Fitoterapia xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Design, synthesis and antifungal activity evaluation of coumarin-3carboxamide derivatives

Xiang Yu, Peng Teng, Ya-Ling Zhang, Zhao-Jun Xu, Ming-Zhi Zhang, Wei-Hua Zhang*

Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China

ARTICLE INFO	A B S T R A C T
Keywords:	A series of coumarin-3-carboxamides/hydrazides have been designed and synthesized, all the target compounds
Coumarin	were evaluated in vitro for their antifungal activity against <i>Botrytis cinerea</i> , <i>Alternaria solani</i> , <i>Gibberella zeae</i> ,
Amide	<i>Rhizoctorzia solani</i> , <i>Cucumber anthrax</i> and <i>Alternaria</i> leaf spot, some of the designed compounds 4a - 4g exhibited
Hydrazide	potential activity in the primary assays, this highlighted by the compounds 4a , 4d , 4e and 4f , EC ₅₀ values of
Synthesis	which against <i>Rhizoctorzia solani</i> were as low as $1.80 \mu g/mL$, $2.50 \mu g/mL$, $2.25 \mu g/mL$ and $2.10 \mu g/mL$, re-
Antifungal activity	spectively, exhibiting more effective control with that of the positive control than Boscalid. Furthermore,
SAR	compounds 4a and 4e represented equivalent antifungal activity with Boscalid against <i>Botrytis cinerea</i> .

1. Introduction

With readily synthetic methods and excellent chemical/physical characteristics, coumarins have received extensive attention and show great practical values in many fields, such as medicine discovery, dye chemistry, materials chemistry and so on [1–3]. Actually, over 1300 kinds of coumarins have been identified, chiefly as secondary metabolites in green plants [4,5], fungi and bacteria [6–9]. The active ingredient coumarins also can be found in many traditional Chinese herbal medicines, such as the former Hu, founder Ma, Cnidium, pepper, Qin Pekin, etc., and they usually possess a broad scope of pharmacological and biological activities [10].

As the structural core, coumarin is widely used as a scaffold in medicinal and agricultural chemicals (Fig. 1). Such as Warfarin and Acenocoumarol, both are anticoagulant agents that function as vitamin K antagonists, Coumoxystrobin is a strobilurin fungicide bearing a coumarin subunit, it displays a broad spectrum of antifungal activity, and Osthole with a coumarin scaffold has been using as a fungicide for a long history in China. Inspired by these facts, our group designed and synthesized several coumarin derivatives with high antifungal activity [11–13], such as Osthole derivatives, coumarino[8,7-e][1,3]oxazine, furo[3,2-c]coumarin, and pyrano[3,2-c] chromene-2,5-dione [8,14–16] (Fig. 1). However, the discovery of coumarin-based fungicides with high activity still has a long way to go.

In the field of fungicide research, the development of carboxylic acid amide (CAA) fungicides has received a lot of attention. Since the early report of amide fungicide carbendazim (carboxin) in 1966, amide fungicides have been used for nearly 50 years [17], and a number of

commercial amide fungicides have been launched to the market. During the late 1990s, by the introduction of fluorine atom and active heterocycle to the target molecules, the research on amide fungicides won a big step forward. New structures of amide fungicides were reported with detailed understanding of their mode of action [18]. The newly developed amide fungicides such as Fluopyram, Bixafen, Sedaxane, Isopyrazam, Penthiopyrad and Boscalid [19,20] (Fig. 2) with high activity and broad antifungal spectrum were successfully used to control a variety of plant diseases with very limited cross-resistance to most of the main fungal diseases.

In addition to amide group, molecules with hydrazide scaffolds also displayed a broad scope of pharmacological and biological activities [21,22] and have been widely used as frameworks in drug design. For example, the hydrazide derivative maleic hydrazide [23] has been found a temporary and inhibiting effect on plant growth, and the indole-coumarin [24] exhibited good antiproliferative profile against colon HT-2cell line, and the hydrazide derivative tebufenozide [25] exhibited moderate insecticidal activity as a kind of insect growth regulators (IGRs) (Fig. 3).

Considering these facts, we envisioned that the combination of the coumarin framework with carboxamides/hydrazide units may afford the desired high performance fungicides. Based on our previous work on structural modification and bioscreening of coumarin based fungicides, which exhibited effective control to certain phytopathogenic diseases [8,14,16,26], herein we report the design, synthesis and antifungal activities of novel coumarin carboxamides/hydrazides. It was luckily to discover that a new category of coumarin based fungicides with excellent performance such as high antifungal activities and low

https://doi.org/10.1016/j.fitote.2018.03.013

Received 14 February 2018; Received in revised form 14 March 2018; Accepted 31 March 2018 0367-326X/@ 2018 Published by Elsevier B.V.

^{*} Corresponding author. E-mail address: njzhangwh@126.com (W.-H. Zhang).

Fitoterapia xxx (xxxx) xxx-xxx

Coumarino[8,7-e][1,3]oxazine

Fig. 1. Sample structures of coumarin-containing drugs and fungicides.

Fig. 2. Representative structures of carboxylic acid amide fungicides.

OMe

Maleic hydrazide

Indole-coumarin

Tebufenozide

Fig. 4. Design strategy for target molecules.

Fig. 3. Representative structures of hydrazide.

drug resistance effect was successfully developed (Fig. 4).

2. Materials and methods

0

2.1. Chemicals and instruments

All commercially available reagents including substituted salicylaldehydes were purchased from Crystal Chemicals and used without

(a) Meldrum's acid, K₂CO₃, H₂O, rt; (b) T₃P, DIEA, DMF, 0 °C; (c) EDCI, DMAP, CH₂Cl₂, 0 °C; (d) (COCl)₂, DMF, CH₂Cl₂, rt; (e) DIEA, CH₂Cl₂, 0 °C.

Scheme 1. Synthetic routes for the target compounds.

(a) Meldrum's acid, K2CO3, H2O, rt.; (b) T3P, DIEA, DMF, 0 °C; (c) EDCI, DMAP, CH2Cl2, 0 °C; (d) (COCl)2, DMF, CH2Cl2, rt.; (e) DIEA, CH2Cl2, 0 °C.

further purification unless otherwise stated. The melting points of the amide of coumarin derivatives were determined on an X-4 apparatus (uncorrected), which was purchased from Shanghai Tech. Infrared (IR) spectra were recorded on a Bruker Tensor 27 spectrometer, and samples were prepared as KBr plates. ¹H NMR and ¹³C NMR spectra were obtained using a Bruker Avance 400 or 300 MHz spectrometer in CDCl₃, DMSO-*d*₆, Acetone-*d*₆ or TFA-d solution with TMS as an internal standard. HR-MS (ESI) spectra were carried out with a Thermo Exactive spectrometer, and X-rays were measured at 296 K on a Bruker SMART APEX2 CCD area detector diffractometer. Most reaction yields were not optimized.

2.1.1. General procedure for the preparation of compounds **3a-3f**, **3j-3q** (Scheme 1)

To compound **2** (5.0 mmol, 0.95 g) dissolved in dry DMF (30 mL) aniline (6.0 mmol, 1 mL) was added and the mixture was stirred at iced water. Once **2** was completely dissolved, DIEA (15.0 mmol, 1.94 g) and T_3P (propyl phosphoric acid anhydride, 5.5 mmol, 1.75 g) were added gradually with stirring and cooling for 40 min. After mixed with the appropriate water, the solution was extracted with ethyl acetate, and then washed with water for three times, and the product was purified by column chromatography to give a white solid.

2.1.2. General procedure for the preparation of compounds **4a-4g** (Scheme 1)

To compound **2** (5.0 mmol, 0.95 g) dissolved in anhydrous CH_2Cl_2 (30 mL) (2-chlorophenyl) hydrazine hydrochloride (6.0 mmol, 1.08 g) was added and the mixture was stirred at iced water. Once **2** was completely dissolved, DMAP (4-dimethylaminopyridine, 77.2 mmol, 1.53 g) and EDCI (carbodiimide hydrochloride, 6.0 mmol, 1.15 g) were added gradually with stirring and cooling for 4 h. The reaction mixture was extracted with saturated brine for three times. After took off the solvent, the resulting precipitate was purified by column chromatography to give an orange solid.

2.1.3. General synthetic procedure for the preparation of compounds **3g-3i** (Scheme 1)

To a solution of **2** (5.0 mmol, 0.95 g) in anhydrous CH_2Cl_2 (10 mL) in a 100 mL two-neck flask, was followed by a few drops of DMF. After stirring for 10 min, 1 mL of oxalyl chloride in anhydrous CH_2Cl_2 (10 mL) was added dropwise during 30 min, and the mixture was

stirred for 1 h at room temperature. The reaction mixture was took off the solvent, and then dissolved in dry DMF (30 mL) 4-chloroaniline (6 mmol, 1 mL) was added and the mixture was stirred at iced water, extracted with water for three times until the ether layer was colorless. And then the organic phase layer was took off the solvent, the resulting precipitate was filtered off and recrystallized from ethanol to give a green solid.

2.1.3.1. Coumarin-3-carboxylic acid (2). A white solid; mp: 193.2–193.5 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 12.13 (s, 1H), 8.98 (s, 1H), 8.06 (dd, J = 8.1, 1.5 Hz, 1H), 7.89 (ddd, J = 9.0, 7.5, 1.6 Hz, 1H), 7.69–7.40 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.45, 157.15, 154.93, 148.85, 134.74, 130.65, 125.27, 118.79, 118.45, 116.59; IR (KBr) ν (cm⁻¹) 3057, 1670, 1206; HR-MS (ESI): m/z calcd for C₁₀H₆O₄ ([M + H]⁺) 191.0344, found 191.0336.

2.1.3.2. 2-Oxo-2H-chromene-3-carboxylic acid phenylamide (**3a**). A green solid; mp: 255.4–256.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.87 (s, 1H), 9.05 (s, 1H), 7.74 (dd, J = 19.1, 7.7 Hz, 4H), 7.60–7.34 (m, 4H), 7.19 (t, J = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.84, 159.30, 154.49, 148.97, 137.67, 134.38, 129.96, 129.08, 125.50, 124.83, 120.57, 118.72, 118.65, 116.74; IR (KBr) ν (cm⁻¹) 3221, 3030, 1705, 1203; HR-MS (ESI): m/z calcd for C₁₆H₁₁NO₃ ([M + H]⁺) 266.0817, found 266.0808.

2.1.3.3. 2-Oxo-2H-chromene-3-carboxylic acid o-tolylamide (**3b**). A green solid; mp: 232.5–233.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.82 (s, 1H), 9.07 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.81–7.69 (m, 2H), 7.51–7.41 (m, 2H), 7.30 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.00, 159.30, 154.48, 148.97, 136.14, 134.34, 130.50, 129.96, 128.59, 126.75, 125.49, 124.97, 121.90, 118.86, 118.75, 116.74, 18.12; IR (KBr) ν (cm⁻¹) 3276, 3051, 2920, 1699, 1201; HR-MS (ESI): m/z calcd for C₁₇H₁₃NO₃ ([M + H]⁺) 280.0974, found 280.0968.

2.1.3.4. 2-Oxo-2H-chromene-3-carboxylic acid p-tolylamide (**3c**). A green solid; mp: 234.7–235.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 9.05 (s, 1H), 7.81–7.69 (m, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.53–7.36 (m, 2H), 7.21 (d, J = 8.3 Hz, 2H), 2.37 (s, 3H);¹³C NMR (100 MHz, TFA-d) δ 164.47, 154.16, 152.40, 138.20, 136.07, 131.92, 130.34, 129.61, 126.44, 122.79, 118.39, 116.42, 19.09; IR (KBr) ν

Fig. 5. X-ray single crystal structures of compounds 3d, 3t and 4f.

Table 1	
Antifungal activity of target compounds (inhibitory rate, %).	

Species ^a		BOT	ALT	GIB	RHI	CUC	ALS
Compd	Rate (µg/mL)	100	100	100	100	100	100
2		76 ^b	15	10	22	13	10 ^c
3a		51	10	10	37	10	10
3b		58	10	10	30	10	10
3c		51	10	10	20	10	10
3d		51	10	10	14	10	11
3e		13	10	10	10	10	10
3f		34	10	10	17	11	10
3g		12	10	10	10	10	10
3h		10	10	10	10	10	10
3i		10	10	10	10	10	10
3j		59	10	10	32	10	10
3k		47	10	10	22	10	10
31		41	10	10	39	30	22
3m		59	10	10	52	10	10
3n		29	10	10	10	10	10
30		32	15	10	10	10	10
3р		11	10	10	31	10	10
3q		64	10	12	41	13	10
3r		75	10	20	34	11	13
3s		64	10	10	20	10	25
3t		54	10	10	30	10	10
3u		37	10	10	20	10	10
3v		47	10	10	17	10	10
4a		100 ^d	15	10	85	90	10
4b		64	37	21	88	10	10
4c		68	53	28	72	74	30
4d		92	82	10	100	100	14
4e		82	75	10	100	10	30
4f		82	100	28	72	74	62
4g		57	29	28	52	10	79
Osthole		66	30	67	70	92	51
Boscalid		100	73	23	92	10	90

^a BOT, Botrytis cinerea; ALT, Alternaria solani; GIB, Gibberella zeae; RHI, Rhizoctorzia solani; CUC, Cucumber anthrax; ALS, Alternaria leaf spot.

^b All the data was the average value of three replications.

 $^{\rm c}~$ 10 indicate the data 10% and below 10% inhibitory.

^d The bold means data equal to or above 80% inhibitory.

 (cm^{-1}) 3271, 2918, 1701, 1200; HR-MS (ESI): *m*/*z* calcd for C₁₇H₁₃NO₃ ([M + H]⁺) 280.0974, found 280.0966.

2.1.3.5. 2-Oxo-2H-chromene-3-carboxylic acid (2,6-dimethyl-phenyl)amide (**3d**). A white solid; mp: 222.6–223.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 9.06 (s, 1H), 7.79–7.69 (m, 2H), 7.45 (ddd, J = 11.7, 8.5, 4.7 Hz, 2H), 7.20–7.12 (m, 3H), 2.32 (s, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 160.89, 160.38, 154.42, 147.77, 135.36, 134.86, 134.61, 130.70, 128.27, 127.26, 125.68, 120.44, 118.95, 116.69, 18.71; IR (KBr) ν (cm⁻¹) 3306, 3098, 2930, 1701, 1155; HR-MS (ESI): m/z calcd for C₁₈H₁₅NO₃ ([M + H]⁺) 294.1130, found 294.1123.

2.1.3.6. 2-Oxo-2H-chromene-3-carboxylic acid (3-methoxy-phenyl)-amide (**3e**). A yellow solid; mp: 186.6–187.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.66 (s, 1H), 8.93 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.85–7.74 (m,

 Table 2

 Structures and yields of coumarin-3-carboxamides.

$ \begin{array}{c} $					
Compound	R_1	R ₂	Yield (%)		
3a	Н	Ph	48		
3b	Н	o-Methylphenyl	56		
3c	Н	<i>p</i> -Methylphenyl	52		
3d	Н	2,6-Dimethylphenyl	58		
3e	Н	<i>m</i> -Methoxyphenyl	56		
3f	Н	<i>p</i> -Methoxyphenyl	58		
3g	Н	o-Chlorophenyl	38		
3h	Н	<i>m</i> -Chlorophenyl	35		
3i	Н	p-Chlorophenyl	42		
3ј	Н	2-Biphenyl	64		
3k	Н	1-Naphthyl	68		
31	Н	Bn	60		
3m	Н	4-Methylbenzyl	61		
3n	Н	4-Methoxybenzyl	63		
30	Н	2,4-Dimethoxybenzyl	59		
3p	Н	4-Fluorobenzyl	47		
3q	Bn	Bn	71		
3r	Н	Me	54		
3s	Et	Et	58		
3t	Н	Cyclohexyl	75		
3u	Н	Adamantyl	55		
3v	Н	1-Methyl-1 <i>H</i> -pyrazol-3-yl	42		

Table	3

Structures and yields of coumarin-3-carboxhydrazides.

ompound	R ₄

Compound	R ₄	Y1eid (%)
4a	o-Chlorophenyl	68
4b	<i>m</i> -Chlorophenyl	54
4c	p-Chlorophenyl	48
4d	o-Fluorophenyl	52
4e	<i>m</i> -Fluorophenyl	43
4f	<i>p</i> -Fluorophenyl	72
4g	<i>p</i> -Methoxyphenyl	66

1H), 7.57 (d, J = 8.3 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.43 (s, 1H), 7.33–7.22 (m, 2H), 6.74 (dd, J = 7.9, 1.1 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, TFA-d) δ 164.45, 162.29, 161.86, 161.78, 161.49, 161.42, 161.35, 160.98, 158.41, 154.15, 152.59, 136.27, 136.10, 130.33, 130.19, 130.09, 126.42, 116.37, 108.93, 55.27; IR (KBr) ν (cm⁻¹) 3273, 3046, 2962, 1699, 1234; HR-MS (ESI): m/z calcd for C₁₇H₁₃NO₄ ([M + Na]⁺) 318.0743, found 318.0733.

2.1.3.7. 2-Oxo-2H-chromene-3-carboxylic acid (4-methoxy-phenyl)-amide (3f). A yellow solid; mp: 221.4–221.9 °C; ¹H NMR (400 MHz, CDCl₃) δ

X. Yu et al.

Table 4

EC₅₀ determination of compounds 4a-4g.

Pathogen	Compound	Toxic regression	R	EC ₅₀ (μg/mL)	95% Confidence interval
Botrytis cinerea	4a	Y = 4.7001 + 1.5332x	0.9998	1.5690	1.4508-1.6968
	4b	Y = 3.5532 + 2.0429x	0.9948	5.1074	4.0956-6.3691
	4c	Y = 3.7370 + 1.3387x	0.9945	8.7792	3.7370-6.9622
	4d	Y = 4.0105 + 1.9952x	0.9938	3.1327	2.2587-4.3450
	4e	Y = 4.8562 + 0.6595x	0.9993	1.6523	1.4167-1.9271
	4f	Y = 4.4011 + 1.2183x	0.9961	3.1014	2.8115-3.4212
	4g	Y = 3.3664 + 1.7554x	0.9986	8.5235	7.9700-9.1154
	Osthole	Y = 3.7194 + 1.1772x	0.9959	12.2400	10.3776-14.4366
	Boscalid	Y = 4.0833 + 1.7989x	0.9814	0.5096	0.3924-0.6269
Alternaria solani	4d	Y = 4.6597 + 0.7402x	0.9955	2.8822	2.2341-3.7182
	4e	Y = 4.8753 + 0.4022x	0.9978	2.0424	1.7411-2.3959
	4f	Y = 2.4088 + 3.2917x	1.0000	6.1265	6.0764-6.1771
	Boscalid	Y = 3.5223 + 1.0390x	0.9996	25.4399	25.5210-27.3918
Rhizoctorzia solani	4a	Y = 4.7709 + 0.8944x	0.9996	1.8034	1.6129-2.0164
	4b	Y = 4.7849 + 0.4068x	0.9997	3.3787	3.1774-3.5927
	4c	Y = 4.8026 + 0.3899x	0.9998	3.2079	3.1945-3.2214
	4d	Y = 4.1872 + 2.0445x	0.9962	2.4977	2.07533.0061
	4e	Y = 4.3434 + 1.8676x	0.9923	2.2468	1.6879-2.9908
	4f	Y = 4.7826 + 0.6765x	0.9960	2.0961	1.5970-2.7513
	Boscalid	Y = 4.0772 + 1.9480x	0.9950	2.9767	2.4754-3.5796
Cucumber anthrax	4a	Y = 3.9617 + 1.1657x	0.9908	7.7756	5.6352-10.7289
	4d	Y = 4.3293 + 1.7802x	0.9955	2.3810	2.1493-2.6376
	4e	Y = 4.1668 + 1.3828x	0.9727	3.9468	2.8761-5.4656
	4f	Y = 2.2553 + 2.3373x	0.9909	1.1743	1.0858-1.2627
	Boscalid	Y = -1.0626 + 1.7594x	0.9887	172.9260	95.0799-314.5081
Alternaria leaf spot	4f	Y = -4.1368 + 1.4440x	0.9974	3.9606	3.6468-4.3014
	4g	Y = -3.4533 + 1.4168x	0.9949	12.3503	10.3579-14.7260
	Boscalid	Y = 5.5725 + 1.2370x	0.9966	0.3445	0.3013-0.3939

All the data was the average value of three replications.

Fig. 6. Structures of the most active synthetic compounds.

10.75 (s, 1H), 9.03 (s, 1H), 7.79–7.70 (m, 2H), 7.68 (d, J = 9.0 Hz, 2H), 7.45 (dd, J = 18.2, 8.0 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.93, 161.75, 160.76, 154.36, 148.04, 135.70, 135.67, 134.56, 130.73, 129.98, 129.89, 125.59, 119.51, 118.93, 116.60, 115.65, 115.44, 42.51; IR (KBr) ν (cm⁻¹) 3277, 3054, 2840, 1698, 1237; HR-MS (ESI): m/z calcd for C₁₇H₁₃NO₄ ([M + H]⁺) 296.0923, found 296.0915.

2.1.3.8. 2-Oxo-2H-chromene-3-carboxylic acid (2-chloro-phenyl)-amide (**3g**). A white solid; mp: 234.9–235.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 9.05 (s, 1H), 8.65–8.53 (m, 1H), 7.75 (dd, J = 17.4, 7.7 Hz, 2H), 7.51–7.41 (m, 3H), 7.35 (t, J = 7.8 Hz, 1H), 7.16–7.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.55, 159.63, 154.61, 149.21, 149.17, 135.03, 134.53, 134.50, 130.00, 129.37, 127.52, 125.48, 125.46, 125.22, 124.22, 122.32, 118.64, 118.59, 116.82; IR (KBr) ν

 (cm^{-1}) 3190, 3052, 1706, 643; HR-MS (ESI): m/z calcd for $C_{16}H_{10}ClNO_3$ ($[M + H]^+$) 300.0427, found 300.0417.

2.1.3.9. 2-Oxo-2H-chromene-3-carboxylic acid (3-chloro-phenyl)-amide (**3h**). A green solid; mp: 237.0–238.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.92 (s, 1H), 9.04 (s, 1H), 7.93 (s, 1H), 7.76 (dd, J = 17.0, 7.7 Hz, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.51–7.42 (m, 2H), 7.31 (dd, J = 15.8, 7.7 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, TFA-d) δ 164.60, 154.18, 152.74, 136.17, 135.97, 135.06, 130.33, 129.93, 127.00, 126.47, 122.53, 120.41, 116.4; IR (KBr) ν (cm⁻¹) 3182, 3056, 1693, 1201, 645; HR-MS (ESI): m/z calcd for C₁₆H₁₀ClNO₃ ([M + H]⁺) 300.0427, found 300.0416.

2.1.3.10. 2-Oxo-2H-chromene-3-carboxylic acid (4-chloro-phenyl)-amide (**3i**). A green solid; mp: 261.6–262.4 °C; ¹H NMR (400 MHz, CDCl₃) δ

10.90 (s, 1H), 9.04 (s, 1H), 7.75 (dd, J = 17.8, 8.2 Hz, 4H), 7.46 (dd, J = 16.1, 8.2 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, TFA-d) δ 164.60, 154.17, 152.66, 136.16, 133.38, 132.94, 130.33, 129.12, 126.48, 123.62, 118.35, 116.40; IR (KBr) ν (cm⁻¹) 3191, 3052, 1694, 639; HR-MS (ESI): m/z calcd for C₁₆H₁₀ClNO₃ ([M + H]⁺) 300.0427, found 300.0416.

2.1.3.11. 2-Oxo-2H-chromene-3-carboxylic acid biphenyl-2-ylamide (**3***j*). A yellow solid; mp: 200.9–201.6 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 10.62 (s, 1H), 8.99 (s, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.04–7.97 (m, 1H), 7.78–7.70 (m, 1H), 7.52–7.37 (m, 8H), 7.33–7.20 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 160.93, 160.32, 160.12, 154.36, 147.97, 139.54, 134.78, 130.78, 130.31, 125.76, 120.30, 118.96, 116.72, 112.62, 110.27, 106.10, 55.57; IR (KBr) ν (cm⁻¹) 3225, 3052, 1702, 1203; HR-MS (ESI): *m*/*z* calcd for C₂₂H₁₅NO₃ ([M + H]⁺) 342.1130, found 342.1122.

2.1.3.12. 2-Oxo-2H-chromene-3-carboxylic acid naphthalen-1-ylamide (**3k**). A yellow solid; mp: 228.6–229.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.52 (s, 1H), 9.13 (s, 1H), 8.45 (d, J = 7.0 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.82–7.72 (m, 3H), 7.64 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.60–7.44 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ 148.66, 130.96, 129.17, 127.14, 126.76, 126.32, 126.23, 125.86, 119.13; IR (KBr) ν (cm⁻¹) 3248, 3055, 1703, 1207; HR-MS (ESI): m/z calcd for C₂₀H₁₃NO₃ ([M + H]⁺) 316.0974, found 316.0966.

2.1.3.13. 2-Oxo-2H-chromene-3-carboxylic acid benzylamide (**3**). A yellow solid; mp: 139.4–140.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.98 (s, 1H), 7.71 (dd, J = 16.5, 7.7 Hz, 2H), 7.47–7.34 (m, 6H), 4.66 (dd, J = 24.9, 6.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.55, 161.43, 154.45, 148.61, 137.89, 134.12, 129.84, 128.73, 127.73, 127.48, 125.33, 118.64, 118.41, 116.66, 43.88; IR (KBr) ν (cm⁻¹) 3329, 3055, 1700, 1244; HR-MS (ESI): m/z calcd for C₁₇H₁₃NO₃ ([M + H]⁺) 280.0974, found 280.0965.

2.1.3.14. 2-Oxo-2H-chromene-3-carboxylic acid 4-methyl-benzylamide (**3m**). A white solid; mp: 136.8–137.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 9.05 (t, J = 5.8 Hz, 1H), 8.87 (s, 1H), 8.03–7.92 (m, 1H), 7.80–7.66 (m, 1H), 7.55–7.36 (m, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 4.48 (d, J = 5.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 161.62, 154.36, 148.00, 136.56, 136.30, 134.57, 130.74, 129.43, 127.91, 125.61, 119.56, 118.97, 116.62, 42.98, 21.16; IR (KBr) ν (cm⁻¹) 3318, 3053, 2920, 1704, 1244; HR-MS (ESI): m/z calcd for C₁₈H₁₅NO₃ ([M + Na]⁺) 316.0950, found 316.0941.

2.1.3.15. 2-Oxo-2H-chromene-3-carboxylic acid 4-methoxy-benzylamide (**3n**). A white solid; mp: 145.1–145.7 °C; ¹H NMR (400 MHz, DMSOd₆) δ 9.04 (t, J = 5.4 Hz, 1H), 8.88 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 8.2 Hz, 2H), 4.47 (d, J = 5.8 Hz, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.53, 160.84, 158.83, 154.34, 147.99, 134.55, 131.25, 130.72, 129.36, 125.60, 119.52, 118.95, 116.60, 114.27, 55.53, 42.71; IR (KBr) ν (cm⁻¹) 3311, 3060, 2838, 1721, 1248; HR-MS (ESI): m/z calcd for C₁₈H₁₅NO₄ ([M + Na]⁺) 332.0899, found 332.0893.

2.1.3.16. 2-Oxo-2H-chromene-3-carboxylic acid 2,4-dimethoxybenzylamide (**3o**). A white solid; mp: 142.9–143.7 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.03 (s, 1H), 8.89 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 6.60 (s, 1H), 6.49 (d, J = 8.2 Hz, 1H), 4.43 (d, J = 5.6 Hz, 2H), 3.84 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.27, 161.05, 160.56, 158.72, 154.39, 148.14, 133.85, 130.28, 129.74, 125.18, 118.81, 118.68, 118.56, 116.57, 103.86, 98.61, 55.39, 55.27, 39.38; IR (KBr) ν (cm⁻¹) 3333, 3054, 2834, 1703, 1160; HR-MS (ESI): m/z calcd for $C_{19}H_{17}NO_5$ ([M + Na] $^+$) 362.1005, found 362.0993.

2.1.3.17. 2-Oxo-2H-chromene-3-carboxylic acid 4-fluoro-benzylamide (**3***p*). A white solid; mp: 175.6–176.4 °C; ¹H NMR (400 MHz, DMSOd₆) δ 9.15 (s, 1H), 8.88 (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.48–7.36 (m, 3H), 7.17 (t, J = 8.6 Hz, 2H), 4.53 (d, J = 5.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.51 (d, J = 13.1 Hz), 154.45, 148.69, 134.20, 133.76 (d, J = 3.2 Hz), 129.85, 129.44 (d, J = 8.1 Hz), 125.36, 118.60, 118.30, 116.66, 115.65, 115.44, 43.14; IR(KBr) ν (cm⁻¹) 3328, 3051, 2944, 1700, 1157; HR-MS (ESI): m/z calcd for C₁₇H₁₂FNO₃ ([M + H]⁺) 298.0879, found 298.0871.

2.1.3.18. 2-Oxo-2H-chromene-3-carboxylic acid dibenzylamide (**3q**). A white solid; mp: 143.6–144.2 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 8.29 (s, 1H), 7.73 (dd, J = 7.8, 1.4 Hz, 1H), 7.65 (ddd, J = 8.8, 7.4, 1.6 Hz, 1H), 7.34 (dddd, J = 11.7, 11.0, 7.7, 5.6 Hz, 10H), 7.22–7.16 (m, 2H), 4.51 (d, J = 20.0 Hz, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ 142.24, 136.90, 136.89, 133.12, 129.42, 129.07, 129.01, 128.02, 127.89, 127.05, 125.47, 125.29, 118.84, 116.79, 51.60, 47.10; IR (KBr) ν (cm⁻¹) 3031, 2923, 1709, 1226; HR-MS (ESI): m/z calcd for C₂₄H₁₉NO₃ ([M + H]⁺) 370.1443, found 370.1436.

2.1.3.19. 2-Oxo-2H-chromene-3-carboxylic acid methylamide (**3r**). A white solid; mp: 168.7–169.8 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 8.85 (s, 1H), 8.62 (d, J = 4.3 Hz, 1H), 7.98 (dd, J = 7.7, 1.6 Hz, 1H), 7.78–7.67 (m, 1H), 7.44 (ddd, J = 11.2, 8.4, 4.7 Hz, 2H), 2.84 (d, J = 4.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.04, 160.72, 154.31, 147.71, 134.45, 130.70, 125.56, 119.45, 118.93, 116.57, 26.79; IR (KBr) ν (cm⁻¹) 3352, 3057, 2943, 1692, 1242; HR-MS (ESI): m/z calcd for C₁₁H₉NO₃ ([M + H]⁺) 204.0661, found 204.0654.

2.1.3.20. 2-Oxo-2H-chromene-3-carboxylic acid diethylamide (**3s**). A white solid; mp: 69.6–71.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 5.1 Hz, 1H), 7.60–7.55 (m, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.37–7.27 (m, 2H), 3.55 (q, J = 7.1 Hz, 2H), 3.31 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.15, 158.28, 153.80, 141.28, 132.96, 129.37, 125.96, 125.32, 118.84, 116.76, 42.99, 39.08, 14.48, 13.17; IR (KBr) ν (cm⁻¹) 3056, 2943, 1711, 1210; HR-MS (ESI): m/z calcd for C₁₄H₁₅NO₃ ([M + H]⁺) 246.1130, found 246.1121.

2.1.3.21. 2-Oxo-2H-chromene-3-carboxylic acid cyclohexylamide (**3**t). A white solid; mp: 176.2–177.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.87 (s, 1H), 8.62 (d, J = 7.7 Hz, 1H), 8.00 (dd, J = 7.8, 1.2 Hz, 1H), 7.84–7.66 (m, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 3.82 (d, J = 4.3 Hz, 1H), 1.86 (d, J = 9.5 Hz, 2H), 1.69 (dd, J = 9.2, 4.0 Hz, 2H), 1.57 (d, J = 11.9 Hz, 1H), 1.50–0.84 (m, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.14, 160.52, 154.29, 147.81, 134.50, 130.71, 125.61, 119.51, 118.97, 116.60, 48.22, 32.54, 25.56, 24.67; IR (KBr) ν (cm⁻¹) 3320, 3051, 2851, 1703, 1248; HR-MS (ESI): *m*/z calcd for C₁₆H₁₇NO₃ ([M + H]⁺) 272.1287, found 272.1279.

2.1.3.22. 2-Oxo-2H-chromene-3-carboxylic acid adamantan-1-ylamide (**3u**). A white solid; mp: 214.5–215.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.69 (s, 1H), 7.67 (dd, J = 14.7, 7.8 Hz, 2H), 7.40 (dd, J = 17.0, 8.2 Hz, 2H), 2.16 (s, 9H), 1.80–1.69 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.65, 159.92, 154.37, 147.68, 133.73, 129.69, 125.17, 119.63, 118.79, 116.54, 52.32, 41.41, 36.41, 29.45; IR (KBr) ν (cm⁻¹) 3353, 3055, 2900, 1694, 1242; HR-MS (ESI): m/z calcd for C₂₀H₂₁NO₃ ([M + Na]⁺) 346.1420, found 346.1409.

2.1.3.23. 2-Oxo-2H-chromene-3-carboxylic acid (1-methyl-1H-pyrazol-3-yl)-amide (3ν). A green solid; mp: 248.0–249.1 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 10.89 (s, 1H), 8.96 (s, 1H), 8.02 (dd, J = 7.8, 1.5 Hz, 1H),

7.78 (ddd, J = 8.8, 7.4, 1.6 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.57–7.42 (m, 2H), 6.60 (d, J = 2.2 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 161.44, 158.84, 154.38, 148.35, 146.16, 134.89, 132.02, 130.88, 125.79, 119.18, 119.00, 116.72, 97.19; IR (KBr) ν (cm⁻¹) 3262, 3132, 1693, 1693, 1123; HR-MS (ESI): m/z calcd for C₁₄H₁₁O₃N₃ ([M + Na]⁺) 292.0699, found 292.0688.

2.1.3.24. 2-Oxo-2H-chromene-3-carboxylic acid N'-(2-chloro-phenyl)hydrazide (**4a**). A yellow solid; mp: 198.2–199.0 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.24 (s, 1H), 8.81 (s, 1H), 8.01 (dd, J = 7.7, 1.2 Hz, 1H), 7.79 (dd, J = 10.6, 3.4 Hz, 2H), 7.55 (d, J = 8.3 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.33 (dd, J = 7.9, 1.1 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.98–6.91 (m, 1H), 6.84–6.76 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.31, 160.09, 154.30, 153.40, 147.35, 142.97, 134.51, 130.58, 125.60, 120.23, 118.79, 116.66, 114.73, 114.41, 55.73, 31.15; IR (KBr) ν (cm⁻¹) 3348, 3312, 3045, 1718, 1177; HR-MS (ESI): m/z calcd for C₁₆H₁₁ClN₂O₃ ([M + Na]⁺) 337.0356, found 337.0345.

2.1.3.25. 2-Oxo-2H-chromene-3-carboxylic acid N'-(3-chloro-phenyl)-hydrazide (**4b**). An orange solid; mp: 230.2–231.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.95 (s, 1H), 7.75 (ddd, J = 7.4, 4.2, 1.5 Hz, 2H), 7.53–7.40 (m, 2H), 7.19 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 7.0, 5.2 Hz, 2H), 6.86–6.80 (m, 1H), 6.44 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.59, 159.93, 154.36, 150.88, 147.47, 134.59, 134.03, 130.89, 130.62, 125.62, 120.27, 118.78, 118.75, 116.69, 112.11, 111.52; IR (KBr) ν (cm⁻¹) 3398, 3230, 3067, 1726, 1160; HR-MS (ESI): m/z calcd for C₁₆H₁₁ClN₂O₃ ([M + H]⁺) 315.0536, found 315.0529.

2.1.3.26. 2-Oxo-2H-chromene-3-carboxylic acid N'-(4-chloro-phenyl)-hydrazide (4c). A yellow solid; mp: 207.4–208.3 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.14 (d, J = 1.7 Hz, 1H), 8.79 (s, 1H), 8.26 (d, J = 1.9 Hz, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.76 (q, J = 7.7 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 8.3 Hz, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 162.53, 159.93, 154.35, 148.23, 147.46, 134.59, 130.61, 129.01, 125.63, 122.65, 120.24, 118.76, 116.70, 114.36; IR (KBr) ν (cm⁻¹) 3306, 3226, 3041, 1724, 1169, 642; HR-MS (ESI): m/z calcd for C₁₆H₁₁ClN₂O₃ ([M + Na]⁺) 337.0356, found 337.0346.

2.1.3.27. 2-Oxo-2H-chromene-3-carboxylic acid N'-(2-fluoro-phenyl)hydrazide (**4d**). An orange solid; mp: 208.8–209.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.95 (s, 1H), 7.78–7.71 (m, 2H), 7.45 (ddd, J = 10.3, 8.3, 4.9 Hz, 2H), 7.04 (qdd, J = 15.4, 7.9, 1.3 Hz, 3H), 6.89 (dddd, J = 9.5, 7.3, 4.9, 2.0 Hz, 1H), 6.58 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.54, 160.00, 154.37, 147.62, 136.79 (d, J = 10.6 Hz), 134.64, 130.66, 125.65, 125.02 (d, J = 3.1 Hz), 120.13, 119.62 (d, J = 6.8 Hz), 118.76, 116.71, 115.40 (d, J = 17.7 Hz), 114.42; IR (KBr) ν (cm⁻¹) 3333, 3043, 1710, 1191; HR-MS (ESI): m/zcalcd for C₁₆H₁₁FN₂O₃ ([M + H]⁺) 299.0832, found 299.0825.

2.1.3.28. 2-Oxo-2H-chromene-3-carboxylic acid N'-(3-fluoro-phenyl)-hydrazide (4e). An orange solid; mp: 218.1–219.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.15 (d, J = 2.6 Hz, 1H), 8.79 (s, 1H), 8.38 (d, J = 2.4 Hz, 1H), 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.82–7.71 (m, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.49–7.43 (m, 1H), 7.19 (dd, J = 14.9, 8.1 Hz, 1H), 6.66 (dd, J = 8.1, 1.5 Hz, 1H), 6.60 (dt, J = 11.7, 2.2 Hz, 1H), 6.52 (td, J = 8.3, 2.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.90, 162.51, 159.92, 154.34, 151.49 (d, J = 10.4 Hz), 147.35, 134.55, 130.84 (d, J = 9.9 Hz), 130.59, 125.62, 120.38, 118.77, 116.70, 108.89, 105.35 (d, J = 21.3 Hz), 99.38 (d, J = 25.8 Hz); IR (KBr) ν (cm⁻¹) 3288, 3051, 1703, 1176; HR-MS (ESI): m/z calcd for C₁₆H₁₁FN₂O₃ ([M + H]⁺) 299.0832, found 299.0822.

2.1.3.29. 2-Oxo-2H-chromene-3-carboxylic acid N'-(3-fluoro-phenyl)-

hydrazide (4*f*). An orange solid; mp: 196.1–196.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.15 (d, J = 2.6 Hz, 1H), 8.79 (s, 1H), 8.38 (d, J = 2.4 Hz, 1H), 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.82–7.71 (m, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.49–7.43 (m, 1H), 7.19 (dd, J = 14.9, 8.1 Hz, 1H), 6.66 (dd, J = 8.1, 1.5 Hz, 1H), 6.60 (dt, J = 11.7, 2.2 Hz, 1H), 6.52 (td, J = 8.3, 2.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.52, 159.97, 157.68, 155.35, 154.33, 147.36, 145.75, 134.55, 130.59, 125.63, 120.32, 118.78, 116.69, 115.80, 115.58, 114.11 (d, J = 7.6 Hz); IR (KBr) ν (cm⁻¹) 3353, 3320, 3052, 1704, 1203; HR-MS (ESI): *m*/z calcd for C₁₆H₁₁ClN2O₃ ([M + H]⁺) 299.0832, found 299.0820.

2.1.3.30. 2-Oxo-2H-chromene-3-carboxylic acid N'-(4-methoxy-phenyl)-hydrazide (**4g**). An orange solid; mp: 173.2–174.5 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.07 (d, J = 3.6 Hz, 1H), 8.78 (s, 1H), 7.99 (dd, J = 7.8, 1.2 Hz, 1H), 7.80–7.74 (m, 2H), 7.53 (d, J = 8.3 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.80 (s, 4H), 3.68 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.43, 159.97, 154.38, 147.74, 144.65, 134.69, 130.69, 129.69, 128.25, 125.66, 120.37, 120.02, 118.75, 117.90, 116.71, 113.77, 31.17; IR (KBr) ν (cm⁻¹) 3331, 3285, 3057, 2839, 1709, 1030; HR-MS (ESI): m/z calcd for C₁₇H₁₄N₂O₄ ([M + Na]⁺) 333.0852, found 333.0840.

2.2. X-ray diffraction analysis

Among the synthesized compounds, the crystal structures of compounds **3d**, **3t** and **4f** were determined by X-ray diffraction analysis. The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication number: CCDC 1511231 (compound **3d**), CCDC 1511235 (compound **3t**), CCDC 1511236 (compound **4f**), copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB12 1EZ, UK (Fax + 441,223,336,033 or E-mail: deposit@ccdc.cam. **ac.uk**). The structures are shown in Fig. 5.

2.3. Biological assays

The antifungal activities of the synthesized compounds were tested in vitro against six phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Gibberella zeae, Rhizoctorzia solani, Cucumber anthrax, Alternaria leaf spot) at the concentration of 100 µg/mL using mycelia growth inhibitory rate methods on PDA, with Osthole and Boscalid used as the positive control. The six phytopathogenic fungi were provided by the Laboratory of Plant Disease Control, Nanjing Agricultural University, and they are representative fungal strains in the outbreaks region in China and USA, the detailed procedure of experimental methods for the antifungal activity refers to the paper from Department of Plant Pathology, Nanjing Agriculture University [27]. The compounds were dissolved in DMF to generate a stock solution. The compounds possessing good activity (inhibitory rate>70% at $100 \,\mu\text{g/mL}$) were further evaluated using different concentration by diluting the above solution. DMF served as the negative control. The antifungal results of all the compounds against Botrytis cinerea, Alternaria solani, Gibberella zeae, Rhizoctorzia solani, Cucumber anthrax and Alternaria leaf spot are listed in Table 1.

3. Results and discussion

3.1. Synthetic chemistry

Due to the problems of time consuming, not environment friendly, and complex post-processing, most conventional carboxylic acid and amine acylation reactions are not satisfactory. In recent years, however, there are plenty of condensation reagents becoming more and more popular in modern combinatorial and medicinal chemistry, such as T_3P and EDCI. T_3P has the good selectivity, mild conditions, simple postprocessing and pollution-free which is our first choice to generate compounds **3a-3f**, **3j-3v**. Nonetheless, to increase yield, EDCI is used to generate compounds **4a-4g**. Furthermore, compared with the modern condensation reagents, conventional acylation reaction reactivity is higher. It is beneficial for synthesis of carboxylic acid and aniline bearing electron-withdrawing groups (compounds **3g-3i**).

With the efficient method, we synthesized all target compounds listed in Tables 2–3, and gave satisfactory analytical and spectroscopic data (¹H NMR, ¹³C NMR, HRMS, IR), which were full accordance with their depicted structures, and the structures of three typical compounds **3d**, **3t** and **4f** were further confirmed by X-ray crystallographic diffraction analysis (Fig. 5).

3.2. Antifungal activity and the structure-activity relationships (SAR)

The results of the biological testing against six phytopathogenic fungi are given in Table 1. For the purposes of the structure-activity relationship analysis, the antifungal activity of all target compounds were compared with the positive controls, including Osthole, and Boscalid, a broad spectrum fungicide used for protecting plants and food crops from fungal diseases.

In general, data presented in Table 1 indicated that the synthesized compounds exhibit certain activities at $100 \,\mu$ g/mL, while most of the target compounds showed rather poor activity against all fungi.

As seven compounds **4a-4 g** showed relatively effective control against *Botrytis cinerea*, *Colletotrichum capsica*, *Rhizoctorzia solani*, *Cucumber anthrax and Alternaria* leaf spot, therefore, we further tested the $\underline{\text{EC}}_{50}$ values of these compounds together with Boscalid. As shown in Table 4, it was noticed that the EC_{50} values of compounds **4a** and **4e** were as low as 1.57 µg/mL and 1.65 µg/mL, respectively against *Botrytis cinerea*, which proves they are equivalent to Boscalid (0.51 µg/mL). Meanwhile, compound **4a** (1.80 µg/mL) exhibited much more effective activity than the control Boscalid (2.98 µg/mL) against *Rhizoctorzia solani*.

Although it is difficult to extract clear structure-activity relationships from the presented biological data, the conclusion still can be drawn is that the spectrum of antifungal activity is improved by replacing the amide bond by the hydrazide bond, or even displayed a broader spectrum of activity. Firstly, these coumarin amide compounds were noticeably more active against *Botrytis cinerea* and *Rhizoctorzia solani*, but they usually lacked potency against *Alternaria solani*, *Gibberella zeae*, *Cucumber anthrax* and *Alternaria* leaf spot. Secondly, it is noticeable that almost all the electron-withdrawing groups substituted on the phenylhydrazine of compounds **4a-4f** are inactive, while electron-donating group substituted compound **4g** is active against *Alternaria* leaf spot. Furthermore, the introduction of meta-F/Cl substituted phenylhydrazine to the coumarin core afforded active drugs such as compounds **4e** and **4e** against *Cucumber anthrax*.

Totally, compounds **4a** and **4e** showed effective control to *Botrytis cinerea*, and compounds **4a-4g** displayed a broader spectrum of activity in vitro (Fig. 6).

4. Conclusions

In conclusion, a series of coumarin-3-carboxamides/hydrazides were designed, synthesized and evaluated for their antifungal activity against six important phytopathogens. The in vitro assessment of target compounds revealed that most of compounds showed certain biological activity, compounds **4a-4g** were identified as the most active ones among the target compounds (Fig. 4), the EC₅₀ values of these active compounds together with Boscalid were further tested. Seven most active compounds **4a-4g** were identified as the most promising candidates for further study. Further structural optimization of coumarin-based hydrazides is well under way, alongside more detailed biological testing of the most active compounds, aiming to improve their levels of antifungal activity.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgement

We wish to thank the Program of National Key R&D Program of China (2017YFD0200500) and the Fundamental Research Funds for the Central Universities (KYTZ201604) for partially funding this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fitote.2018.03.013.

References

- W.C. Yang, S. Yang, L. Wang, Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions, Chem. Commun. 51 (2015) 7520–7523.
- [2] D.D. Zha, H.J. Li, S.Q. Li, L. Wang, Rhodium(III)-catalyzed regioselective decarboxylative cyclization for the synthesis of 4H-Furo[3,2-c]chromen-4-one derivatives, Adv. Synth. Catal. 359 (2017) 467–475.
- [3] S. Yang, H. Tan, W.Q. Ji, X.B. Zhang, P.H. Li, L. Wang, Visible light-induced decarboxylative acylarylation of phenyl propiolates with α-oxocarboxylic acids to coumarins catalyzed by hypervalent iodine reagents under transition metal-free conditions, Adv. Synth. Catal. 359 (2017) 443–453.
- [4] K.C. Fylaktakidou, D.J. Hadjipavlou-Litina, K.E. Litinas, D.N. Nicolaides, Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities, Curr. Pharm. Design. 10 (2004) 3813–3833.
- [5] J.R.S. Hoult, M. Payá, Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential, Gen. Pharmacol. 27 (1996) 713–722.
- [6] K.V. Sairam, B.M. Gurupadayya, V.B. Iyer, C. RS, V.B. Iyer, Cytotoxicity studies of coumarin analogs: design, synthesis and biological activity, RSC Adv. 6 (2016) 98816–98828.
- [7] F.G. Medina, J.G. Marrero, M. Macías-Alonso, M.C. Gonzalez, I. Córdovaguerrero, G.T. García Ariana, S. Osegueda-Robles, Coumarin heterocyclic derivatives: chemical synthesis and biological activity, Nat. Prod. Rep. 32 (2015) 1472–1507.
- [8] M.Z. Zhang, R.R. Zhang, J.Q. Wang, X. Yu, Y.L. Zhang, Q.Q. Wang, W.H. Zhang, Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives, Eur. J. Med. Chem. 97 (2016) 275–279.
- [9] B.M. Chougala, S. Samundeeswari, M. Holiyachi, L.A. Shastri, S. Dodamani, S. Jalalpure, S.R. Dixit, S.D. Joshi, V.A. Sunagar, Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3- c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents, Eur. J. Med. Chem. 125 (2016) 101–116.
- [10] S. Emami, S. Dadashpour, Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102 (2015) 611–630.
- [11] A.K. Bhattacharya, H.R. Chand, J. John, M.V. Deshpande, Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula, Eur. J. Med. Chem. 94 (2015) 1–7.
- [12] X.F. Cao, Y.Y. Xu, Y.B. Cao, R.L. Wang, R. Zhou, W.J. Chu, Y.S. Yang, Design, synthesis, and structure-activity relationship studies of novel thienopyrrolidone derivatives with strong antifungal activity against Aspergillus fumigates, Eur. J. Med. Chem. 102 (2015) (417-416).
- [13] A. Ramírez-Villalva, D. Gonzalez-Calderon, C. Gonzalez-Romero, M. Morales-Rodríguez, B. Jauregui-Rodríguez, E. Cuevas-Yanez, A. Fuentes-Benítes, A facile synthesis of novel miconazole analogues and the evaluation of their antifungal activity, Eur. J. Med. Chem. 97 (2015) 275–279.
- [14] M.Z. Zhang, R.R. Zhang, W.Z. Yin, X. Yu, Y.L. Zhang, P. Liu, Y.C. Gu, W.H. Zhang, Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e] [1,3]oxazine derivatives, Mol. Divers. 20 (2016) 611–618.
- [15] R.R. Zhang, J. Liu, Y. Zhang, M.Q. Hou, M.Z. Zhang, F. Zhou, W.H. Zhang, Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: pyrano[3,2-c]chromene-2,5-diones, Eur. J. Med. Chem. 116 (2016) 76–83.
- [16] R.R. Zhang, Z.C. Xu, W.Z. Yin, P. Liu, W.H. Zhang, Microwave-assisted synthesis and antifungal activities of polysubstituted Furo[3,2-c]chromen-4-ones and 7,8,9,10-Tetrahydro-6H-benzofuro[3,2- c]chromen-6-ones, Synth. Commun. 46 (2015) 3257–3263.
- [17] N.S. Reddy, M.R. Mallireddigari, S. Cosenza, K. Gumireddy, S.C. Bell, E. Premkumar Reddy, M.V. Ramana Reddy, Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity, Bioorg. Med. Chem. Lett. 14 (2004) 4093–4097.
- [18] W. Peng, Y. Liu, W. Li, Y. Qian, Y.X. Nie, D. Kim, M.C. Wang, Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem, Sci. Rep.-UK 6 (2016) 33898.
- [19] F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity, Curr. Med. Chem. 12 (2005) 887–916.
- [20] K.D. Wehrstedt, P.A. Wandrey, D. Heitkamp, Explosive properties of 1-

X. Yu et al.

Fitoterapia xxx (xxxx) xxx-xxx

hydroxybenzotriazoles, J. Hazard. Mater. 126 (2005) 1-7.

- [21] F. Grande, F. Aiello, O.D. Grazia, A. Brizzi, A. Garofaloa, N. Neamati, Synthesis and antitumor activities of a series of novel quinoxalinhydrazides, Bioorg. Med. Chem. 15 (2007) 288–294.
- [22] M. Zou, J.R. Lu, H.P. Chen, Synthesis, characterization and antibacterial activities of N-[1-(substituted phenyl) ethyl]-2-hydroxybenzohydrazide, Chem. J. Chin. Univ. 33 (2012) 2235–2238.
- [23] O.L. Hoffmann, A.E. Smith, A new group of plant growth regulators, Science 109 (1949) 588.
- [24] H.A. Abdel-Aziz, T. Elsaman, A. Al-Dhfyan, M.I. Attia, K.A. Al-Rashood, A.R.M. Al-

Obaid, Synthesis and anticancer potential of certain novel 2-oxo-N'-(2-oxoindolin-3ylidene)-2H-chromene-3 -carbohydrazides, Eur. J. Med. Chem. 70 (2013) 358–363.

- [25] G. Smagghe, D. Degheele, Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders, Pest Manag. Sci. 42 (1994) 85–92.
- [26] M.Z. Zhang, Y. Zhang, J.Q. Wang, W.H. Zhang, Design, synthesis and antifungal activity of coumarin ring-opening derivatives, Molecules 21 (2016) 1387.
- [27] Y.F. Liu, Z.Y. Chen, T.B. Ng, J. Zhang, M.G. Zhou, F.P. Song, F. Lu, Y.Z. Liu, Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from *Bacillus subtilis* strain B-916, Peptides 28 (2007) 553–559.