

Article

Tandem Synthesis of 2-Carboxybenzofurans via Sequential Cu-Catalyzed C-O Coupling and Mo(CO)6-Mediated Carbonylation reactions

Qinliang Mo, Nan Sun, Liqun Jin, Baoxiang Hu, Zhenlu Shen, and Xinquan Hu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01620 • Publication Date (Web): 06 Aug 2020

Downloaded from pubs.acs.org on August 9, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9

10

Tandem Synthesis of 2-Carboxybenzofurans *via* Sequential Cu-Catalyzed C-O Coupling and Mo(CO)₆-Mediated Carbonylation reactions

Qinliang Mo, Nan Sun,* Liqun Jin, Baoxiang Hu, Zhenlu Shen, and Xinquan Hu*

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China. *Supporting Information Placeholder*

ABSTRACT: A modular tandem synthesis of 2-carboxybenzofurans from 2-*gem*-dibromovinylphenols has been established, based on a sequence of Cu-catalyzed intramolecular *C-O* coupling and Mo(CO)₆-mediated intermolecular carbonylation reactions. This protocol allowed one-step access to a broad variety of functionalized benzofuran-2-carboxylic acids, esters, and amides in good to excellent yields under Pd- and CO- gas free conditions.

INTRODUCTION

2-Carboxybenzofurans are an important class of carbonylcontaining heterocyclic compounds featuring an acid, ester or amide group at 2-position of benzofuran ring. These compounds have extensive utilization in medicinal chemistry for the achievement of bioactive molecules.¹ For example, Vilazodone, a derivative of benzofuran-2-carboxamide, is an important antidepressant drug launched in 2011 for the treatment of major depressive disorder.² Moreover, they can also serve as building blocks in the construction of liquid crystal molecules.³ Currently, there are several approaches available to access 2-carboxybenzofurans, including intramolecular Knoevenagel condensation of 2of formylphenoxyacetates,⁴ Perkin rearrangement 3halocoumarins,⁵ carbonylation of 2-metalated benzofurans⁶ or intramolecular cyclization of 3-aryloxy-4-dimethylamino-3buten-2-ones.7 All of these methods are incapable to concurrently construct benzofuran-2-carboxylic acids, esters and amides in one-step, thus leading to inefficiency. Therefore, development of a novel direct and modular protocol for 2carboxybenzofurans synthesis from easily available reagents is highly desirable.

gem-Dihaloolefins are valuable synthons in synthetic chemistry owing to their high reactivity and easy availability from inexpensive aldehydes by Ramirez-Corey olefination reaction.⁸ In particularly, the two halo functional groups of *gem*-dihaloolefins have different reactivity allowing them to undergo potentially selective di-functionalization. Over the past years, the research groups of Alper,⁹ Florent¹⁰ and Wu¹¹ have independently reported efficient protocols for the synthesis of 2-carbonyl functionalized indoles, benzothiophenes and indenes from corresponding

Scheme 1. Tandem synthesis of 2-carbonyl functionalized heterocycles and carboncycles from *gem*-dihaloolefins

gem-dihaloolefins (Scheme 1, A). These reactions involved two orthogonal reactions: a) Pd-catalyzed *C-N*, *C-S* or *C-C* coupling to form the 2-bomo-functionalized heterocycles or carboncycles; b) Pd-catalyzed carbonylation reactions. These nice achievements inspired us to extend this orthogonal tandem strategy for the synthesis of 2-carboxybenzofurans from 2-*gem*-dibromovinylphenols. Previously, Eustache,¹² Lauterns,¹³ and others groups¹⁴ developed a series of elegant 2-

88

substituted benzofunans syntheses from 2-gemdibromovinylphenols based on Cu- or Pd-catalyzed tandem C-O and C-C/C-X/C-H doubling couplings. Lautens¹⁵ and Wang¹⁶ also successively disclosed that copper can efficiently catalvze 2-gem-dibromovinylphenols to form 2bromobenzofurans. Therefore, we reckon that the exploration of a carbonylation process, which can be compatible with this Cu-catalyzed intramolecular C-O coupling reaction (Ullman reaction), is crucial for this novel protocol. In recent years, the idea of combing two different metal catalysts in a single vessel to promote tandem reactions has been received much attentions.¹⁷ $Mo(CO)_6$ is an intriguing solid carbonyl source with wide applications in palladium and non-palladiumcatalyzed carbonyl reactions.¹⁸ More recently, we found that Mo(CO)₆ can act as efficient and easy-to-handling carbonyl source for Pd-catalyzed carbonylative Suzuki coupling reaction.¹⁹ As a continuation, we herein reported a Cucatalyzed and Mo(CO)₆-mediated carbonylative tandem protocol for the synthesis of 2-carboxybenzofurans under Pdand CO-gas free conditions (Scheme 1, B).

RESULTS AND DISCUSSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

We began our study by choosing the reaction of 2-(2,2dibromovinyl)phenol (1a) and $Mo(CO)_6$ (0.6 equiv. as solid CO source) in ethanol (both as external O-nucleophile and solvent) as a template reaction to investigate the viability of the strategy. Table 1 summarized the results of partial optimization experiments. These results showed that the reaction can efficiently proceed under Pd-free conditions. When the reaction was carried out in the presence of 5 mol% CuBr₂ as catalyst, 5 mol% 2, 2'-Bpy as ligand and 3.0 equiv. of Et₃N as base at 90 °C for 8 hours, the desired product ethyl benzofuran-2-carboxylate (2a) can be isolated in 85% yield (entry 1, Table 1). Copper catalyst, ligand and base were essential for the reaction (entries 2-4, Table 1). Other copper salts, such as CuCl₂, Cu(OTf)₂, CuSO₄ or CuI, were also reactive on this transformation and afforded 2a in comparable yields (entries 5-8, Table 1). By changing 2,2'-Bpy with 1,10-Phen, good yield (83%) of 2a can still be obtained (entry 9, Table 1). However, other types of ligands such as L-proline and PPh₃ were innocent in this transformation (entries 10 and 11, Table 1). In addition, base also played a crucial role on the transformation. Similar yield can be obtained with organic DIPEA as base, while with Na₂CO₃ and K₃PO₄ as base, only 16% and 21% yields of 2a were resulted, respectively (en-tries 12-14, Table 1). Noteworthy, in these two cases, a large amount of 2-bromobenzofuran were observed by GC-MS analyses. Varying the amount of Mo(CO)₆, CuBr₂ and 2,2'-Bpy as well as the reaction temperatures cannot further improve the yield (See supporting information, Table S1). Finally, a comparative experiment showed that Pd catalyst was much less efficient in this transformation (entries 15, Table 1).

With the optimal reaction conditions in hand, the generality of the newly developed carbonylative tandem synthesis was explored and the results were summarized in Scheme 2. First, the activities of alcohols were investigated. Under the identified reaction conditions, the reactions of 2-(2,2dibromovinyl)phenol (1a) with methanol, n-propanol, or nbutanol generated the corresponding benzofuran-2-

Table 1. Optimization of the reaction conditions^a

		-	
	9	1,10-Phen instead of 2,2'-Bpy	83
	10	L-Proline instead of 2,2'-Bpy	16
	11	PPh ₃ instead of 2,2'-Bpy	7
	12	DIPEA instead of Et ₃ N	87
	13	Na ₂ CO ₃ instead of Et ₃ N	16
	14	K ₃ PO ₄ instead of Et ₃ N	21
	15	Pd ₂ (dba) ₃ instead of CuBr ₂	15
ı	Reaction	conditions: 1a (0.5 mmol), Mo(CO)	₆ (0.6 equiv.),
2	atalyst (5	mol%), ligand (5 mol%), base (3.0 ec	uiv.), C ₂ H ₅ OH

CuSO₄ instead of CuBr₂

CuI instead of CuBr₂

(1.5 mL), 90 °C, purged with N₂ and 8 h. 2,2'-Bpy = 2,2'bipyridine, 1,10-Phen =1,10-phenanthroline, DIPEA = N_{N} -Diisopropylethylamine. ^b Yields were determined by GC analysis. with diphenyl as internal standard and the datum in parentheses was isolated yield.

carboxylates 2b, 2c and 2d in 81%, 85% and 87% yields. The sterically hindered secondary alcohol (iso-propanol) and tertiary alcohol (tert-butanol) was less active. Nevertheless, after increasing the reaction temperature to 130 °C, their corresponding esters 2e and 2f can also be obtained in 82% and 48% yields, respectively. Interestingly, when ethylene glycol was employed, only mono-alkoxycarbonylative product 2g was exclusively generated. Then, the reaction activities of substituted 2-gem-dibromovinylphenols various were investigated. The results showed that neither the electron character nor the position of the substituents attached on the phenyl ring had obvious effect on the reactivity. Under the identified reaction conditions, most of the tested substrates worked well and gave the desirable products 2h-2s in good to excellent yields. A number of functional groups such as Me, OMe, t-Bu, Ph, F, Cl, Br and COOCH₃ on the phenyl ring were well tolerated, and some of them could be utilized for further derivatization. Unfortunately, the reaction of 4-nitro-2gem-dibromovinylphenol could not generate its corresponding ester. Some complex reductive by-products was observed by GC-MS. This phenomenon was similar to that in Pd-catalyzed Mo(CO)₆-mediated carbonylative reactions.²⁰ In addition, 1-(gem-dibromovinyl)-2-naphthalenol can also undergo this tandem transformation to afford corresponding ester 2t in excellent yields (88%). To our delight, the developed catalytic system can be directly applied for the synthesis of benzofuran-2-carboxylic acids in aqueous *t*-butanol solution (1:5).²¹ Under the same reaction conditions, a number of functionalized

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

benzofuran-2-carboxylic acids **3a-3n** were obtained in moderate to good vields. Noteworthy, (methoxycarbonyl)benzofuran-2-carboxylic acid 3k was a key intermediate for a patented cysteine protease inhibitor.²² In the patent, it required 4 reaction steps for its synthesis starting from 5-formylsalicylaldehyde with a 12% overall yield. However, in this work, only 2 reaction steps was needed from much cheaper 5-methoxycarbonylformylsalicylaldehyde and the overall yield of 3k was reached to about 40% (based on 5methoxycarbonylformylsalicylaldehyde and without optimization).

Scheme 2. Synthesis of benzofuan-2-carboxylic acids and esters from 2-(*gem*-dibromovinyl)phenols^{*a*}

^{*a*} Reaction conditions: **1** (0.5 mmol), alcohols (1.5 mL), CuBr₂ (5 mol %), 2,2'-Bpy (5 mol %), Mo(CO)₆ (0.6 equiv.), Et₃N (3.0 equiv.), 90 °C, purged with N₂ and 8 h, isolated yields. ^{*b*} 90 °C for 4 h and then 130 °C for 4 h. ^{*c*} water (0.25 mL), *t*-BuOH (1.25 mL). ^{*d*} 5 mmol scale.

Having successfully developed a novel procedure for the synthesis of benzofuran-2-carboxylic acids and esters, this method was extended to the synthesis of benzofuran-2-Initial carboxylic amides. study using 2-(2,2dibromovinyl)phenol 1a and morpholine as reaction partners showed that the same catalytic system only afforded the desired benzofuran-2-yl(morpholino)methanone (4a) in 33% yield. After re-optimizing the reaction conditions, it was delighted that a high isolated yield (92%) of 4a can be obtained by using 10 mol% CuCl₂, 10 mol% 1,10phenanthroline, 0.6 equiv. Mo(CO)₆, 4.0 equiv. morpholine, and in *n*-PrOH at 100 °C for 8 h.23 Also, the scope of this catalytic system for benzofuran-2-carboxylic amides synthesis was explored and the results were illustrated in Scheme 3. reaction conditions, 2-(2,2-Under the identified dibromovinyl)phenol (1a) could smoothly react with a wide range of primary and secondary amines, including

thiomorpholine, 1-methylpiperazine, piperidine, 4pyrrolidine. phenylpiperidine, di(n-propyl)amine, npropylamine, and benzylamine, to provide the corresponding amides 4b-4i in good to excellent yields. For the reaction of 1a and aniline, N-phenylbenzofuran-2-carboxamide 4j was obtained in relative lower yield (50%), which maybe ascribe to its weaker nucleophilicity. Other than organic amines, ammonia (25-28%) could be also employed as external Nnucleophile, and primary amide 4k was obtained in good yield (81%). Similar to the esters and acids, a wide range of functionalized groups, such as Me, OMe, t-Bu, Ph, F, Cl, Br and COOCH₃, can tolerate, and the electron character and position of these substituents attached on the phenyl ring had no obvious effect on the outcome of the reaction. A number of functionalized benzofuran-2-carboxylic amides 41-4w were obtained in good to excellent yields (73-93%). 1-(gemdibromovinvl)-2-naphthalenol can also provide the corresponding amide 4x in 73% yield. To further demonstrate the practical utility of our newly developed method, selected carbonylative tandem syntheses were carried out on gramscale (5 mmol of substrates). Delightedly, equivalent results were obtained (2p, 3f, and 4a).

Scheme 3. Synthesis of benzofuan-2-carboxylic amides from 2-gem-dibromovinylphenols^a

^{*a*} Reaction conditions: **1** (0.5 mmol), amine (4.0 equiv.), $CuCl_2$ (10 mol %), 1,10-Phen (10 mol %), $Mo(CO)_6$ (0.6 equiv.), *n*-PrOH (1.5 mL), 100 °C, purged with N₂ and 8 h, isolated yields. ^{*b*} 25%-28% aqueous NH₃·H₂O was used. ^{*c*} in *t*-BuOH. ^{*d*} 5 mmol scale.

To further explore the detailed reaction pathway for this tandem reaction, a few control experiments were designed (eqns. 1-4, Scheme 4). Firstly, in absence of $Mo(CO)_6$ and under the identified reaction conditions (5 mol% of CuBr₂, 5 3

mol% of 2, 2'-Bpy, 3.0 equiv. of Et₃N, and in ethanol at 90 °C for 8h), the reaction of 1a provided 2-bromobenzofuran (5) in nearly quantitative yield (eqn. 1 Scheme 4). This result proved an efficient copper-catalyzed intramolecular cyclization of 2gem-dibromovinylthiophenol, which was consistent with the reports of Lautens¹² and Wang¹³. To probe the feasibility that the reaction proceeded with 2-bromobenzofuran as intermediate, the isolated 5 was then subjected to the carbonylative transformations in the presence of Mo(CO)₆. Without Cu catalyst and ligand, the carbonylation products 2a, 3a, and 4a were obtained in 86%, 79% and 89% yields, respectively (eqns. 2 and 3, Scheme 4). Furthermore, it was found that gaseous CO greatly restrained this carbonylative transformation. When the Mo(CO)₆-mediated alkoxycarbonylation of 2-bromobenzofuran was performed in an CO atmosphere (1 atm in autoclave), the yield of 2a was dramatically dropped to 10% (eqn. 4, Scheme 4). Recently, similar "Pd-free" carbonylation of (hetero)aryl halides by Mo(CO)₆ to form organic carboxylic acids and derivatives have been also described in several reports.²⁴ Although the actual mechanism was unclear, it was generally suggested that in the presence of a suitable exchange ligand $Mo(CO)_6$ can in *situ* transform to Mo complex $(Mo(CO)_{6-n}L_n)$, which acted not only as the carbonyl donor, but also as the catalyst for the carbonylative transformation. In current carbonylation of 2bromobenzofuran, such ligand was postulated as Et₃N or morpholine. Since the activation of Mo(CO)₆ by exchanging ligand is crucial, it could be also understandable that gaseous CO has a detrimental effect on this carbonylative transformation.

Scheme 4. Control experiments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Based on above experimental results and pervious reports, a two-step mechanistic pathway for this carbonylative tandem of synthesis 2-carboxybenzofurans from 2-gemdibromovinylphenols was proposed (Scheme 5). 2-gemdibromovinylphenols were firstly converted to 2bromobenzofuran intermediates through a copper-catalyzed intramolecular Ullman cross-coupling, which then underwent a carbonylative transformation by Mo(CO)₆. Prior to the carbonylations, Mo(CO)₆ was in situ activated by amines (Et₃N, morpholine, or other amines) to form Mo complex $[Mo(CO)_{6-n}(amine)_n]$ which acted as both carbonyl donor and catalyst. Depending on the external nucleophiles (alcohols, water or amines), benzofuran-2-carboxylic esters 2, acids 3 or amides 4 were finally obtained as the desired products, respectively.

Scheme 5. Plausible reaction pathway for 2carboxybenzofurans formation

CONCLUSIONS

In summary, we have successfully developed a novel versatile and modular carbonylative tandem protocol for the synthesis of 2-carboxybenzofurans from 2-gemdibromovinylphenols via а sequential Cu-catalyzed intramolecular C-O coupling and $Mo(CO)_6$ -mediated carbonylation reactions. With water, alcohols or amines as simple external nucleophiles and 0.6 equiv. of Mo(CO)₆ as carbonyl source and under the catalysis of copper salts, a wide range of functionalized bezofuran-2-carboxylic acids, esters and amides can be conveniently obtained in good to excellent yields. In addition, the reaction avoided the use of precious Pd-catalyst as well as took place under true CO-gas free conditions. Therefore, the newly developed methodology was safe and easy-to-operate, which will be attractive to organic and medicinal chemists.

EXPERIMENTAL SECTION

All chemicals and organic solvents were commercially available and directly used without further purification. Deionized water was used in the synthesis of benzofuran-2carboxylic acids. All proton and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE III 500 MHz or a Bruker Magnet System 400/600 MHz spectrometer in deuterated solvents with tetramethylsilane (TMS) as internal standard. GC-MS analyses were performed on a Thermo Scientific TRACE GC Ultra gas chromatograph using a SHIMADZU SH-Rtx-5MS (30 m x 0.25 mm ID, 0.25 µm) coupled with a Thermo Scientific ISQ single quadrupole mass spectrometer in EI mode (70 eV). High resolution mass spectra were recorded in the EI mode on Waters GCT Premier TOF mass spectrometer with an Agilent 6890 gas chromatography using a DB-XLB column (30 m x 0.25 mm (i.d.), 0.25 μ) or ESI mode on an Agilent 6210 LC/TOF mass spectrometer. Melting points (uncorrected) were determined on a BUCHI M-565 apparatus. Gas chromatography (GC) analyses were performed on Shimadzu GC-2010 Plus instrument with FID detector using a Shimadzu SH-Rtx-5 capillary column (30 m x 0.32 mm (i.d.), 0.25 µm). Flash column chromatography was performed on silica gel (200-300 mesh) with petroleum ether/ethyl acetate as eluent. 2-gem-dibromovinylphenols The substrates 1 were synthesized from corresponding salicylaldehydes according to the literature procedure.25

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

50

51

52

53

54

55

56

57 58 59

60

1. General procedure for the synthesis of benzofuran-2carboxylic esters (2a-2t) and analytic data

To a 15 mL of Young tube, 2-gem-dibromovinylphenols (0.5 mmol, 1.0 equiv.), $CuBr_2$ (0.025 mmol, 5 mol%), 2,2'-Bpy (0.025 mmol, 5 mol%), Mo(CO)₆ (0.3 mmol, 0.6 equiv.), NEt₃ (1.5 mmol, 3.0 equiv.), alcohols (1.5 mL) were successively added. Then the tube was purged with N₂, capped and stirred at 90 °C (oil bath) for 8 h. After the reaction finished, the reaction mixture was concentrated under vacuum. The resulted residual was purified by chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford the desired esters.

Ethyl benzofuran-2-carboxylate 2a (CAS No.: 3199-61-9): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (80.6 mg, 85% yield). M.p.: 30 °C (lit.²⁶ m.p.: 30 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.52 (s, 1H), 7.45-7.40 (m, 1H), 7.29 (t, J = 7.9 Hz, 1H), 4.43 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.8, 155.9, 145.9, 127.7, 127.1, 123.9, 122.9, 113.9, 112.5, 61.7, 14.5; HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₁H₁₀O₃ 190.0630, found 190.0638.

Methyl benzofuran-2-carboxylate 2b (CAS No.: 1646-27-1): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a light yellow oil (71.4 mg, 81% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.52 (s, 1H), 7.46-7.42 (m, 1H), 7.30 (t, J = 7.9 Hz, 1H), 3.97 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.0, 155.7, 145.4, 127.6, 126.9, 123.8, 122.8, 114.0, 112.3, 52.3; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₀H₈O₃ 176.0473, found 176.0474.

Propyl benzofuran-2-carboxylate 2c (CAS No.: 91963-00-7): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (86.7 mg, 85% yield). M.p.: 37 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.52 (s, 1H), 7.45-7.40 (m, 1H), 7.29 (t, *J* = 7.8 Hz, 1H), 4.34 (t, *J* = 6.8 Hz, 2H), 1.86-1.77 (m, 2H), 1.03 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.7, 155.7, 145.7, 127.5, 127.0, 123.7, 122.7, 113.7, 112.3, 67.0, 22.1, 10.3; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₃ 204.0786, found 204.0789.

39 Butyl benzofuran-2-carboxylate 2d (CAS No.: 1025760-20-6): 40 The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a light vellow oil 41 (94.8 mg, 87% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, 42 J = 7.9 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.50 (s, 1H), 7.45-43 7.40 (m, 1H), 7.28 (t, J = 7.9 Hz, 1H), 4.37 (t, J = 6.7 Hz, 2H), 44 1.80-1.73 (m, 2H), 1.51-1.43 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 45 ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.7, 155.7, 145.7, 46 127.5, 127.0, 123.7, 122.8, 113.7, 112.4, 65.3, 30.7, 19.1, 13.7; 47 HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₃H₁₄O₃ 218.0943, 48 found 218.0939. 49

iso-Propyl benzofuran-2-carboxylate 2e (CAS No.: 13257-16-4): The title compound was purified by flash chromatography (PE/EA = 40/1) to afford the product as a light yellow oil (83.9 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.52 (s, 1H), 7.45 (t, J = 8.4 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 5.38-5.29 (m, 1H), 1.42 (d, J = 6.3 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.4, 155.8, 146.2, 127.6, 127.2, 123.8, 122.9, 113.7, 112.5, 69.4, 22.0; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₃ 204.0786, found 204.0790.

tert-Butyl benzofuran-2-carboxylate 2f (CAS No.: 1447608-46-9): The title compound was purified by flash chromatography (PE/EA = 50/1) to afford the product as a light yellow oil (52.2 mg, 48% yield); ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.46-7.38 (m, 2H), 7.28 (t, *J* = 7.6 Hz, 1H), 1.63 (s, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 159.0, 155.7, 147.0, 127.3, 127.2, 123.7, 122.8, 113.1, 112.4, 82.7, 28.4; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₄O₃ 218.0943, found 218.0942.

2-Hydroxyethyl benzofuran-2-carboxylate 2g: The title compound was purified by flash chromatography (PE/EA = 50/1) to afford the product as a white solid (54.6 mg, 53% yield), M.p.: 69 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.62-7.55 (m, 2H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 4.54-4.50 (m, 2H), 3.99 (t, *J* = 4.6 Hz, 2H), 2.26-2.05 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 159.9, 156.0, 145.3, 128.0, 127.0, 124.0, 123.0, 114.6, 112.5, 67.1, 61.3; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₁H₁₀O₄ 206.0579, found 206.0581.

Ethyl 5-methylbenzofuran-2-carboxylate 2h (CAS No.: 53715-88-1): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (88.8 mg, 87% yield). M.p.: 40 °C (lit.²⁷ m.p.: 41-42 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.49-7.40 (m, 3H), 7.24 (d, *J* = 8.5 Hz, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.8, 154.3, 145.9, 133.5, 129.2, 127.2, 122.4, 113.7, 112.0, 61.5, 21.4, 14.4; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₃ 204.0786, found 204.0792.

Ethyl 6-methylbenzofuran-2-carboxylate 2i (CAS No.: 53715-89-2): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (89.7 mg, 88% yield). M.p.: 44 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 8.1 Hz, 1H), 7.48 (s, 1H), 7.37 (s, 1H), 7.53 (d, J = 7.4 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 2.49 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.9, 156.4, 145.3, 138.5, 125.6, 124.6, 122.3, 113.9, 112.5, 61.5, 22.1, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₃ 204.0786, found 204.0787.

Ethyl 7-*methylbenzofuran-2-carboxylate* 2*j* (CAS No.: 53715-90-5): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a yellow oil (88.7 mg, 87% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.53-7.46 (m, 2H), 7.25-7.17 (m, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 2.58 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.9, 155.1, 145.7, 128.4, 126.7, 123.9, 122.8, 120.3, 114.2, 61.5, 15.3, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₃ 204.0786, found 204.0791.

Ethyl 5-methoxybenzofuran-2-carboxylate 2k (CAS No.: 50551-56-9): The title compound was purified by flash chromatography (PE/EA = 20/1) to afford the product as a white solid (92.2 mg, 84% yield). M.p.: 56 °C (lit.²⁸ m.p.: 62 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.52-7.42 (m, 2H), 7.10-7.03 (m, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 1.42 (t, *J*

= 7.2 Hz, 3H); ${}^{13}C{1H}$ NMR (125 MHz, CDCl₃): δ 159.7, 156.7, 151.0, 146.5, 127.6, 117.6, 114.0, 113.1, 103.9, 61.6, 56.0, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₂O₄ 220.0736, found 220.0746.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

53

54

55

56

57 58 59

60

Ethyl 5-(tert-butyl)benzofuran-2-carboxylate 21 (CAS No.: 2097262-18-3): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a light yellow oil (102.1 mg, 83% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.64 (s, 1H), 7.54-7.44 (m, 3H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.37 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.8, 154.2, 147.0, 145.9, 126.8, 126.0, 118.7, 114.2, 111.8, 61.5, 34.9, 31.8, 14.4; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₅H₁₈O₃ 246.1256, found 246.1248.

Ethyl 5-phenylbenzofuran-2-carboxylate 2m (CAS No.: 59962-90-2): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (113.1 mg, 85% yield). M.p.: 78.5 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.85 (s, 1H), 7.70-7.63 (m, 2H), 7.61 (d, J = 7.1 Hz, 2H), 7.57 (s, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 159.7, 155.4, 146.5, 141.1, 137.7, 129.0, 128.9, 127.7, 127.6, 127.4, 121.2, 114.1, 112.7, 66.7, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₇H₁₄O₃ 266.0943, found 266.0937.

23 Ethyl 5-fluorobenzofuran-2-carboxylate 2n (CAS No.: 24 93849-31-1): The title compound was purified by flash 25 chromatography (PE/EA = 30/1) to afford the product as a 26 white solid (87.4 mg, 84% yield). M.p.: 59 °C; ¹H NMR (500 27 MHz, CDCl₃): δ 7.55-7.50 (m, 1H), 7.48 (s, 1H), 7.34-7.29 (m, 28 1H), 7.20-7.12 (m, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J =29 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.5 (d, J = 239.1 Hz, 159.3, 151.9, 147.3, 127.7 (d, J = 10.9 Hz), 115.8 30 (d. J = 26.6 Hz), 113.6 (d. J = 4.5 Hz), 113.3 (d. J = 9.6 Hz), 31 107.8 (d, J = 24.7 Hz), 61.7, 14.3; HRMS(EI-TOF) m/z: [M⁺] 32 calculated for C₁₁H₉FO₃ 208.0536, found 208.0540. 33

34 Ethyl 5-chlorobenzofuran-2-carboxylate 20 (CAS No.: 35 59962-89-9): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a 36 white solid (92.0 mg, 82% yield). M.p.: 49 °C (lit.29 m.p.: 49.5 37 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, J = 2.1 Hz, 1H), 38 7.51 (d, J = 8.9 Hz, 1H), 7.45 (s, 1H), 7.39 (d, J = 8.9 Hz, 1H), 39 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C{¹H} 40 NMR (125 MHz, CDCl₃): δ 159.3, 154.1, 147.1, 129.6, 128.4, 41 128.0, 122.3, 113.6, 113.1, 61.9, 14.4; HRMS(EI-TOF) m/z: 42 $[M^+]$ calculated for C₁₁H₉ClO₃ 224.0240, found 224.0244.

43 Ethyl 5-bromobenzofuran-2-carboxylate 2p (CAS No.: 44 84102-69-2): The title compound was purified by flash 45 chromatography (PE/EA = 30/1) to afford the product as a 46 light yellow solid (108.9 mg, 81% yield). M.p.: 58 °C (lit.³⁰ 47 m.p.: 60-62 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 1H), 48 7.55-7.42 (m, 3H), 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 49 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.3, 154.5, 147.0, 50 130.7, 129.0, 125.5, 117.0, 114.0, 113.0, 61.9, 14.4; HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₁H₉BrO₃ 267.9735, 51 found 267.9742. 52

2-Ethyl 5-methyl benzofuran-2,5-dicarboxylate 2q (CAS No.: 1652570-59-6): The title compound was purified by flash chromatography (PE/EA = 20/1) to afford the product as a

white solid (99.2 mg, 80% yield). M.p.: 93.5 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.58 (s, 1H), 4.45 (q, *J* = 7.2 Hz, 2H), 3.95 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.8, 159.3, 158.1, 147.2, 129.1, 127.1, 126.4, 125.6, 114.1, 112.4, 61.9, 52.5, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₂O₅ 248.0685, found 248.0692.

Ethyl 7-*bromo-5-chlorobenzofuran-2-carboxylate* 2*r* (CAS No.: 1823331-46-9): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (98.4 mg, 65% yield). M.p.: 110.5 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.61 (s, 2H), 7.50 (s, 1H), 4.45 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.8, 151.7, 147.8, 130.5, 130.0, 128.9, 121.5, 113.7, 105.6, 62.1, 14.4; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₁H₈BrClO₃ 301.9345, found 301.9352.

Ethyl 5-bromo-7-methoxybenzofuran-2-carboxylate 2s (CAS No.: 150612-67-2): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a white solid (109.1 mg, 73% yield). M.p.: 93 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.44 (s, 1H), 7.40 (s, 1H), 7.02 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 159.1, 147.0, 146.4, 144.4, 129.8, 117.2, 117.0, 113.3, 112.7, 61.8, 56.5, 14.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₂H₁₁BrO₄ 297.9841, found 297.9837.

Ethyl naphtho[2,1-b]*furan-2-carboxylate* 2*t* (CAS No.: 32730-03-3): The title compound was purified by flash chromatography (PE/EA = 30/1) to afford the product as a yellow solid (105.4 mg, 88% yield). M.p.: 96.5 °C (lit.³¹ m.p.: 84-86 °C); ¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, *J* = 8.1 Hz, 1H), 8.02 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 9.0 Hz, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.68-7.62 (m, 1H), 7.58-7.52 (m, 1H), 4.49 (q, *J* = 7.2 Hz, 2H), 1.47 (t, *J* = 7.2 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 159.7, 154.1, 145.2, 130.6, 129.2, 129.1, 128.2, 127.4, 125.5, 123.5, 122.9, 112.9, 61.6, 14.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₅H₁₂O₃ 240.0786, found 240.0791.

2. General procedure for the synthesis of benzofuran-2carboxylic acids (3a-3n) and analytic data

To a 15 mL of Young tube, 2-gem-dibromovinylphenols (0.5 mmol, 1.0 equiv.), CuBr₂ (0.025 mmol, 5 mol%), 2,2'-Bpy (0.025 mmol, 5 mol%), Mo(CO)₆ (0.3 mmol, 0.6 equiv.), NEt₃ (1.5 mmol, 3.0 equiv.), H₂O (0.25 mL), *t*-BuOH (1.25 mL) were successively added. Then the tube was purged with N₂, capped and stirred at 90 °C (oil bath) for 8 h. After the reaction finished, the reaction mixture was poured over water, acidified with HCl (1 mol/L) and then extracted with ethyl acetate (5 mL × 3). The extractions were combined, dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The resulted residual was purified by chromatography on silica gel eluenting with petroleum ether/ethyl acetate to afford the desired acids.

Benzofuran-2-carboxylic acid 3a (CAS No.: 496-41-3): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a white solid (61.2 mg, 76% yield). M.p.: 192 °C (lit.²⁷ m.p.: 193.0-193.5 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 13.90-13.10 (br, 1H), 7.79 (d,

2

3

4

5

6

7

8

9

10

11

12

13

 $J = 7.8 \text{ Hz}, 1\text{H}, 7.73-7.64 \text{ (m, 2H)}, 7.50 \text{ (t, } J = 7.8 \text{ Hz}, 1\text{H}), 7.35 \text{ (t, } J = 7.5 \text{ Hz}, 1\text{H}); {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (125 \text{ MHz}, \text{DMSO-d}_6):$ $\delta 160.1, 155.0, 146.2, 127.6, 126.9, 123.8, 123.1, 113.5, 112.1; HRMS(ESI-TOF)$ *m*/*z*: [M-H]⁻ calculated for C₉H₅O₃⁻ 161.0244, found 161.0247.

5-Methylbenzofuran-2-carboxylic acid 3b (CAS No.: 10242-09-8): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a white solid (70.0 mg, 80% yield). M.p.: 239 °C (lit.²⁴ m.p.: 237-238 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 14.19-12.70 (br, 1H), 7.62-7.52 (m, 3H), 7.31 (d, J = 8.7 Hz, 1H), 2.41 (s, 3H); ¹³C {¹H} NMR (125 MHz, DMSO-d₆): δ 160.1, 153.5, 146.2, 132.9, 128.9, 126.9, 122.4, 113.2, 111.6, 20.8; HRMS (ESI-TOF) *m/z*: [M-H]⁻ calculated for C₁₀H₇O₃-175.0401, found 175.0405.

14 6-Methylbenzofuran-2-carboxylic acid 3c (CAS No.: 50779-15 65-2): The title compound was purified by flash 16 chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the 17 product as a white solid (69.3 mg, 79% yield). m.p.: 202 °C; 18 ¹H NMR (600 MHz, DMSO-d₆): δ 14.03-12.67 (br, 1H), 7.65 19 (d, J = 8.0 Hz, 1H), 7.60 (s, 1H), 7.50 (s, 1H), 7.18 (d, J = 8.0 Hz)20 Hz, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆): δ 21 160.2, 155.5, 145.7, 137.9, 125.4, 124.4, 122.5, 113.5, 111.9, 22 21.4; HRMS(ESI-TOF) m/z: [M-H]⁻ calculated for C₁₀H₇O₃⁻ 23 175.0401, found 175.0404.

24 7-Methylbenzofuran-2-carboxylic acid 3d (CAS No.: 17349-25 64-3): The title compound was purified by flash 26 chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the 27 product as a white solid (66.1 mg, 75% yield). M.p.: 217 °C; 28 ¹H NMR (500 MHz, DMSO-d₆): δ 14.76-12.16 (br, 1H), 7.65 29 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.25 $(t, J = 7.5 \text{ Hz}, 1\text{H}), 2.50 \text{ (s, 3H)}; {}^{13}\text{C}{}^{1}\text{H} \text{NMR}$ (125 MHz, 30 DMSO-d₆): § 160.2, 154.1, 145.9, 128.1, 126.4, 123.8, 121.8, 31 120.5, 113.8, 14.7; HRMS(ESI-TOF) m/z: [M-H]⁻ calculated 32 for C₁₀H₇O₃⁻ 175.0401, found 175.0403. 33

34 5-Methoxybenzofuran-2-carboxylic acid 3e (CAS No.: 35 10242-08-7): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the 36 product as a white solid (70.3 mg, 73% yield). M.p.: 214 °C 37 (lit.³² m.p.: 215-217 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 38 13.76-13.16 (br, 1H), 7.64-7.56 (m, 2H), 7.25 (s, 1H), 7.09 (d, 39 J = 9.0 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (125 MHz, 40 DMSO-d₆): δ 160.0, 156.1, 150.0, 146.7, 127.5, 117.2, 113.6, 41 112.8, 104.2, 55.6; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated 42 for C₁₀H₇O₄- 191.0350, found 191.0353. 43

5-(tert-Butyl)benzofuran-2-carboxylic acid 3f (CAS No.: 44 1210226-98-4): The title compound was purified by flash 45 chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the 46 product as a light yellow solid (81.1 mg, 74% yield). M.p.: 47 175 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 13.77-13.20 (br, 48 1H), 7.74 (s, 1H), 7.64-7.55 (m, 3H), 1.33 (s, 9H); ¹³C{¹H} 49 NMR (125 MHz, DMSO-d₆): δ 160.2, 153.3, 146.4, 146.3, 50 126.6, 125.7, 118.7, 113.8, 111.4, 34.5, 31.4; HRMS(ESI-TOF) m/z: [M-H]⁻ calculated for C₁₃H₁₃O₃⁻ 217.0870, found 51 217.0878. 52

5-Phenylbenzofuran-2-carboxylic acid 3g (CAS No.: 59962-93-5): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a white solid (70.7 mg, 59% yield). M.p.: 221 °C; ¹H NMR (600 MHz, DMSO-d₆): δ 14.00-12.80 (br, 1H), 8.04 (s, 1H), 7.79 (s, 1H), 7.72-7.68 (m, 3H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆): δ 156.0, 154.6, 146.8, 140.0, 136.4, 128.9, 127.5, 127.3, 127.0, 126.8, 120.9, 113.7, 112.4; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₁₅H₉O₃⁻ 237.0557, found 237.0558.

5-Fluorobenzofuran-2-carboxylic acid 3h (CAS No.: 89197-62-6): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ ACOH) to afford the product as a white solid (65.4 mg, 73% yield). M.p.: 255 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 14.20-13.30 (br, 1H), 7.78-7.73 (m, 1H), 7.64 (s, 1H), 7.62-7.55 (m, 1H), 7.40-7.33 (m, 1H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 159.8, 158.8 (d, J = 236.1Hz), 151.4, 147.9, 127.8 (d, J = 11.3 Hz), 115.6 (d, J = 26.6 Hz), 113.55 (d, J = 7.7 Hz), 113.50 (d, J = 2.2 Hz), 108.2 (d, J = 24.9 Hz); HRMS(ESI-TOF) *m/z*: [M-H]calculated for C₉H₄FO₃ · 179.0150, found 179.0153.

5-Chlorobenzofuran-2-carboxylic acid 3i (CAS No.: 10242-10-1): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a light yellow solid (79.9 mg, 80% yield). M.p.: 258 °C (lit.³³ m.p.: 259-262 °C); ¹H NMR (400 MHz, DMSO-d₆): δ 14.03-13.46 (br, 1H), 7.87 (s, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.63 (s, 1H), 7.53 (d, *J* = 8.9 Hz, 1H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 159.8, 153.5, 147.6, 128.5, 128.2, 127.6, 122.4, 113.9, 113.0; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₉H₄ClO₃⁻ 194.9854, found 194.9859.

5-Bromobenzofuran-2-carboxylic acid 3j (CAS No.: 10242-11-2): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a light yellow solid (86.0 mg, 72% yield). M.p.: 258 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 14.12-13.40 (br, 1H), 8.01 (d, *J* = 1.9 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.67-7.59 (m, 2H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 159.8, 153.5, 147.6, 128.5, 128.2, 127.6, 122.4, 113.9, 113.0; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₉H₄BrO₃⁻ 238.9349, found 238.9348.

5-(*Methoxycarbonyl*)*benzofuran-2-carboxylic acid 3k* (CAS No.: 251457-26-8): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a white solid (71.2 mg, 65% yield). M.p.: 209 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 14.05-13.45 (br, 1H), 8.46 (s, 1H), 8.08 (d, *J* = 8.8 Hz, 1H), 7.86-7.75 (m, 2H), 3.89 (s, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 166.0, 159.7, 157.3, 147.6, 128.3, 127.2, 125.6, 125.3, 114.0, 112.5, 52.3; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₁₁H₇O₅⁻ 219.0299, found 219.0303.

7-Bromo-5-chlorobenzofuran-2-carboxylic acid 31 (CAS No.: 190775-65-6): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a white solid (69.7 mg, 51% yield). M.p.: 259 °C; ¹H NMR (600 MHz, DMSO-d₆): δ 14.92-12.49 (br, 1H), 7.90 (s, 1H), 7.87 (s, 1H), 7.72 (s, 1H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆): δ 159.4, 150.8, 148.2, 129.5, 129.1, 128.7, 122.1, 113.6, 114.0, 104.7; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₉H₃BrClO₃⁻ 272.8960, found 272.8967.

7

53

54

55 56

5-Bromo-7-methoxybenzofuran-2-carboxylic acid 3m (CAS No.: 20037-37-0): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a yellow solid (88.8 mg, 66% yield). M.p.: 246 °C; ¹H NMR (600 MHz, DMSO-d₆): δ 14.35-12.86 (br, 1H), 7.59 (s, 1H), 7.54 (s, 1H), 7.24 (s, 1H), 3.98 (s, 3H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆): δ 159.6, 147.1, 145.9, 143.5, 129.7, 117.0, 116.2, 113.0, 112.3, 56.4; HRMS(ESI-TOF) *m/z*: [M-H]-calculated for C₁₀H₆BrO₄⁻ 268.9455, found 268.9461.

Naphtho[2,1-b]furan-2-carboxylic acid 3n (CAS No.: 5656-67-7): The title compound was purified by flash chromatography (PE/EA = 5/1, 5‰ AcOH) to afford the product as a brown solid (88.9 mg, 84% yield). M.p.: 195 °C (lit.³⁴ m.p.: 197-199 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 13.86-13.05 (br, 1H), 8.44 (d, *J* = 8.2 Hz, 1H), 8.37 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 9.1 Hz, 1H), 7.86 (d, *J* = 9.1 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 160.0, 153.1, 145.5, 130.1, 128.9, 128.8, 127.6, 127.3, 125.5, 123.8, 122.5, 113.0, 112.7; HRMS(ESI-TOF) *m/z*: [M-H]⁻ calculated for C₁₃H₇O₃⁻ 211.0401, found 211.0404.

3. General procedure for the synthesis of benzofuran-2carboxylic amides (4a-4x) and analytic data

To a 15 mL of Young tube, 2-gem-dibromovinylphenols (0.5 mmol, 1.0 equiv.), $CuCl_2$ (0.05 mmol, 10 mol%), 1,10-Phen (0.05 mmol, 10 mol%), Mo(CO)₆ (0.3 mmol, 0.6 equiv.), amines (2.0 mmol, 4.0 equiv.), *n*-PrOH (1.5 mL) were successively added. Then the tube was purged with N₂, capped and stirred for at 100 °C (oil bath) for 8 h. After the reaction finished, the reaction mixture was concentrated under vacuum. The resulted residual was purified by chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford the desired amides.

Benzofuran-2-yl(morpholino)methanone 4a (CAS No.: 77509-76-3): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (106.7 mg, 92% yield). M.p.: 97 °C (lit.³⁵ m.p.: 95 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 7.74 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.47-7.40 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 3.85-3.60 (m, 8H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 158.9, 153.9, 148.1, 126.7, 126.5, 123.7, 122.4, 111.8, 111.0, 66.2, 47.3, 42.8; HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₃H₁₃NO₃ 231.0895 , found 231.0903.

Benzofuran-2-yl(thiomorpholino)methanone 4b (CAS No.: 2327350-36-5): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (79.1 mg, 64% yield). M.p.: 74 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.74 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.47-7.41 (m, 1H), 7.39 (s, 1H), 7.33 (t, J = 7.5 Hz, 1H), 4.01-3.82 (m, 4H), 2.71 (t, J = 5.1 Hz, 4H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 159.2, 153.9, 148.1, 126.7, 126.5, 123.7, 122.4, 111.7, 110.6, 27.0; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₃NO₂S 247.0667, found 247.0675.

Benzofuran-2-yl(4-methylpiperazin-1-yl)methanone 4c (CAS No.: 83820-17-1): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (116.4 mg, 95% yield). M.p.: 69 °C (lit.³⁶ m.p.: 65 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 7.74 (d, J = 7.6 Hz,

1H), 7.66 (d, J = 8.4 Hz, 1H), 7.47-7.41 (m, 1H), 7.39 (s, 1H), 7.33 (t, J = 7.5 Hz, 1H), 3.83-3.55 (m, 4H), 2.37 (t, J = 5.0 Hz, 4H), 2.20 (s, 3H); $^{13}C{^{1}H}$ NMR (125 MHz, DMSO-d₆): δ 158.9, 153.9, 148.3, 126.7, 126.5, 123.7, 122.4, 111.8, 110.7, 54.5, 45.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₄H₁₆N₂O₂ 244.1212, found 244.1219.

Benzofuran-2-yl(piperidin-1-yl)methanone 4*d* (CAS No.: 77509-75-2): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (86.9 mg, 76% yield). M.p.: 66 °C (lit.³⁵ m.p.: 65 °C); ¹H NMR (500 MHz, DMSO-d₆): δ 7.73 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.36 7.28 (m, 2H), 3.73-3.55 (m, 4H), 1.68-1.61 (m, 2H), 1.60-1.53 (m, 4H); ¹³C {¹H} NMR (125 MHz, DMSO-d₆): δ 158.8, 153.8, 148.7, 126.8, 126.2, 123.6, 122.3, 111.7, 109.9, 47.3, 43.1, 26.2, 25.4, 24.0; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₄H₁₅NO₂ 229.1103 , found 229.1109.

Benzofuran-2-yl(4-phenylpiperidin-1-yl)methanone 4e (CAS No.: 312511-61-8): The title compound was purified by flash chromatography (PE/EA = 20/1) to afford the product as a white solid (87.3 mg, 86% yield). M.p.: 140 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 8.4 Hz, 1H), 7.36-7.27 (m, 4H), 7.26-7.20 (m, 3H), 5.00-4.50 (m, 2H), 3.43-2.80 (m, 3H), 1.99 (d, J = 12.5 Hz, 2H), 1.87-1.76 (m, 2H); ¹³C {¹H} NMR (125 MHz,CDCl₃): δ 160.0, 154.6, 149.4, 145.1, 128.6, 127.1, 126.8, 126.6, 126.3, 123.5, 122.2, 111.9, 111.5, 42.9; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₂₀H₁₉NO₂ 305.1416, found 305.1420.

Benzofuran-2-yl(pyrrolidin-1-yl)methanone 4f (CAS No.: 92028-90-5): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (91.2 mg, 85% yield). M.p.: 101 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.75 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.49 (s, 1H), 7.46-7.42 (m, 1H), 7.32 (t, J = 7.5 Hz, 1H), 3.82 (t, J = 6.8 Hz, 2H), 3.51 (t, J = 6.8 Hz, 2H), 1.97-1.88 (m, 2H), 1.86-1.80 (m, 2H); ¹³C {¹H} NMR (125 MHz, DMSO-d₆): δ 157.5, 154.0, 149.3, 126.9, 126.6, 123.6, 122.5, 111.8, 110.9, 47.7, 46.8, 26.0, 23.3; HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₃H₁₃NO₂ 215.0946, found 215.0951.

N,N-dipropylbenzofuran-2-carboxamide 4*g* (CAS No.: 904081-20-5): The title compound was purified by flash chromatography (PE/EA = 15/1) to afford the product as a yellow oil (101.8 mg, 83% yield); ¹H NMR (500 MHz, DMSO-d₆): δ 7.73 (d, *J* = 7.7 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.46-7.39 (m, 1H), 7.35 (s, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 3.42-3.25 (m, 4H), 1.65-1.53 (m, 4H), 0.92-0.78 (m, 6H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 159.8, 153.8, 149.3, 126.7, 126.3, 123.6, 122.3, 111.6, 110.1, 49.7, 47.5, 22.1, 20.3, 11.2, 10.9; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₅H₁₉NO₂ 245.1416, found 245.1419.

N-propylbenzofuran-2-carboxamide 4h (CAS No.: 24282-71-1): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a colorless oil (81.4 mg, 80% yield); ¹H NMR (500 MHz, DMSO-d₆): δ 8.73 (t, *J* = 5.7 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 8.3 Hz, 1H), 7.52 (s, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 3.24 (q, *J* = 6.8 Hz, 2H), 1.54 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 158.1, 154.2, 149.4,

2

3

4

5

6

7

8

9

10

11

12

13

53

54

55

56

57 58 59

60

127.2, 126.6, 123.6, 122.7, 111.7, 109.1, 40.5, 22.4, 11.4; HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₂H₁₃NO₂ 203.0946, found 203.0950.

N-benzylbenzofuran-2-carboxamide 4i (CAS No.: 21315-63-9): The title compound was purified by flash chromatography (PE/EA = 15/1) to afford the product as a white solid (109.3 mg, 87% yield). M.p.: 100 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 9.32 (t, *J* = 6.1 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.60 (s, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.38-7.29 (m, 5H), 7.27-7.20 (m, 1H), 7.66 (d, *J* = 6.2 Hz, 2H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 158.2, 154.3, 149.1, 139.3, 128.3, 127.4, 127.2, 126.9, 126.8, 123.7, 122.8, 111.8, 109.6, 42.2; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₆H₁₃NO₂ 251.0946, found 251.0949.

N-phenylbenzofuran-2-carboxamide 4j (CAS No.: 50635-12-14 6): The title compound was purified by flash chromatography 15 (PE/EA = 15/1) to afford the product as a light yellow solid 16 (59.1 mg, 50% yield). M.p.: 155 °C (lit.³⁷ m.p.: 158 °C); ¹H 17 NMR (500 MHz, DMSO-d₆): δ 10.53 (s, 1H), 7.86-7.79 (m, 18 3H), 7.78 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.51 (t, $J_1 = 7.8$ Hz, 19 1H), 7.41-7.34 (m, 3H), 7.13 (t, $J_1 = 7.4$ Hz, 1H); ¹³C{¹H} 20 NMR (125 MHz, DMSO-d₆): δ 156.7, 154.5, 148.8, 138.4, 21 128.7, 127.2, 127.1, 124.1, 123.9, 122.9, 120.5, 112.0, 110.7; 22 HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₅H₁₁NO₂ 23 237.0790, found 237.0783.

24 Benzofuran-2-carboxamide 4k (CAS No.: 50342-50-2): The 25 title compound was purified by flash chromatography (PE/EA 26 = 5/1) to afford the product as a white solid (65.3 mg, 81%) 27 yield). M.p.: 162 °C (lit.38 m.p.: 158-159 °C); ¹H NMR (500 28 MHz, DMSO-d₆): δ 8.21-8.05 (m, 1H), 7.76 (d, J = 7.5 Hz, 29 1H), 7.73-7.65 (m, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.48-7.40 (m, 1H), 7.31 (t, J = 7.5 Hz, 1H); ¹³C{¹H} NMR 30 (125 MHz, DMSO-d₆): δ 159.9, 154.3, 149.4, 127.3, 126.8, 31 123.7, 122.8, 111.8, 109.6; HRMS(EI-TOF) m/z; [M⁺] 32 calculated for C₉H₇NO₂ 161.0477, found 161.0480. 33

34 (5-Methylbenzofuran-2-yl)(morpholino)methanone 4l (CAS 35 No.: 950255-28-4): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a 36 white solid (114.2 mg, 93% yield). M.p.: 120.5 °C; ¹H NMR 37 (500 MHz, DMSO-d₆): δ 7.57-7.47 (m, 2H), 7.35 (s, 1H), 7.26 38 (d, J = 8.5 Hz, 1H), 3.87-3.57 (m, 8H), 2.40 (s, 3H); ${}^{13}C{}^{1}H$ 39 NMR (125 MHz, DMSO-d₆): δ 159.0, 152.4, 148.2, 132.8, 40 127.9, 126.8, 121.9, 111.3, 110.9, 66.2, 46.9, 42.9, 20.8; 41 HRMS(EI-TOF) m/z: [M⁺] calculated for C₁₄H₁₅NO₃ 42 245.1052, found 245.1060.

43 (6-Methylbenzofuran-2-yl)(morpholino)methanone 4m (CAS 44 No.: 1789659-35-3): The title compound was purified by flash 45 chromatography (PE/EA = 10/1) to afford the product as a 46 white solid (112.9 mg, 92% yield). M.p.: 118.5 °C; ¹H NMR 47 $(600 \text{ MHz}, \text{DMSO-d}_6)$: δ 7.60 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 48 7.36 (s. 1H), 7.14 (d. J = 8.0 Hz, 1H), 3.85-3.57 (m. 8H), 2.42 49 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, DMSO-d₆): δ 159.0, 154.4, 50 147.6, 136.7, 125.1, 124.2, 121.9, 111.7, 111.1, 66.2, 46.8, 42.8, 21.3; HRMS(EI-TOF) m/z: [M⁺] calculated for 51 C₁₄H₁₅NO₃ 245.1052, found 245.1060. 52

(7-Methylbenzofuran-2-yl)(morpholino)methanone 4n (CAS No.: 2215703-74-3): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a

white solid (104.0 mg, 85% yield). M.p.: 117 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.55 (d, J = 7.5 Hz, 1H), 7.40 (s, 1H), 7.28-7.20 (m, 2H), 3.85-3.60 (m, 8H), 2.49 (s, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 159.0, 153.0, 147.8, 127.1, 126.2, 123.7, 121.5, 119.8, 111.2, 66.2, 46.9, 42.6, 14.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₄H₁₅NO₃ 245.1052, found 245.1059.

(5-Methoxybenzofuran-2-yl)(morpholino)methanone 40 (CAS No.: 92249-04-2): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (101.6 mg, 78% yield). M.p.: 83 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.56 (d, J = 9.0 Hz, 1H), 7.35 (s, 1H), 7.22 (s, 1H), 7.04 (d, J = 9.0 Hz, 1H), 3.83-3.60 (m, 11H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 158.8, 156.1, 148.9, 148.9, 127.3, 115.8, 112.4, 111.3, 103.9, 66.2, 55.6, 46.8, 42.7; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₄H₁₅NO₄ 261.1001, found 261.1009.

(5-(tert-Butyl)benzofuran-2-yl)(morpholino)methanone 4p: The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (116.6 mg, 81% yield). M.p.: 117 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.69 (s, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 8.8 Hz, 1H), 7.38 (s, 1H), 3.87-3.52 (m, 8H), 1.33 (s, 1H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 159.0, 152.2, 148.2, 146.3, 126.4, 124.6, 118.2, 111.4, 111.1, 66.2, 47.0, 42.6, 34.5, 31.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₇H₂₁NO₃ 287.1521, found 287.1528.

Morpholino(5-phenylbenzofuran-2-yl)methanone 4*q*: The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (138.0 mg, 90% yield). M.p.: 162 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.99 (s, 1H), 7.77-7.71 (m, 2H), 7.69 (d, *J* = 7.1 Hz, 2H), 7.51-7.45 (m, 3H), 7.38 (t, *J* = 7.4 Hz, 1H), 3.84-3.61 (m, 8H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 158.8, 153.5, 148.8, 140.2, 136.3, 129.0, 127.4, 127.2, 127.0, 125.8, 120.3, 112.1, 111.2, 67.2; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₉H₁₇NO₃ 307.1208 , found 307.1213.

(5-Fluorobenzofuran-2-yl)(morpholino)methanone 4r: The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (105.6 mg, 85% yield). M.p.: 88 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.75-7.65 (m, 1H), 7.60-7.48 (m, 1H), 7.40 (s, 1H), 7.33-7.24 (m, 1H), 3.90-3.51 (m, 8H); ¹³C {¹H} NMR (100 MHz, DMSO-d₆): δ 158.8 (d, J = 235.9 Hz), 158.6, 150.3, 149.8, 127.6 (d, J = 11.4 Hz), 114.4 (d, J = 26.7 Hz), 113.2 (d, J = 9.8 Hz), 111.1 (d, J = 4.1 Hz), 107.7 (d, J = 25.2 Hz), 66.2, 47.0, 42.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₂FNO₃ 249.0801, found 249.0804.

(5-Chlorobenzofuran-2-yl)(morpholino)methanone 4s (CAS No.: 882308-53-4): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a light yellow solid (116.8 mg, 88% yield). M.p.: 99 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.81 (s, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 7.39 (s, 1H), 3.88-3.51 (m, 8H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 158.5, 152.4, 149.5, 128.3, 128.0, 126.5, 121.8, 113.5, 110.5, 66.2, 47.0, 42.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₂ClNO₃ 265.0506, found 265.0513.

(5-Bromobenzofuran-2-yl)(morpholino)methanone 4t (CAS No.: 838887-57-3): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (135.1 mg, 87% yield). M.p.: 110 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.96 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.39 (s, 1H), 3.89-3.49 (m, 8H); ¹³C {¹H} NMR (100 MHz, DMSO-d₆): δ 158.5, 152.8, 149.3, 129.2, 128.9, 124.8, 115.9, 113.9, 110.4, 66.2, 46.8, 42.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₂BrNO₃ 309.0001, found 309.0006.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Methyl 2-(morpholine-4-carbonyl)benzofuran-5-carboxylate 4u: The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (121.3 mg, 84% yield). M.p.: 129 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 8.39 (s, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.54 (s, 1H), 3.88 (s, 1H), 3.83-3.56 (m, 8H); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 166.0, 158.5, 156.3, 149.5, 127.5, 127.0, 125.4, 124.5, 112.2, 111.4, 66.2, 52.3, 47.0, 42.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₅H₁₅NO₅ 289.0950, found 289.0957.

(7-Bromo-5-chlorobenzofuran-2-yl)(morpholino)methanone

4ν (CAS No.: 2334613-06-6): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (131.8 mg, 77% yield). M.p.: 130 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.85 (s, 1H), 7.80 (s, 1H), 7.48 (s, 1H), 3.81-3.57 (m, 8H); ¹³C {¹H} NMR (100 MHz, DMSO-d₆): δ 158.1, 149.9, 149.8, 129.0, 128.6, 128.5, 121.5, 111.0, 104.4, 66.1, 47.0, 42.6; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₃H₁₁BrClNO₃ 342.9611, found 342.9620.

(5-Bromo-7-methoxybenzofuran-2-

yl)(morpholino)methanone 4*w* (CAS No.: 2334613-14-6): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (151.5 mg, 89% yield). M.p.: 152 °C; ¹H NMR (600 MHz, DMSO-d₆): δ 7.51 (s, 1H), 7.36 (s, 1H), 7.21 (s, 1H), 3.97 (s, 3H), 3.79-3.59 (m, 8H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆): δ 158.4, 149.0, 145.8, 142.3, 129.6, 116.5, 116.1, 112.6, 110.5, 66.1, 56.4, 46.9, 42.5; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₄H₁₄BrNO₃ 339.0106, found 339.0112.

Morpholino(naphtho[2,1-b]furan-2-yl)methanone 4*x* (CAS No.: 915896-13-8): The title compound was purified by flash chromatography (PE/EA = 10/1) to afford the product as a white solid (102.5 mg, 73% yield). M.p.: 145 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 8.41 (d, J = 8.2 Hz, 1H), 8.15 (s, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.68 (t, J = 8.2 Hz, 1H), 7.57 (t, J = 8.2 Hz, 1H), 3.99-3.59 (m, 8H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 158.8, 151.8, 147.5, 130.1, 128.8, 127.8, 127.4, 127.0, 125.3, 123.7, 122.2, 112.5, 111.0, 66.2; HRMS(EI-TOF) *m/z*: [M⁺] calculated for C₁₇H₁₅NO₃ 281.1052, found 281.1059.

4. Procedure for the gram-scale syntheses of 2p, 3f and 4a.

To a 50 mL of Young tube, 4-bromo-2-(2,2dibromovinyl)phenol (5.0 mmol, 1.0 equiv.), $CuBr_2$ (0.25 mmol, 5 mol%), 2,2'-Bpy (0.25 mmol, 5 mol%), Mo(CO)₆ (3.0 mmol, 0.6 equiv.), NEt₃ (15 mmol, 3.0 equiv.), EtOH (15 mL) were successively added. Then the tube was purged with N₂, capped and stirred at 90 °C (oil bath) for 8 h. After the reaction finished, the reaction mixture was concentrated under vacuum. The resulted residual was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the desired products **2p** as a light yellow solid (1.07 g, 80% yield).

Similarly, **3f** (0.838 g, 77% yield) was synthesized from 4-(*tert*-butyl)-2-(2,2-dibromovinyl)phenol (5.0 mmol) as a light yellow solid, and **4a** (1.05 g, 91% yield) was synthesized from 2-(2,2-dibromovinyl)phenol (5.0 mmol) as a white solid.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/xx.xxxx/xxxxxxx

Details of optimization of the reaction conditions. ¹H and ¹³C NMR spectra for all products (PDF).

AUTHOR INFORMATION

Corresponding Author

* E-Mail: sunnan@zjut.edu.cn, xinquan@zjut.edu.cn, xinquan@zjut.edu.cn, xinquan@zjut.edu.cn, xinquan@zjut.edu.cn, xinquan@zjut.edu.cn, xinquan@zjut.edu.cn)

ACKNOWLEDGMENT

The project was supported by the National Natural Science Foundation of China (21972125).

REFERENCES

(1) (a) Dawood, K. M. An update on benzofuran inhibitors: a patent review. *Expert Opin. Ther. Pat.* **2019**, *29*, 841-870. (b) Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. *Eur. J. Med. Chem.* **2019**, *162*, 266-276. (c) Radadiya, A.; Shah, A. Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. *Eur. J. Med. Chem.* **2015**, *97*, 356-376. (d) Khanam, H.; Shamsuzzaman Bioactive Benzofuran derivatives: A review. *Eur. J. Med. Chem.* **2015**, *97*, 483-504.

(2) Hu, B.; Song, Q.; Xu, Y. Scale-Up Synthesis of Antidepressant Drug Vilazodone. Org. Process Res. Dev. **2012**, *16*, 1552-1557.

(3) Goodby, J. W.; Toyne, K. J.; Hird, M.; Friedman, M. R.; Jones, J. C. Liquid crystal compounds. WO2001021606A1, 2001.

(4) (a) Shao, Y.-Y.; Yin, Y.; Lian, B.-P.; Leng, J.-F.; Xia, Y.-Z.; Kong, L.-Y. Synthesis and biological evaluation of novel shikoninbenzo[b]furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. *Eur. J. Med. Chem.* **2020**, *190*, 112105pp. (b) D'Sa, B. A.; Kisanga, P.; Verkade, J. G. P(MeNCH₂CH₂)₃N: An efficient catalyst for the synthesis of substituted ethyl benzofuran-2-carboxylates. *Synlett* **2001**, 670-672.

(5) Marriott, K.-S. C.; Bartee, R.; Morrison, A. Z.; Stewart, L.; Wesby, J. Expedited synthesis of benzofuran-2-carboxylic acids *via* microwave-assisted Perkin rearrangement reaction. *Tetrahedron Lett.* **2012**, *53*, 3319-3321.

(6) Khusnutdinov, R. I.; Baiguzina, A. R.; Mukminov, R. R. Synthesis of 1-Benzofuran-2-carboxylates by Reaction of 1-Benzofuran with Halomethanes and Alcohols in the Presence of Iron Compounds. *Russ. J. Org. Chem.* **2011**, *47*, 437-441.

(7) Cruz, M. D.; Tamariz, J. An efficient synthesis of benzofurans and their application in the preparation of natural products of the genus Calea. *Tetrahedron* **2005**, *61*, 10061-10072.

(8) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of *gem*-Dihalovinyl Systems. *Chem. Rev.* **2012**, *112*, 1344-1462.

(9) (a) Zeng, F. L.; Alper, H. Palladium-Catalyzed Domino C-S Coupling/Carbonylation Reactions: An Efficient Synthesis of 2-

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

Carbonylbenzo[b]thiophene Derivatives. Org. Lett. 2011, 13, 2868-2871. (b) Vieira, T. O.; Meaney, L. A.; Shi, Y. L.; Alper, H. Tandem Palladium-Catalyzed N,C-Coupling/Carbonylation Sequence for the Synthesis of 2-Carboxyindoles. Org. Lett. 2008, 10, 4899-4901.

(10) Arthuis, M.; Pontikis, R.; Florent, J.-C. Palladium-Catalyzed Domino C,N-Coupling/Carbonylation/Suzuki Coupling Reaction: An Efficient Synthesis of 2-Aroyl-/Heteroaroylindoles. *Org. Lett.* **2009**, *11*, 4608-4611.

(11) Ye, S. Q.; Wu, J. Palladium-Catalyzed Carbonylative Reaction of 1-(2,2-Dibromovinyl)-2-alkenylbenzene and Carbon Monoxide, with Phenol or Alcohol. *Org. Lett.* **2011**, *13*, 5980-5983.

(12) Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J. New synthesis of benzo[b]furan and indole derivatives from 1,1-dibromo-1-alkenes using a tandem Pd-assisted cyclization-coupling reaction. *Tetrahedron Lett.* **2004**, *45*, 907-910.

(13) Nagamochi, M.; Fang, Y. Q.; Lautens, M. A general and practical method of alkynyl indole and benzofuran synthesis *via* tandem Cu- and Pd-catalyzed cross-couplings. *Org. Lett.* **2007**, *9*, 2955-2958.

(14) (a) Zhang, M. J.; Weng, Z. Q. Palladium-Catalyzed Tandem Synthesis of 2-Trifluoromethylthio(seleno)-Substituted Benzofused Heterocycles. Org. Lett. 2019, 21, 5838-5842. (b) Liu, J.; Chen, W.; Wang, L. Synthesis of 2-selenvl(sulfenvl)benzofurans via Cucatalyzed tandem reactions of 2-(gem-dibromovinyl)phenols with diorganyl diselenides(disulfides). RSC Adv. 2013, 3, 4723-4730. (c) Rao, M. L. N.; Jadhav, D. N.; Dasgupta, P. Pd-Catalyzed Tandem Chemoselective Synthesis of 2-Arylbenzofurans using Threefold Arylating Triarylbismuth Reagents. Eur. J. Org. Chem. 2013, 2013, 781-788. (d) Chen, W.; Li, P. H.; Miao, T.; Meng, L. G.; Wang, L. An efficient tandem elimination-cyclization-desulfitative arylation of 2-(gem-dibromovinyl)phenols(thiophenols) with sodium arylsulfinates. Org. Biomol. Chem. 2013, 11, 420-424. (e) Liu, J. M.; Zhang, N. F.; Yue, Y. Y.; Wang, D.; Zhang, Y. L.; Zhang, X.; Zhuo, K. L. A simple and efficient approach to 2-alkynylbenzofurans under mild copper(I)catalyzed conditions. RSC Adv. 2013, 3, 3865-3868. (f) Ye, S. Q.; Liu, G.; Pu, S. Z.; Wu, J. Synthesis of 2-(Polyfluoroaryl)benzofurans via a Copper(I)-Catalyzed Reaction of 2-(2,2-Dibromovinyl)phenol with Polyfluoroarene. Org. Lett. 2012, 14, 70-73. (g) Qin, X. R.; Cong, X. F.; Zhao, D. B.; You, J. S.; Lan, J. B. One-pot synthesis of benzofused heteroaryl azoles via tandem C-heteroatom coupling/C-H activation of azoles. Chem. Commun. 2011, 47, 5611-5613. (h) Chen, W.; Wang, M.; Li, P. H.; Wang, L. Highly efficient copper/palladiumcatalyzed tandem Ullman reaction/arylation of azoles via C-H activation: synthesis of benzofuranyl and indolyl azoles from 2-(gemdibromovinyl)phenols(anilines) with azoles. Tetrahedron 2011, 67, 5913-5919.

(15) Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Intramolecular cross-coupling of *gem*-dibromoolefins: a mild approach to 2-bromo benzofused heterocycles. *Chem. Commun.* **2009**, 5236-5238.

(16) Ji, Y.; Li, P. H.; Zhang, X. L.; Wang, L. Trace amount Cu (ppm)-catalyzed intramolecular cyclization of 2-(*gem*-dibromovinyl)phenols(thiophenols) to 2-bromobenzofurans (thiophenes). *Org. Biomol. Chem.* **2013**, *11*, 4095-4101.

(17) (a) Yamamoto, K.; Bruun, T.; Kim, J. Y.; Zhang, L.; Lautens, M. A New Multicomponent Multicatalyst Reaction (MC)²R: Chemoselective Cycloaddition and Latent Catalyst Activation for the Synthesis of Fully Substituted 1,2,3-Triazoles. Org. Lett. 2016, 18, 2644-2647. (b) Higman, C. S.; de Araujo, M. P. Fogg, D. E. Tandem catalysis versus one-pot catalysis: ensuring process orthogonality in the transformation of essential-oil phenylpropenoids into high-value products via olefin isomerization-metathesis. Catal. Sci. Technol. 2016, 6, 2077-2084. (c) Panteleev, J.; Zhang, L.; Lautens, M. Domino Rhodium-Catalyzed Alkyne Arylation/Palladium-Catalyzed N Arylation: A Mechanistic Investigation. Angew. Chem. Int. Ed. 2011, 50, 9089-9092. (d) Ambrosini L. M.; Lambert, T. H. Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery. ChemCatChem 2010, 2, 1373-1380. (e) Wasilke, J.-C.; Obrey, S. J.;

Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis. *Chem. Rev.* **2005**, *105*, 1001-1020.

(18) For reviews: (a) Chen, Z.; Wang, L.-C.; Wu, X.-F. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem. Commun. 2020, 56, 6016-6030. (b) Akerbladh, L.; Odell, L. R.; Larhed, M. Palladium-Catalyzed Molybdenum Hexacarbonyl-Mediated Gas-Free Carbonylative Reactions. Synlett 2019, 30, 141-155. (c) Odell, L. R.; Russo, F.; Larhed, M. Molybdenum Hexacarbonyl Mediated CO Gas-Free Carbonylative Reactions. Synlett 2012, 685-698. For more recent examples: (d) Qi, X. X.; Bao, Z. P.; Wu, X. F. Palladium-catalyzed carbonylative transformation of aryl iodides and sulfonyl chlorides: convenient access to thioesters. Org. Chem. Front. 2020, 7, 885-889. (e) van Bonn, P.; Bolm, C.; Hernandez, J. G. Mechanochemical Palladium-Catalyzed Carbonylative Reactions Using Mo(CO)₆. Chem. - Eur. J. 2020, 26, 2576-2580. (f) Peng, J.-B.; Geng, H.-Q.; Wu, F.-P.; Li, D.; Wu, X.-F. Selectivity controllable divergent synthesis of α , β unsaturated amides and maleimides from alkynes and nitroarenes via palladium-catalyzed carbonylation. J. Catal. 2019, 375, 519-523. (g) Peng, J.-B.; Li, D.; Geng, H.-Q.; Wu, X.-F. Palladium-Catalyzed Amide Synthesis via Aminocarbonylation of Arylboronic Acids with Nitroarenes. Org. Lett. 2019, 21, 4878-4881. (h) Peng, J.-B.; Wu, F.-P.; Li, D.; Oi, X.; Ying, J.; Wu, X.-F. Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones. J. Org. Chem. 2018, 83, 6788-6792. (i) Peng, J.-B.; Geng, H.-Q.; Li, D.; Qi, X.; Ying, J.; Wu, X.-F. Palladium-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Amides from Styrenes and Nitroarenes. Org. Lett. 2018, 20, 4988-4993. (j) Mamone, M.; Aziz, J.; Le Bescont, J.; Piguel, S. Aminocarbonylation of N-Containing Heterocycles with Aromatic Amines Using Mo(CO)₆. Synthesis 2018, 50, 1521-1526. (k) Peng, J. B.; Geng, H. Q.; Wang, W.; Qi, X. X.; Ying, J.; Wu, X. F. Palladium-catalyzed four-component carbonylative synthesis of 2,3disubstituted quinazolin-4(3H)-ones: Convenient methaqualone preparation. J. Catal. 2018, 365, 10-13. (1) Peng, J. B.; Wu, F. P.; Qi, X. X.; Ying, J.; Wu, X. F. Nickel-catalysed carbonylative homologation of aryl iodides. Comm. Chem. 2018, 1, 7. (m) Akerbladh, L.; Schembri, L. S.; Larhed, M.; Odell, L. R. Palladium(0)-Catalyzed Carbonylative One-Pot Synthesis of N-Acylguanidines. J. Org. Chem. 2017, 82, 12520-12529. (n) Roslin, S.; Odell, L. R. Palladium and visible-light mediated carbonylative Suzuki-Miyaura coupling of unactivated alkyl halides and aryl boronic acids. Chem. Commun. 2017, 53. (o) Nagarsenkar, A.; Prajapti, S. K.; Guggilapu, S. D.; Babu, B. N. Aldehyde-Promoted One-Pot Regiospecific Synthesis of Acrylamides Using an in Situ Generated Molybdenum Tetracarbonyl Amine [Mo(CO)₄(amine)₂] Complex. Org. Lett. 2015, 17, 4592-4595. Liptrot, D.; Alcaraz, L.; Roberts, B. Microwave-assisted palladium-catalyzed carbonylations of aryl and heteroaryl halides with sulfamide nucleophiles utilizing a solid CO source. Tetrahedron Letters. 2010, 51, 5341-5343.

(19) Sun, N.; Sun, Q.; Zhao, W.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Ligand-free Palladium-Catalyzed Carbonylative Suzuki Coupling of Aryl Iodides in Aqueous CH₃CN with Sub-stoichiometric Amount of Mo(CO)₆ as CO Source. *Adv. Synth. Catal.* **2019**, *361*, 2117-2123.

(20) (a) He, L.; Sharif, M.; Neumann, H.; Beller, M.; Wu, X.-F. A convenient palladium-catalyzed carbonylative synthesis of 4(3H)-quinazolinones from 2-bromoformanilides and organo nitros with Mo(CO)₆ as a multiple promoter. *Green Chem.* **2014**, *16*, 3763-3767. (b) Nordeman, P.; Odell, L. R.; Larhed, M. Aminocarbonylations Employing Mo(CO)₆ and a Bridged Two-Vial System: Allowing the Use of Nitro Group Substituted Aryl Iodides and Aryl Bromides. *J. Org. Chem.* **2012**, *77*, 11393-11398.

(21) The effect of water-soluble solvents on the reaction was presented in supporting information, Table S2.

(22) Bondinell, W. E.; Desjarlais, R. L.; Veber, D. F.; Yamashita, D. S. Preparation of peptides for treating diseases of excessive bone loss or cartilage or matrix degradation as cysteine protease inhibitors. WO9959526A2, 1999.

(24) (a) Baranwal, S.; Gupta, S.; Sabiah, S.; Kandasamy, J.
Molybdenumhexacarbonyl-Mediated Imino-Carbonylative Acylation of *NH*-Sulfoximines with Aryl Iodides. *Asian J. Org. Chem.* 2019, *8*, 2218-2227. (b) Ren, W.; Emi, A.; Yamane, M. Molybdenum Hexacarbonyl Mediated Alkoxycarbonylation of Aryl Halides. *Synthesis* 2011, 2303-2309. (c) Ren, W.; Yamane, M. Mo(CO)₆-Mediated Carbamoylation of Aryl Halides. *J. Org. Chem.* 2010, *75*, 8410-8415. (d) Roberts, B.; Liptrot, D.; Alcaraz, L.; Luker, T.; Stocks, M. J. Molybdenum-Mediated Carbonylation of Aryl Halides with Nucleophiles Using Microwave Irradiation. *Org. Lett.* 2010, *12*, 4280-4283.

(25) Ramirez, F.; Desai, N. B.; Mckelvie, N. A New Synthesis of 1,1-Dibromoölefins *via* Phosphine-Dibromomethylenes. the Reaction of Triphenylphosphine with Carbon Tetrabromide. *J. Am. Chem. Soc.* **1962**, *84*, 1745-1747.

(26) Kaiser, S.; Smidt, S. P.; Pfaltz, A. Iridium Catalysts with Bicyclic Pyridine-Phosphinite Ligands: Asymmetric Hydrogenation of Olefins and Furan Derivatives. *Angew. Chem. Int. Ed.* **2006**, *118(31)*, 5318-5321.

(27) Suzuki, T.; Horaguchi, T.; Shimizu, T.; Abe, T Benzofuran Derivatives. I. On the Effects of Substituents in Benzofuran Syntheses. *B. Chem. Soc. Jpn.* **1983**, *56*(*9*), 2762-2767.

(28) Whalley, W. B. Organic Fluoro-Compounds. Part VII. Some 2-Trihalogenocoumarones. *J. Chem. Soc.* **1953**, 3479-3483.

(29) Witiak, D. T.; Newman, H. A. I.; Poochikian, G. K.; Fogt, S. W.; Baldwin, J. R.; Sober, C. L.; Feller, D. R. Diethyl (4b.alpha.,4c.alpha.,9a.alpha.,9b.alpha.)-3,6-Dichlorocyclobuta[1,2-

b:3,4-b']bisbenzofuran-9a,9b(4bH,4cH)-Dicarboxylate: The cis, syn Photodimer of Ethyl 5-Chlorobenzofuran-2-Carboxylate, an Analog Related to the Antilipidemic Drug Clofibrate. J. Med. Chem. **1978**, 21(8), 833-837.

(30) Abdel-Aziz, H. A.; Baria, A.; Ng, S. W. 4-(3,4-Diacetyl-5-Methyl-1H-Pyrazol-1-yl)Benzenesulfonamide. *Acta Crystallogr. Sect. E: Crystallogr. commun.* **2011**, *67*, 0696.

(31) Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. An Efficient Synthesis of Benzofuran Derivatives under Conventional/non-Conventional Method. *Chin. Chem. Lett.* **2010**, *21*, 1439-1442.

(32) Ramachandran, P. K.; Tefteller, A. T.; Paulson, G. O.; Cheng, T.; Lin, C. T.; Horton, W. J. Acetylation of Methyl Methoxycoumarilates and the Synthesis of 7-Methyl-9H-furo[3,2-*f*][1]benzopyran-9-one. *J. Org. Chem.* **1963**, *28*, 398-403.

(33) Luca, P.; Giuseppe, C.; Giuseppe, F.; Antonio, L.; Paolo, T. Fulvio, L. Convenient Synthesis of Some 3-Phenyl-1-Benzofuran-2-Carboxylic Acid Derivatives as New Potential Inhibitors of CLC-Kb Channels. *Heterocycles* **2010**, *81(12)*, 2865-2872.

(34) Maurice, L. C.; Emile, L. Action of Alkali Phenoxides on Polyhaloacroleins. β-Aldehydic Esters and 3-Halocoumarins. *Compt. Rend.* **1963**, *257(9)*, 1622-1624.

(35) El-Kholy, I. E.; Mishrikey, M. M.; Feid-Allah, H. M. Reaction of Some Coumarin and 4,6-Diaryl-2H-Pyran Derivatives with Secondary Amines. *J. Heterocyclic Chem.* **1981**, *18*, 105-110.

(36) Rastogi, R.; Sharma, S. Synthesis of 2-Substituted Benzofurans as Potential Anthelmintics. *Indian J. Chem., Sect. B* **1982**, *21B*, 485-487.

(37) Vargha, L.; Gonczy, F. Studies on Furan Compounds. IV. Reactions of the p-Toluenesulfonyl Derivatives of Several Furylketoximes with Alcohols. *J. Am. Chem. Soc.* **1950**, *72*, 2738-2740.

(38) Campiani, G.; Butini, S.; Trotta, F.; Fattorusso, C.; Catalanotti, B.; Aiello, F.; Gemma, S. ; Nacci, V.; Novellino, E.; Stark, J. A.; Cagnotto, A.; Fumagalli, E.; Carnovali, F.; Cervo, L.; Mennini, T. Synthesis and Pharmacological Evaluation of Potent and Highly Selective D₃ Receptor Ligands: Inhibition of Cocaine-Seeking Behavior and the Role of Dopamine D₃/D₂ Receptors. *J. Med. Chem.* **2003**, *46*, 3822-3839.