and GC-MS measurement. HRMS (ESI) data were 

obtained using electron spray ionization and GC-MS data were ob-

tained using electron impact ionization. 

General procedure for the 3-cyanomethylation of coumarins with 

acetonitrile. Coumarins 1 (0.2 mmol), KF (0.2 mmol, 11.6 mg), 

TBPB (0.5 mmol), and acetonitrile 2a (10 mL) were mixed and stirred 

at 110 ℃ in a sealed tube under N2 for 16 h. After completion of the 

reaction, the reaction mixture was cooled to room temperature, and 

diluted with dichloromethane (5 × 3 mL), the organic layers were 

combined, washed with sat. aq. Na2CO3 (10 mL), dried (Na2SO4), and 

concentrated in vacuo. The residue was purified by column chroma-

tography using 10- 20 % ethyl acetate in petroleum as an eluent to get 

target compounds. 
General procedure for the 3-acetomethylation of coumarins with 

acetone. Coumarins 1 (0.2 mmol), KF (0.2 mmol, 11.6 mg), TBPB 

(0.5 mmol), and acetone 2b (10 mL) were mixed and stirred at 110 ℃ 

in a sealed tube under N2 for 16 h. After completion of the reaction, 

the reaction mixture was cooled to room temperature, and diluted with 

dichloromethane (5 × 3 mL), the organic layers were combined, 

washed with sat. aq. Na2CO3 (10 mL), dried (Na2SO4), and concen-

trated in vacuo. The residue was purified by column chromatography 

using 20 % ethyl acetate in petroleum as an eluent to get target com-

pounds. 
General procedure for the 3-cyanomethylation of α, β-

unsaturated ketones with acetonitrile. α, β-unsaturated ketones 4a-

4c (0.2 mmol), KF (0.2 mmol, 11.6 mg), TBPB (0.5 mmol), and ace-

tonitrile 2a (10 mL) were mixed and stirred at 110 ℃ in sealed tube 

under N2 for 6 h. After completion of the reaction, the reaction mix-

ture was cooled to room temperature, and diluted with dichloro-

methane (5 × 3 mL), the organic layers were combined, washed with 

sat. aq. Na2CO3 (10 mL), dried (Na2SO4), and concentrated in vacuo. 

The residue was purified by column chromatography using 5-10 % 

ethyl acetate in petroleum as an eluent to get target compounds. 
2-(2-oxo-2H-chromen-3-yl)-acetonitrile (3aa): Purified by using a 

flash column chromatography (28.9 mg, 78 %); white solid; mp: 155-

156 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm)7.94 (s, 1H), 7.57 

(td, J = 8.2, 7.7, 2.7 Hz, 2H), 7.39 – 7.31 (m, 2H), 3.70 (s, 2H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ (ppm) 160.1, 153.3, 140.6, 

132.3, 128.0, 125.0, 118.7, 118.4, 116.7, 116.1, 19.6. HRMS (ESI-

TOF) m/z: [M+H] 
+
 Calcd for C11H8NO2 186.0550; Found 186.0547. 

2-(6-methyl-2-oxo-2H-chromen-3-yl)-acetonitrile (3ab): Purified by 

using a flash column chromatography (24.7 mg, 62 %); white solid; 

mp: 123-124 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.87 (d, 

J = 1.7 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.27 – 7.22 (m, 1H), 3.68 (s, 

2H), 2.42 (s, 3H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ (ppm) 

160.3, 151.5, 140.5, 134.8, 133.3, 127.8, 118.5, 118.1, 116.4, 116.1, 

20.8, 19.6. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C12H10NO2 

200.0706; Found 200.0705. 

2-(7-methoxy-2-oxo-2H-chromen-3-yl)-acetonitrile (3ac): Purified by 

using a flash column chromatography (31.8 mg, 74 %); white solid; 

mp: 159-160 ℃. 
1
HNMR (400 MHz, Chloroform-d) δ (ppm) 7.84 (s, 

1H), 7.42 (d, J = 8.7 Hz, 1H), 6.88 (dd, J = 8.7, 2.5 Hz, 1H), 6.82 (d, J 

= 2.5 Hz, 1H), 3.87 (s, 3H), 3.64 (s, 2H). 
13

C{
1
H} NMR (100 MHz, 

Chloroform-d) δ (ppm) δ 163.1, 160.4, 155.2, 140.7, 128.9, 116.3, 

114.8, 113.2, 112.0, 100.7, 55.9, 19.3. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C12H10NO3 216.0655, Found 216.0656. 

2-(4,6-dimethyl-2-oxo-2H-chromen-3-yl)-acetonitrile (3ad): Purified 

by using a flash column chromatography (27.7 mg, 65 %); white solid; 

mp: 157-158 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.45 – 

7.41 (m, 1H), 7.36 (dd, J = 8.4, 2.0 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 

3.77 (s, 2H), 2.53 (s, 3H), 2.43 (s, 3H). 
13

C{
1
H} NMR (100 MHz, 

Chloroform-d) δ (ppm) 160.4, 150.5, 150.5, 134.4, 133.4, 124.8, 

119.3, 116.8, 116.3, 115.6, 21.1, 15.8, 15.6. HRMS (ESI-TOF) m/z: 

[M+H] 
+
 Calcd for C13H12NO2 214.0863; Found 214.0864. 

2-(7-ethoxy-4-methyl-2-oxo-2H-chromen-3-yl)-acetonitrile (3ae): 

Purified by using a flash column chromatography (38.43 mg, 79 %); 

white solid; mp: 144-145 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ 

(ppm) 7.53 (d, J = 8.9 Hz, 1H), 6.86 (dd, J = 8.9, 2.5 Hz, 1H), 6.76 (d, 

J = 2.5 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 3.72 (s, 2H), 2.49 (s, 3H), 

1.43 (t, J = 7.0 Hz, 3H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ 

(ppm) 162.4, 160.7, 154.2, 150.7, 126.0, 116.6, 113.3, 113.0, 112.2, 

101.2, 64.3, 15.6, 15.5, 14.5. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd 

for C14H14NO3 244.0968; Found: 244.0969.
 

2-(7-(diethylamino)-4-methyl-2-oxo-2H-chromen-3-yl)-acetonitrile 

(3af): Purified by using a flash column chromatography (43.2 mg, 

80 %); yellow solid; mp: 83-84 ℃.
1
H NMR (400 MHz, Chloroform-d) 

δ (ppm) 7.41 (d, J = 9.1 Hz, 1H), 6.59 (dd, J = 9.1, 2.6 Hz, 1H), 6.45 

(d, J = 2.6 Hz, 1H), 3.69 (s, 2H), 3.40 (q, J = 7.1 Hz, 4H), 2.43 (s, 3H), 

1.19 (t, J = 7.1 Hz, 6H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ 

(ppm)161.5, 155.0, 151.0, 150.9, 126.0, 117.1, 109.0, 108.6, 108.4, 

97.3, 44.7, 15.5, 15.2, 12.4. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd 

for C16H19N2O2 271.1441; Found: 271.1443. 

2-(4-methyl-2-oxo-6,7,8,9-tetrahydro-2H-benzo[g]chromen-3-yl)-

acetonitrile (3ag): Purified by using a flash column chromatography 

(29.4 mg, 58 %); white solid; mp: 161-162 ℃. 
1
H NMR (400 MHz, 

Chloroform-d) δ (ppm) 7.32 (s, 1H), 7.02 (s, 1H), 3.76 (s, 2H), 2.88 – 

2.80 (m, 4H), 2.51 (s, 3H), 1.82 (p, J = 3.3 Hz, 4H). 
13

C{
1
H} NMR 

(100 MHz, Chloroform-d) δ (ppm) 160.6, 150.5, 150.3, 143.1, 134.0, 

124.7, 117.3, 116.6, 116.5, 114.5, 29.6, 29.0, 22.9, 22.5, 15.8, 15.5. 

HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C16H16NO2 254.1176; 

Found: 254.1180. 

2-(4-methyl-2-oxo-2H-benzo[h]chromen-3-yl)-acetonitrile (3ah): 

Purified by using a flash column chromatography (41.4 mg, 83 %); 

white solid; mp: 194-195 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ 

(ppm) 8.55 – 8.41 (m, 1H), 7.85 (dd, J = 6.8, 2.5 Hz, 1H), 7.72 – 7.53 

(m, 4H), 3.80 (s, 2H), 2.59 (s, 3H). 
13

C{
1
H} NMR (100 MHz, Chloro-

form-d) δ (ppm) 160.2, 151.4, 149.6, 134.8, 129.0, 127.7, 127.4, 

124.6, 122.8, 122.5, 120.3, 116.4, 115.0, 114.8, 16.1, 15.8. HRMS 

(ESI-TOF) m/z: [M+H] 
+
 Calcd for C16H12NO2 250.0863; Found: 

250.0864. 

2-(1-methyl-3-oxo-3H-benzo[f]chromen-2-yl)-acetonitrile (3ai): Puri-

fied by using a flash column chromatography (37.4 mg, 75 %); white 

solid; mp: 180-181 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 

(ppm) 8.43 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 8.9 Hz, 1H), 7.94 – 7.89 

(m, 1H), 7.65 (ddd, J = 8.6, 6.7, 1.6 Hz, 1H), 7.60 – 7.54 (m, 1H), 

7.41 (d, J = 8.9 Hz, 1H), 3.88 (s, 2H), 2.96 (s, 3H). 
13

C{
1
H} NMR 

(100 MHz, Chloroform-d) δ (ppm) 159.88, 153.1, 152.5, 134.3, 131.6, 

129.8, 129.6, 127.9, 125.77, 125.2, 117.2, 116.3, 116.3, 114.8, 22.2, 

16.3. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C16H12NO2 

250.0863; Found 250.0859. 

2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]-chromen-6-yl)-

acetonitrile (3aj): Purified by using a flash column chromatography 

(35.3 mg, 56 %); white solid; dry distillation: 230 ℃. 
1
H NMR (400 

MHz, Chloroform-d) δ (ppm) 7.72 (s, 1H), 7.58 (t, J = 7.5 Hz, 2H), 

7.52 – 7.45 (m, 4H), 6.26 (s, 1H), 3.96 (s, 2H), 2.45 (s, 3H). 
13

C{
1
H} 

NMR (100 MHz, Chloroform-d) δ (ppm) 160.7, 155.6, 152.5, 152.2, 

143.1, 129.7, 129.6, 128.8, 128.8, 125.1, 120.6, 117.2, 115.7, 114.7, 

113.8, 100.0, 19.2, 16.6. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for 

C20H14NO3 316.0968; Found 316.0968. 

2-(4-methyl-2,5-dioxo-2H,5H-pyrano[3,2-c]-chromen-3-yl)-

acetonitrile (3ak): Purified by using a flash column chromatography 

(34.7 mg, 65 %); white solid; dry distillation: 246 ℃. 
1
H NMR (600 

MHz, Chloroform-d) δ (ppm) 8.01 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 – 

7.60 (m, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 3.67 

(s, 2H), 2.70 (s, 3H). 
13

C{
1
H} NMR (150 MHz, Chloroform-d) δ 

(ppm) 161.2, 157.9, 157.9, 154.2, 153.2, 135.1, 125.3, 124.0, 116.9, 

115.52, 115.50, 112.6, 103.7, 18.8, 15.7. HRMS (ESI-TOF) m/z: 

[M+H] 
+
 Calcd for C15H10NO4 268.0604; Found 268.0604. 

3-(2-oxopropyl)-2H-chromen-2-one (3ba): Purified by using a flash 

column chromatography (21.8 mg, 54 %); white solid; mp: 88-

89 ℃.
1
H NMR (600 MHz, Chloroform-d) δ (ppm) 7.50 (s, 1H), 7.39 

(ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.35 (dd, J = 7.8, 1.6 Hz, 1H), 7.20 (d, 

J = 8.3 Hz, 1H), 7.16 (td, J = 7.6, 1.2 Hz, 1H), 3.58 (s, 2H), 2.21 (s, 

3H). 
13

C{
1
H} NMR (150 MHz, Chloroform-d) δ (ppm) 204.2, 161.5, 

153.5, 141.9, 131.3, 127.6, 124.5, 122.9, 119.2, 116.5, 44.5, 30.3. 
HRMS (ESI-TOF) m/z: [M+H] 

+
 Calcd for C12H11O3 203.0703; 

Found 203.0707. 

7-methoxy-3-(2-oxopropyl)-2H-chromen-2-one (3bb): Purified by 

using a flash column chromatography (27.8 mg, 60 %); white solid; 
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mp: 97-98 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.52 (s, 

1H), 7.35 – 7.30 (m, 1H), 6.85 – 6.77 (m, 2H), 3.85 (d, J = 2.4 Hz, 

3H), 3.62 (s, 2H), 2.28 (s, 3H). 
13

C{
1
H} NMR (100 MHz, Chloro-

form-d) δ (ppm) 204.6, 162.4, 161.8, 155.2, 142.0, 128.5, 119.1, 

112.8, 112.6, 100.6, 55.7, 44.3, 30.2. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C13H13O4 233.0808; Found 233.0805. 

4,6-dimethyl-3-(2-oxopropyl)-2H-chromen-2-one (3bc): Purified by 

using a flash column chromatography (23.9 mg, 52 %); white solid; 

mp: 94-95 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.38 (s, 

1H), 7.29 (dd, J = 8.4, 2.1 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 3.81 (s, 

2H), 2.40 (s, 3H), 2.32 (s, 3H), 2.27 (s, 3H). 
13

C{
1
H} NMR (100 MHz, 

Chloroform-d) δ (ppm) 204.3, 161.7, 150.4, 149.0, 133.8, 132.1, 

124.6, 119.9, 119.8, 116.6, 42.2, 29.9, 21.0, 15.4. HRMS (ESI-TOF) 

m/z: [M+H] 
+
 Calcd for C14H15O3 231.1016; Found 231.1021. 

7-ethoxy-4-methyl-3-(2-oxopropyl)-2H-chromen-2-one (3bd): Purified 

by using a flash column chromatography (32.8 mg, 63 %); white 

solid; mp: 124-125 ℃. 
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 

7.50 (d, J = 8.9 Hz, 1H), 6.84 (dd, J = 8.9, 2.5 Hz, 1H), 6.78 (d, J = 

2.5 Hz, 1H), 4.07 (q, J = 7.0 Hz, 2H), 3.78 (s, 2H), 2.30 (s, 3H), 2.27 

(s, 3H), 1.44 (t, J = 7.0 Hz, 3H). 
13

C{
1
H} NMR (100 MHz, Chloro-

form-d) δ (ppm) 204.7, 162.0, 161.6, 154.0, 149.4, 125.7, 116.5, 

113.7, 112.8, 101.1, 64.1, 42.0, 29.9, 15.4, 14.5. HRMS (ESI-TOF) 

m/z: [M+H] 
+
 Calcd for C15H17O4 261.1121; Found 261.1124.  

4-methyl-3-(2-oxopropyl)-6,7,8,9-tetrahydro-2H-benzo[g]chrome n-

2-one (3be): Purified by using a flash column chromatography (25.9 

mg, 48 %); white solid; mp: 117-118 ℃.
1
H NMR (400 MHz, Chloro-

form-d) δ (ppm) 7.26 (s, 1H), 6.98 (s, 1H), 3.79 (s, 2H), 2.87 – 2.76 

(m, 4H), 2.30 (s, 3H), 2.26 (s, 3H), 1.80 (p, J = 3.2 Hz, 4H). 
13

C{
1
H} 

NMR (100 MHz, Chloroform-d) δ (ppm) 204.5, 161.9, 150.3, 149.1, 

141.7, 133.4, 124.6, 118.7, 118.0, 116.3, 42.2, 29.8, 29.5, 29.0, 23.0, 

22.7, 15.3. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for C17H19O3 

271.1329; Found: 271.1326. 

4-methyl-3-(2-oxopropyl)-2H-benzo[h]chromen-2-one (3bf): Purified 

by using a flash column chromatography (39.4 mg, 74 %); white solid; 

mp: 165-166 ℃.
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 8.51 (dt, 

J = 7.1, 3.6 Hz, 1H), 7.87 – 7.78 (m, 1H), 7.65 (d, J = 8.8 Hz, 1H), 

7.59 (tq, J = 7.7, 3.9 Hz, 3H), 3.86 (s, 2H), 2.40 (s, 3H), 2.31 (s, 3H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ (ppm) 204.4, 161.6, 150.1, 

149.2, 134.4, 128.4, 127.5, 127.0, 124.1, 123.0, 122.4, 120.6, 119.3, 

115.4, 42.2, 30.0, 16.0. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for 

C17H15O3 267.1016; Found 267.1019. 

1-methyl-2-(2-oxopropyl)-3H-benzo[f]chromen-3-one (3bg): Purified 

by using a flash column chromatography (35.7 mg, 67 %); white 

solid; mp: 165-166 ℃. 
1
H NMR (600 MHz, Chloroform-d) δ (ppm) 

8.32 (d, J = 8.6 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.50 – 7.46 (m, 1H), 

7.42 (d, J = 7.4 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 3.83 (s, 2H), 2.62 

(s, 3H), 2.23 (s, 3H). 
13

C{
1
H} NMR (150 MHz, Chloroform-d) δ 

(ppm) 204.3, 161.2, 152.6, 151.1, 133.0, 131.5, 129.7, 129.5, 127.3, 

125.5, 125.3, 120.6, 117.2, 115.3, 42.7, 30.0, 22.0. HRMS (ESI-TOF) 

m/z: [M+H] 
+
 Calcd for C17H15O3 267.1016; Found 267.1017. 

4-methyl-3-(2-oxopropyl)-2H,5H-pyrano[3,2-c]-chromene-2,5-dione 

(3bh): Purified by using a flash column chromatography (40.9 mg, 72 

%); white solid; dry distillation: 250 ℃. 
1
H NMR (400 MHz, Chloro-

form-d) δ (ppm) 8.06 (dd, J = 8.1, 1.8 Hz, 1H), 7.64 (t, J = 7.9 Hz, 

1H), 7.36 (q, J = 7.9 Hz, 2H), 3.82 (s, 2H), 2.54 (s, 3H), 2.30 (s, 3H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ (ppm) δ 203.2, 160.2, 

159.1, 158.3, 152.9, 152.4, 134.3, 125.0, 123.8, 120.0, 116.7, 113.0, 

104.1, 41.8, 29.9, 18.6. HRMS (ESI-TOF) m/z: [M+H] 
+
 Calcd for 

C16H13O5 285.0757; Found 285.0757. 

(E)-3-(4-methoxybenzylidene)-4-oxopentanenitrile (5ab): Purified by 

using a flash column chromatography (13.3 mg, 31 %); clear liq-

uid.
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.70 (s, 1H), 7.48 – 

7.38 (m, 2H), 7.04 – 6.96 (m, 2H), 3.86 (s, 3H), 3.53 (s, 2H), 2.49 (s, 

3H). 
13

C{
1
H} NMR (100 MHz, Chloroform-d) δ (ppm) 196.9, 161.1, 

144.1, 131.5, 129.3, 126.1, 117.6, 114.6, 55.4, 25.2, 15.3. HRMS 

(ESI-TOF) m/z: [M+H] 
+
 Calcd for C13H14NO2 216.1019; Found 

216.1011. 

(E)-4-(4-(diethylamino)-phenyl)-but-3-en-2-one (5ac): Purified by 

using a flash column chromatography (33.3 mg, 65 %); yellow liq-

uid.
1
H NMR (400 MHz, Chloroform-d) δ (ppm) 7.61 (s, 1H), 7.42 – 

7.37 (m, 2H), 6.74 – 6.68 (m, 2H), 3.61 (s, 2H), 3.42 (q, J = 7.1 Hz, 

4H), 2.45 (s, 3H), 1.20 (t, J = 7.1 Hz, 6H). 
13

C{
1
H} NMR (100 MHz, 

Chloroform-d) δ (ppm) 196.8, 149.3, 145.0, 132.5, 125.2, 120.1, 

118.1, 111.4, 44.5, 25.0, 15.3, 12.5. HRMS (ESI-TOF) m/z: [M+H] 
+
 

Calcd for C16H21N2O 257.1648; Found: 257.1654. 
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