

Accepted Article

Title: Unsymmetrical Disulfides Synthesis via Cs2CO3-Catalyzed Three-Component Reaction in Water

Authors: Dungai Wang, Yuanji Gao, Yunli Tong, Mingteng Xiong, Xiao Liang, Heping Zhu, and Yuan-Jiang Pan

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.202000851

Link to VoR: https://doi.org/10.1002/adsc.202000851

COMMUNICATION

DOI: 10.1002/adsc.202((will be filled in by the editorial staff))

Unsymmetrical Disulfides Synthesis *via* Cs₂CO₃-Catalyzed Three-Component Reaction in Water

Dungai Wang, ^a Yuanji Gao, ^a Yunli Tong, ^b Mingteng Xiong, ^a Xiao Liang, ^a Heping Zhu, ^a and Yuanjiang Pan ^a*

^a Department of Chemistry, Zhejiang University, Hangzhou 310027, China. Email: panyuanjiang@zju.edu.cn ^b Zhejiang East Asia Pharmaceutical Co., Ltd, Zhejiang, China.

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.((Please delete if not appropriate))

Abstract: An unsymmetrical disulfides synthesis by $C_{s_2}CO_3$ -catalyzed three-component coupling reaction of thioacetate, sodium thiosulfate, and benzyl halide in water is described. The safe, stable, and non-toxic $Na_2S_2O_3$ was invoked as the sulfur-source, successfully avoiding the odor generation in the process of S-S bond formation. A wide range of substrate suitability and appropriate functional group tolerance were observed for the transformation. Notably, the approach reported here was compatible with various biomolecules including glucose, coumarin, and quinolinone.

Keywords: Three-component reaction; Nucleophilic substitution; Water; Green Chemistry; Synthetic methods

The disulfide bond (S-S) formed between cysteine side chains during oxidative protein folding is a biologically important motif that plays a unique role in the stability, activity, and protease resistance of proteins.^[1] In addition, the disulfide bond is also present in medicinal agents such as disulfiram, lipoic acid, and fursultiamine, and natural products such as gliotoxin, and the S-S framework is responsible for critical pharmaceutical activities (Figure 1).^[2] Meanwhile, the disulfide bond is usually utilized for drug delivery and release systems because it can be cleaved during the intracellular thiol-redox process.^[3] As green catalysts, disulfides can efficiently induce various reactions under mild conditions in organic synthesis,^[4] including the iodination of electron-rich aromatic compounds^[4a], and aerobic oxidation^[4b]. Additionally, the sulfur-sulfur scaffold is a ubiquitous subunit in food chemistry.^[5] Therefore, the development of efficient strategies for constructing the S-S bond has attracted intense attention in organic chemistry.[6-12]

Figure 1. Disulfides in Drug and Natural Product.

Traditionally, symmetrical disulfides are readily obtained via the oxidative process of the same thiols,^[7] and the preparation of unsymmetrical disulfides is realized by constructing the S-S bond_ or S-C bond with diverse substrates. The $S_N 2$ substitution between the derivative thiols (Scheme $(1a)^{[8]}$ and cross-coupling between different thiophenols (Scheme 1a)^[9] are typical strategies for the construction of the S-S bond, in which an unpleasant odor is unavoidable. Metal-catalyzed disulfide exchange reaction provides another approach for the synthesis of unsymmetrical disulfane by building a new disulfide bond (Scheme 1a).^[10] Moreover, a two-step method for forming the S-S bond through a sulfur redox process was reported in 2015 (Scheme 1a).^[11] The synthesis of unsymmetrical disulfides by constructing S-C bonds is an emerging strategy developed in recent years that adopts disulfide reagents (RSSLG) to supply the 1b).^[12] "disulfur" directly (Scheme Despite significant progress, this protocol still suffers from some restrictions such as the cumbersome prepreparation process of disulfide substrates. In addition, tetrasulfides can also be used to

Scheme 1. Synthesis of Unsymmetrical Disulfides.

form S-C bonds through a free radical substitution (Scheme 1b).^[13] Inorganic sulfur salts such as Na₂S, Na₂S₂O₃, and KSCN are safe, odorless and inexpensive and have been successfully used in the synthesis of organosulfide compounds.^[14] As a green reaction media, water attracted much interest due to its ready availability, and lack of toxicity and flammability.^[12i, 15] Herein, we report a facile method for the synthesis of unsymmetrical disulfides *via* a Cs₂CO₃-catalyzed three-component reaction of thioacetate, Na₂S₂O₃, and benzyl halide in water (Scheme 1c).

We carried out an optimization study for the model reaction utilizing S-(4-methoxyphenyl) ethanethioate (1a), $Na_2S_2O_3$, and benzyl chloride (2a) (Table 1). Unfortunately, the target product 3aa was not observed under the promotion of equivalent Cs₂CO₃ when the model reaction proceeded in organic media (DMSO and DMF), but the yields of by-product 4aa exceeded 50% (entries 1-2). Considering the solubility of inorganic salts, water was used to replace the organic solvents. To our delight, the desired compound 3aa was acquired in 68% yield under the same condition, but 10% of 4aa was still present (entry 3). A further investigation indicated that the amount of the base was a crucial regulating factor for the production of 3aa and 4aa. Significant declines were observed for the by-product with the decrease of Cs₂CO₃, while the yields of **3aa** were improved (entries 4-11). Meanwhile, 3aa was provided with 73% isolated yield when 15% of Cs_2CO_3 was used as the additive (entry 7). Because the base was essential for the target compound formation (entries 10–11), various strong and weak bases including 1,8-

Table 1. Optimization Study^a.

MeO SAC + Na ₂ S ₂ O ₃ + BnCl Temp, Base S S S Bn + MeO HeO HeO HeO						
1a		2a		3aa	4aa	
Entry	Temp (°C)	Base (%)	Solvent (mL)	3aa Yield ^b	4aa Yield ^b	-
1	70	Cs ₂ CO ₃ (100)	DMSO	0	54%	-
2	70	$Cs_2CO_3(100)$	DMF	0	56%	
3	70	$Cs_2CO_3(100)$	H_2O	68%	10%	
4	70	$Cs_2CO_3(200)$	H_2O	58%	13%	
5	70	$Cs_2CO_3(50)$	H_2O	58%	0	
6	70	$Cs_2CO_3(20)$	H_2O	74%	0	
7	70	$Cs_2CO_3(15)$	H_2O	76% (73) ^c	0	
8	70	$Cs_2CO_3(10)$	H_2O	72%	0	
9	70	$Cs_2CO_3(5)$	H_2O	41%	0	
10^d	70	/	H_2O	29%	0	
11	90	/	H_2O	28%	0	
12	70	DBU(15)	H_2O	69%	0	
13	70	TEA(15)	H_2O	53%	0	
14	70	DIEA(15)	H_2O	60%	0	
15	70	$K_2CO_3(15)$	H_2O	70%	0	
16	70	Na ₂ CO ₃ (15)	H_2O	63%	0	
17	70	$KH_2PO_4(15)$	H_2O	58%	0	
18	70	KOH(15)	H_2O	39%	0	
19	100	$Cs_2CO_3(15)$	H_2O	66%	0	
20	50	$Cs_2CO_3(15)$	H_2O	71%	0	2
21^{e}	70	$Cs_2CO_3(15)$	H_2O	80%	0	
22^{ef}	70	$Cs_2CO_3\left(15\right)$	H_2O	85% (80) ^c	0	
23 ^{e, g}	70	$Cs_2CO_3(15)$	H_2O	ND	90%	
24 ^{e, h}	70	$Cs_2CO_3(15)$	H_2O	ND	ND	

^{*a*}**1a** (0.25 mmol, 1 equiv), **2a** (0.375 mmol, 1.5 equiv), $Na_2S_2O_3$ (0.5 mmol, 2 equiv), air, solvent (1.5 mL), 24 h. ^{*b*}Yields were determined by ¹H NMR with an internal standard (toluene). ^{*c*}Isolated yield on 0.5 mmol scale based on **1a**. ^{*d*}48 h. ^{*e*}Na_2S_2O_3 (0.75 mmol, 3 equiv). ^{*f*}2.5 mL H₂O. ^{*g*}Na₂S replace Na₂S₂O₃. ^{*h*}Thiourea replace Na₂S₂O₃. ND: not detected.

diazabicyclo [5.4.0] undec-7-ene (DBU, entry 12), and triethylamine (TEA, entry 13) were screened, and Cs_2CO_3 was proved to be the most suitable catalyst (entries 7, 12–18). Temperatures above or below 70°C led to inferior yields of **3aa** (entries 19–20), possibly because the heat affects the formation of the intermediate Bunte salt. Similarly, to stimulate the generation of the intermediate salt, the dosage of Na₂S₂O₃ was increased. Finally, optimal conversion was achieved with three equivalents of Na₂S₂O₃, 15% of Cs₂CO₃ as catalyst in 2.5 mL water (entry 22). Na₂S and thiourea were further investigated (entries 23–24), but the desired transformation was not achieved. With the optimized conditions in hand, we first assessed the substrate scope of this one-pot reaction on various benzyl halides 2a-2q (Table 2). We found that unsubstituted benzyl halide 2a reacted smoothly with 1a and $Na_2S_2O_3$ (3aa). Similarly, benzyl bromide also

Table 2. Substrate Scope for Benzyl halides^{*a*}.

^{*a*}**1** (0.5 mmol, 1 equiv), **2** (0.75 mmol, 1.5 equiv), Na₂S₂O₃ (1.5 mmol, 3 equiv), air, H₂O (5 mL), Cs₂CO₃ (0.075 mmol, 15%), 24 h. Isolated yield based on **1**. ^{*b*}benzyl bromide instead of benzyl chloride.

participated in the reaction and provided first corresponding product in 73% yield. The *ortho*, *meta*, and *para*-substituted benzyl halides bearing electrondonating groups (Me, *t*-Bu) gave the desired products (**3ab–3ae**) in high yields (69–84%). In addition, unsymmetrical disulfides **3af-3ap** were also obtained with good yields (66–90%). Functional groups,

Table 3. Substrate Scope for Thioacetates^a.

excellent yields (3ba-3ja). The three-component reaction efficiency was not affected by the electronic properties of the substituents. Electron-withdrawing group (cyano, ester, etc.) or electron-donating group (methyl) substituted aryl thioacetates successfully reacted with 2a and Na₂S₂O₃. However, the disubstituted thioacetate 1j led to only 53% yield (3ja), suggesting that steric hindrance affected the transformation. A further investigation of benzylbenzyl type disulfides indicated that 15% of the catalyst did not promote the substrate to fully participate in the reaction, and therefore, it is necessary to increase the Cs_2CO_3 amount to 30%(3ka-3ra). Notably, symmetrical products were also obtained from moderate to high yields with this onepot reaction in an aqueous medium (3qa-3ra). Additionally, heterocyclic and alkyl substrates were also suitable for this conversion with moderate yields (3sa-3ta).

^{3qa 46%} ^{3ra 95%} ^{3sa 50%} ^{3sa 50%} ^{3ta 34%} ^a**1** (0.5 mmol, 1 equiv), **2** (0.75 mmol, 1.5 equiv), $Na_2S_2O_3$ (1.5 mmol, 3 equiv), air, H_2O (5 mL), Cs_2CO_3 (0.075 mmol, 15%), 24 h. ^bCs₂CO₃ (0.15 mmol, 30%). Isolated yield based on **1**.

including halogen (**3af-3ak**), trifluoromethyl (**3al**), cyano (**3am**, **3an**), nitro (**3ao**), and ester group (**3ap**), were well compatible under optimal conditions. Notably, **2i** with steric hindrance could be well carried out to offer the target **3ai** with 74% isolated yield. Furthermore, 1-chloromethyl naphthalene (**2q**)

Figure 2. ¹H NMR Tracking Experiments.

Control and track experiments were performed to investigate the possible reaction mechanism (Scheme 2). 76% yield of **3aa** was obtained under standard conditions when Bunte salt **6a** replaced BnCl and $Na_2S_2O_3$ (Scheme 2), implying that Bunte salt was present during the transformation as an intermediate.

¹H NMR spectra (Figure 2, DMSO- d_6 , δ 0.5–8.0 ppm) clearly indicated the capability of this method for the production of the intermediate product Bunte salt (4.10 ppm) and the conversion process to the target product (4.00 ppm, 3.75 ppm).

Scheme 3. Proposed Reaction Mechanism.

A proposed reaction mechanism is outlined in Scheme 3 based on the results of control and track experiments. Initially, thioacetate is hydrolyzed to generate a thiolate ion RS⁻ in the presence of base and water.^[16] On the other hand, Bunte salt BnSSO₃Na is rapidly generated from BnCl and Na₂S₂O₃ (Figure 2),^[14d, 17] is attacked by the thiolate ion RS⁻ and releases the target product RSSBn.

Table 4. Late-Stage Modification of Natural Product ^a.

^{*a*}**1** (0.5 mmol, 1 equiv), **2** (0.75 mmol, 1.5 equiv), $Na_2S_2O_3$ (1.5 mmol, 3 equiv), air, H_2O (5 mL), Cs_2CO_3 (0.15 mmol, 30%), 24 h. Isolated yield based on **1**.

Subsequently, the robustness of this strategy was demonstrated by the late-stage biological scaffolds modification (Table 4). Glycosylated thioacetates easily participated in the Cs_2CO_3 -catalyzed one-pot reaction and provided unique glycosyl disulfides in water with good yields (**5a-5d**). Fortunately, in this simple method, gram-scale preparation of glycosylated disulfide was also achieved (1.41 g,

58%). Meaningfully, the modification of coumarin and quinolinone that form the cores of many drugs were also achieved to deliver **5e** and **5f** in moderate yields (62% and 61%), and the structure of **5f** was characterized using single-crystal X-ray diffraction^[18].

In summary, we have developed a simple and green carbonate salt catalyzed three-component strategy to synthesize unsymmetrical disulfanes in water. Cheap and stable Na₂S₂O₃ and thioacetate used as sulfur sources successfully avoid the odor and homo-coupling in the traditional S-S bonds construction. Broad substrate scope and excellent functional group tolerance are achieved in this aqueous one-pot reaction. Moreover, the realization of the late-stage modification of biomolecules, and particularly the preparation of glycosyl disulfide on gram-scale, means that this facile protocol will be attractive for industry.

Experimental Section

Procedure for the synthesis of unsymmetrical disulfides: A mixture of S-(4-methoxyphenyl) ethanethioate (**1a**, 0.5 mmol), Na₂S₂O₃ (1.5 mmol), benzyl chloride (**2a**, 0.75 mmol), Cs₂CO₃ (15 mol%), and H₂O (5 mL) was placed into a test tube equipped with a magnetic stirring bar. The resulting mixture was stirred at 70°C in the air for 24 h. Extract 3 times with ethyl acetate (5 mL \times 3), organic solvent was removed, and the residue was separated by column chromatography to give a pure sample by using mixed petroleum ether/ethyl acetate 50:1 (v/v) as an eluent to afford the desired product **3aa**. The remaining substituted disulfides were prepared in a similar manner.

Procedure for the ¹H NMR tracking experiments: 4 groups of 0.1 mmol scale reactions were performed in parallel, and the reactions were stopped at 2 h, 5 h, 12 h, and 24 h respectively. Water was removed under reduced pressure, DMSO- d_6 was used as a solvent to dissolve the residue, and detection was carried out with ¹H NMR.

Acknowledgements

This work was supported by the China State Key Research, Grant No. 2016YEF0200503 and the National Natural Science Foundation of China (No. 21532005).

References

- a) B. Heras, S. R. Shouldice, M.Totsika, M. J. Scanion, M. A. Schembri, J. L. Martin, *Nat. Rev. Microbiol.* 2009, 7, 215–225; b) J. Alereg-Cebollada, P. Kosuri, J. A. Rivas-Pardo, J. M. Fernández, *Nat. Chem.* 2011, 3, 882–887; c) M. Narayan, E. Welker, W. J. Wedemeyer, H. A. Scheraga, *Acc. Chem. Res.* 2000, 33, 805–812.
- [2] a) K. C. Nicolaou, M. Lu, S. Totokotsopoulos, P. Heretsch, D Giguère, Y -P. Sun, D. Sarlah, T. H. Nguyen, Ian C. Wolf, D. F. Smee, C. W. Day, S. Bopp, E. A. Winzeler, *J. Am. Chem. Soc.* 2012, *134*, 17320–17332; b) H. B. Park, H. C. Kwon, C -H. Lee, H. O. Yang, *J. Nat. Prod.* 2009, *72*, 248–252, c) Y. Sun, K. Takada, Y. Takemoto, M. Yoshida, Y. Nogi, S. Okada, S. Matsunaga, *J. Nat. Prod.* 2012, *75*, 111–114; d) C -S. Jiang, W. E. G. Müller, H. C. Schrdeör, Y -W. Guo, *Chem. Rev.* 2012, *112*, 2179–2207.
- [3] a) R. Cheng, F. Feng, F. Meng, C. Deng, J. Feijen,
 Z. Zhong, J. Control. Release. 2011, 152, 2–12;
 b) P. J. Hogg, Nature. Reviews. Cancer. 2013, 13, 425–431;
 c) I. Ojima, Acc. Chem. Res. 2008, 41, 108–119.
- [4] a) K. Iida, S. Ishida, T. Watanabe, T. Arai, J. Org. Chem. 2019, 84, 7411–7417; b) J. Zhao, F. Yang, Z. Yu, X. Tang, Y. Wu, C. Ma, Q. Men, Chem. Commun. 2019, 55, 13008–13011; c) Y. Deng, X -J. Wei, H. Wang, Y. Sun, T. Noël, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 832–836; d) A. Yoshimura, Y. Takamachi, L -B. Han, A. Ogawa, Chem. Eur. J. 2015, 21, 13930–13933; e) T. Hashimoto, K. Takino, K. Hato, K. Maruoka, Angew. Chem. Int. Ed. 2016, 55, 8081–8085.
- [5] E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain, R. Apitz-Castro, J. Am. Chem. Soc. 1986, 108, 7045–7055.
- [6] a) M. Musiejuk, D. Witt, Org. Prep. Proced. Int.2015, 47, 95–131; b) D. Witt1, R. Klajn, P. Barski, B. A. Grzybowski, Curr. Org. Chem, 2004, 8, 1763–1797; c) B. Mandal, B. Basu, RSC. Adv, 2014, 4, 13854–13881; d) D. Witt, Synthesis, 2008, 2491–2509; e) R. Sato, T. Kimura, In Science of Synthesis, N. Kambe, J. Drabowicz, G. A. E. Molander, Thieme: Stuttgart–New York, 2007, 39, 573–588.
- [7] a) A. Leitemberger, L. M. C. Böhs, C. H. Rosa, C. D. Silva, F. Z. Galetto, M. Godoi, *ChemistrySelect* 2019, 4, 7686–7690; b) M. M. Hashemi, A. Rahimi, Z. Karimi-Jaberi, *Lett. Org. Chem.* 2005, 2, 485–486; c) E. Rattanangkool, W. Krailat, T. Vilaivan, P. Phuwapraisirisan, *Eur. J. Org. Chem.* 2014, 22, 4795–4804; d) S. M. S. Chauhan, A. Kumar, K. A. Srinivas, *Chem. Commun.* 2003, 2348–2349.
- [8] a) R. Hunter, M. Caira, N. Stellenboom, J. Org. Chem. 2006, 71, 8268–8271; b) E. Brzezinska, A. L. Ternay, J. Org. Chem. 1994, 59, 8239–8244; c)

M. Bao, M. Shimizu, *Tetrahedron.* 2003, 59, 9655–9659; d) S. Antoniow, D. Witt, *Synthesis*, 2007, 3, 0363–0366; e) D. N. Harpp, D. K. Ash, T. G. Back, J. G. Gleason, B. A. Orwig, W. F. VanHorn, *Tetrahedron Lett.* 1970, 11, 3551–3554; f) L. Benati, P. Montevecchi, P. Spagnolo, *Tetrahedron Lett.* 1986, 27, 1739–1742; g) G. Capozzi, A. Cappcrucci, A. Dcgl'hnocenti, R. D. Duce, S. Menichetti, *Tetrahedron Lett.* 1989, 30, 2995–2998; h) L. D. Bizzini, P. Zwick, M. Mayor, *Eur. J. Org. Chem.* 2019, 41, 6956–6960; i) N. Taniguchi, *Tetrahedron.* 2017, 73 2030–2035.

- [9] a) J. K. Vandavasi, W-P. Hu, C -Y. Chen, J -J. Wang, *Tetrahedron*. 2011, 67, 8895–8901; b) J. Yuan, C. Liu, A. Lei, Org. Chem. Front. 2015, 2, 677–680; c) P. Huang, P. Wang, S. Tang, Z. Fu, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 8115–8119; d) D. Dethe, A. Srivastava, B. Dherange, B. Kumar, Adv. Synth. Catal. 2018, 360, 3020–3025; e) X. Qiu, X. Yang, Y. Zhang, S. Song, N. Jiao, Org. Chem. Front. 2019, 6, 2220–2225; f) A. Parida, K. Choudhuri, P. Mal, Chem. Asian J. 2019, 14, 2579–2583; g) Y. Xu, X. Shi, L. Wu, RSC Adv. 2019, 9, 24025–24029.
- [10] a) M. Arisawa, M. Yamaguchi, J. Am. Chem. Soc. 2003, 125, 6624–6625; b) K. Tanaka, K. Ajiki, Tetrahedron Letters. 2004, 45, 5677–5679.
- [11] X. Xiao, M. Feng, X. Jiang, Chem. Commun. 2015, 51, 4208–4211.
- [12] a) X. Xiao, J. Xue, X. Jiang, Nat. Commun. 2018, 9, 2191; b) W. Wang, Y. Lin, Y. Ma, C -H.Tung, Z. Xu, Org. Lett. 2018, 20, 3829-3832; c) W. Wang, Y. Lin, Y. Ma, C -H. Tung, Z. Xu, Org. Lett. 2018, 20, 2956–2959; d) X. Xiao, M. Feng, X. Jiang, Angew. Chem. Int. Ed. 2016, 55, 14121-14125; e) Z. Dai, X. Xiao, X. Jiang, Tetrahedron. 2017, 73, 3702–3706; f) C -M. Park, B. Johnson, J. Duan, J -J. Park, J -J. Day, D. Gang, W. Qian, M. Xian, Org. Lett. 2016, 18, 904–907; g) J. Zou, J. Chen, T. Shi, Y. Hou, F. Cao, Y. Wang, X. Wang, Z. Jia, Q. Zhao, Z. Wang, ACS Catal. 2019, 9, 11426-11430; h) W -C. Gao, J. Tian, Y -Z. Shang, X. Jiang, Chem. Sci. 2020, 11, 3903-3908; i) M. Li, N. Zheng, J. Li, Y. Zheng, W. Song, Green Chem. 2020, 22, 2394–2398.
- [13] Z. Wu, D. A. Pratt, J. Am. Chem. Soc. 2020, 142 10284–10290.
- [14] a) D. Chen, W. Du, X. Yang, T. Liu, *J. Org. Chem.* 2020, *85*, 9088–9095; b) J. Wei, Y. Li, X. Jiang, *Org. Lett.* 2016, *18*, 340–343; c) D. Bhattacherjee, A. Sufian, S. K. Mahato, S. Begum, K. Banerjee, S. De, H. K. Srivastava, K. P. Bhabak, *Chem. Commun.* 2019, *55*, 13534–13537; d) J. T. Reeves, K. Camara, Z. S. Han, Y. Xu, H. Lee, C. A.

K. Camara, Z. S. Han, Y. Xu, H. Lee, C. A. Busacca, C. H. Senanayake, *Org. Lett.* **2014**, *16*, 1196–1199; e) Q. Lin, W. Yang, Y. Yao, S. Chen,

Y. Tan, D. Chen, D. Yang, *Org. Lett.* **2019**, *21*, 7244–7247; f) F. Meng, H. Zhang, H. He, N. Xu, Q. Fang, K. Guo, S. Cao, Y. Shi, Y. Zhu, *Adv. Synth. Catal.* **2020**, *362*, 248–254.

- [15] a) Y. Ichikawa, Y. Matsukawa, M. Isobe, J. Am. Chem. Soc. 2006, 128, 3934–3938; b) X -Y. Li, Y. Liu, X -L. Chen, X -Y. Lu, X -X. Liang, S -S. Zhu, C-W. Wei, L -B. Qu, B. Yu, Green Chem. 2020,22, 4445–4449; c) S. Hazra, V. Tiwari, A. Verma, P. Dolui, A. J. Elias, Org. Lett. 2020, 22, 5496–5501; d) G. Zhang, J -G. Fu, Q. Zhao, G -S. Zhang, M -Y. Li, C -G. Feng, G -Q. Lin, Chem. Commun. 2020, 56, 4688–4691; e) C. Casalta, S. Bouzbouz, Org. Lett. 2020, 22, 2359–2364; f) D. An, X. Miao, X. Ling, X. Chen, W. Rao, Adv. Synth. Catal. 2020, 362, 1514–1524.
- [16] K. M. Wager, M. H. Daniels, Org. Lett. 2011, 13, 4052–4055.
- [17] a) Y. Li, J. Pu, X. Jiang, Org. Lett. 2014, 16, 2692–2695; b) Y. Zhang, Y. Li, X. Zhang, X. Jiang, Chem. Commun. 2015, 51, 941–944.
- [18] CCDC 2009117 (**5f**) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.