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ABSTRACT: A versatile Cu-catalyzed cross-coupling reaction to various unsymmetrical disulfanes has been presented, from 
phthalimide-carried disulfur transfer reagents and commercially available boronic acids under mild and practical conditions. 
The method features the unprecedented use of phthalimide-carried disulfurating reagents (Harpp reagent) in cross-coupling 
chemistry, and is highlighted by the broad substrate scopes, even applicable for the transfer of aryl-disulfur moieties (ArSS-
). Notably, the robustness of this methodology is shown by the late-stage modification of bioactive scaffolds of coumarin, 
estrone and captopril. 

KEYWORDS: phthalimide-carried disulfur transfer, unsymmetrical disulfanes, cross-coupling, Harpp reagent analogs, 
modification

Disulfide bond (S-S) as a critically important structural 
bridge, plays vital and multiple roles in oxidative folding, 
stability, and biological functions of peptides and proteins 
in living entities,1 as well as maintaining the cellular redox 
balance in cell survival.2 In pharmaceuticals, disulfide bond 
is an ubiquitous subunit and has profound effect on its 
pharmacological activities.3 Meanwhile, disulfide bond is 
also utilized as a self-immolative linker unit in monoclonal 
antibodies (mAbs) – drug conjugates for tumor-targeting 
drug delivery.4 Additionally, some specific chemicals 
containing disulfide bonds are able to release a biologically 
important cellular signaling molecule - hydrogen sulfide 
(H2S) to mediate a series of physiological and pathological 
processes.5 In addition to the aforementioned significance 
in life science, disulfide bond is abundant and important in 
food chemistry,6 functional materials,7 natural products,8 
and bioactive molecules9 (Figure 1). All of these attributes 
of disulfide bond make the incorporation of it into organic 
frameworks receive significant attention in chemistry and 
related domains. According to the literatures, there are two 
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Figure 1. Representative and widespread S-S bond.
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strategies to access unsymmetrical disulfanes: initiated 
from S-S bond construction10 and C-S bond construction11-13 
respectively (Scheme 1). Conventional methodologies in the 
former strategy, including oxidation, SN2 replacement, and 
exchange pathways etc.,10 suffer from some longstanding 
restraints like undesirable homocoupling byproducts. C-S 
Bond formation as an emerged strategy to deliver 
unsymmetrical disulfanes has brought the disulfane 
chemistry into a new sight, and several pioneering works 
like cross-coupling or nucleophilic substitution of 
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nucleophilic or electrophilic disulfur reagents (RSS-L) have 
been disclosed by Xian11, Jiang12 and Xu13 (Scheme 1b). 
Despite significant progress, these reports share identical 
challenges like competitive desulfuration and unable to 
transfer ArSS- moieties onto aryls to deliver diaryl 
disulfanes, and this may be due to the hyperconjugation of 
ArSS- weakens the S-S bond. In this context, a versatile and 
robust disulfur reagent or new catalytic process has to be 
explored for resolving these key problems.

Since firstly synthesized by David N. Harpp, Harpp rea-
gent was mainly employed as electrophile to react with 
thiols or RSAc in natural product synthesis to afford 
trisulfides14 (Scheme 1c). Although several decades have 
passed by, new application of this kind of reagent has been 
rarely explored. Inspired by the aforementioned pioneering 
works and challenges, we envisioned Harpp reagent may 
serve as a desired disulfur transfer reagent for the weak 
coordination between oxygen in the phthalimide and 
copper could induce the selective oxidation insertion of 
copper into N-S bond. After extensive studies, we herein 
disclose a new usage of Harpp reagent analogs in Cu-
catalyzed Chan-Lam 
Table 1. Optimization of reaction[a]

BpinPh PhBF3K
O

O
BPh Me

Me

trace trace 2' 73%

[Cu], Ligand, base

sol., Temp., Ar, Time Bn
S

S
PhPhB(OH)2N

O

O

SSBn

1d 2a 3aH2O (x mmol)

N N

t-Bu t-Bu

L6 N N

Ph Ph

L13

[a]Reaction conditions: 1d (0.20 mmol, 1.0 equiv), 2a (0.40 
mmol, 2.0 equiv), [Cu] (0.04 mmol, 0.2 equiv), ligand (0.04 
mmol, 0.2 equiv), base (0.40 mmol, 2.0 equiv) and THF (2 mL) 
at 40 oC for 10 h under argon atmosphere. [b]Isolated yields. 
[c]H2O: 1.5 equiv. [d]0.28 mmol (1.4 equiv) of 2a and K3PO4 was 
added. [e]0.20 mmol (1.0 equiv) of 2a and K3PO4 was added. 

[f]TEMPO (0.30 mmol, 1.5 equiv) was added. [g]BHT (0.30 mmol, 
1.5 equiv) was added. [h] Air instead of Ar.

type coupling to furnish categories of structurally 
diversified disulfanes (Scheme 1d).

We commenced our studies by choosing 2-
(benzylsulfinothioyl)isoindoline-1,3-dione (1d) as the 
model disulfur reagent to react with phenylboronic acid 
(2a) in the presence of 20 mol % Cu(OAc)2, 20 mol % 2, 2’- 
bipyridine (Bipy), and 2 equivalents of NaOAc under argon 
(Ar) atmosphere at 40 oC for 10 h, and the desired product 
3a was obtained in 49% yield (Table 1, entry 1). Next, a 
series of copper catalysts were examined but no 
enhancement on the yield was observed (entries 2 - 3; Table 
S1). Given the significance of base in transmetalation 
process,15 a range of strong and weak bases were screened 
and K3PO4 was found 
Table 2. Substrate scopes of boronic acids[a], [b]

SSBn
MeO OMe
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SSBn

SSBn

NMeO SSBn
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N SSBn
S
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SSBn

Ph

Ph

SSBn

SSBn
SSBn

3af 61%

3ag 75% 3ah 78% 3ai 69% 3aj 51%

3ak 69% 3al 52% 3am 65%

3an 57% 3ao 48% 3ap 61% 3aq 54%

Cu(OAc)2 (20 mol%), Bipy (20 mol%)

K3PO4, H2O (x equiv), THF, 40 oC R1
S

S
BnR1B(OH)2N

O

O

SSBn

21d 3

[d]
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O
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MeO2S
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SSBn
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F
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F

F SSBn

CF3

F3C SSBn
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F
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3a 89% 3b 63% 3c 81% 3d 69%

3e 74% 3f 62% 3g 50% 3h 77%

3i 49% 3j 57% 3k 48% 3l 58%

3m 54% 3n 55% 3o 63% 3p 65%

3q 70% 3r 55% 3s 69% 3t 61%

3u 80% 3v 64% 3w 67% 3x 53%

3y 64% 3z 68% 3aa 72% 3ab 61%

3ac 53% 3ad 37% 3ae 41%

SSBn
Me

SSBn
Cl

[c] [d] [e]

[f]

aStandard conditions: 1d (0.20 mmol, 1.0 equiv), 2 (0.40 mmol, 
2.0 equiv), Cu(OAc)2 (0.04 mmol, 0.2 equiv), Bipy (0.04 mmol, 

Entry [Cu] Ligand Base Sol. yield/%b

1 Cu(OAc)2 Bipy NaOAc CH3CN 49

2 CuBr2 Bipy NaOAc CH3CN 27

3 CuI Bipy NaOAc CH3CN 33

4 Cu(OAc)2 Bipy K2CO3 CH3CN 37

5 Cu(OAc)2 Bipy K3PO4 CH3CN 54

6 Cu(OAc)2 Bipy K3PO4 THF 67

7 Cu(OAc)2 L6 K3PO4 THF 69

8 Cu(OAc)2 L13 K3PO4 THF 61

9[c] Cu(OAc)2 Bipy K3PO4 THF 89

10[d] Cu(OAc)2 Bipy K3PO4 THF 81

11[e] Cu(OAc)2 Bipy K3PO4 THF 58

12 - Bipy K3PO4 THF N.R.

13 Cu(OAc)2 - K3PO4 THF N.R.

14 Cu(OAc)2 Bipy - THF N.R.

15 Cu(OAc)2 Bipy K3PO4 THF 81[f]/76[g]

16[h] Cu(OAc)2 Bipy K3PO4 THF 21
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0.2 equiv), H2O (0.30 mmol, 1.5 equiv), K3PO4 (0.40 mmol, 2.0 
equiv) and THF (2 mL) , 40 oC, 10 h, Ar. bIsolated yields. cH2O: 
3.0 equiv. dH2O: 2.0 equiv. eH2O: 1.0 equiv. fH2O: 2.5 equiv.

to be the optimal base providing 3a in 54% yield (entries 4- 
5; Table S2). As for solvents, THF afforded the target 
product 3a in 67% yield (entry 6; Table S3). When several 
kinds of mono-, di- and tridentate ligands were tested 
(entries 7 - 8; Table S4), the yield was slightly increased as 
di-tert-butyl bipyridine employed (entry 7). However, we 
still chose Bipy as the ligand to continue optimization for 
economic considerations. Neither elevated nor reduced 
temperature was beneficial for the transformation (Table 
S5). Since water would probably increase the solubility of 
bases, we screened different equivalents of water in the 
reaction, and the yield dramatically jumped to 89% when 
1.5 equiv H2O was added (entry 9; Table S6). Decreasing the 
amount of base and boronic acid decreased the yield 
(entries 10 - 11; Table S7). Additionally, other 
organoboronic reagents such as PhBpin, PhBF3K, and 
boronic acid ester 2’ were also explored, but merely 2’ 
yielded the product 3a in 73% (Table 1). Control 
experiments showed copper catalyst, ligand, and base were 
indispensable for the reaction (entries 12 - 14). Inert 
atmosphere was also crucial for this transformation as the 
yield of 3a fell to 21% when the reaction was performed 
under Air instead of Ar (entry 16).

With the optimized reaction conditions in hand, we 
investigated the substrate scopes with respect to varieties 
of boronic acids. As shown in Table 2, both electron-
donating and electron-withdrawing substituents at para-, 
meta- and ortho-positions of arylboronic acids provided the 
corresponding products in moderate to good yields (3a - 
3ag, 37% - 89%). Notably, various sensitive functional 
groups such as -CHO, -CO-, -CO2-, -CONMe2, -CON(H)-, -vinyl, 
-OCF3, -CF3, -CN, -SO2Me, -NO2 etc. were all tolerant in this 
reaction. Di-fluoro, di-trifluoromethyl and tri-fluoro 
substituted highly electron-deficient aryl boronic acids also 
proceeded smoothly under the standard conditions (3ac - 
3ae, 37% - 53%). On the whole, no apparent electrical effect 
was observed in this reaction. Sterically hindered 
arylboronic acids afforded the target products 3aa and 3af 
in good yields as well (3aa, 72%; 3af: 61%), as well as fused 
aromatic rings and hetero-aromatic rings (3ah - 3ak, 51% - 
78%). Remarkably, BnSS- motif was successfully inserted 
into several important organic optoelectronic material 
frameworks, such as triphenylamine, fluorine, carbazole, 
and diben-zo[b,d]thiophene (3al - 3ao, 48% - 65%).16 
Vinylboronic acids were applicable to afford unsymmetrical 
disulfanes under the standard conditions (3ap, 61%; 3aq, 
54%). Unfortunately, when cyclopropylboronic acid and 
cyclo-pentylboronic acid were used, no corresponding 
target products were obtained. This is presumably because 
their transmetalation with transition metals is more 
difficult than that of aryl and alkenyl boronic acids, as well 
as the inferior stability of alkylboronic acids.17

Subsequently, we further examined the compatibility of 
diverse disulfur transfer reagents under the standard 
conditions (Table 3). Gratifyingly, aryl disulfur transfer 
groups (R2 = Aryl) were unprecedentedly feasible under our 
system even in moderate yields (4a’, 4a - 4c, 47% - 63%). 
With respect to benzyl and primary, secondary or tertiary 

alkyl disulfur groups (R2 = alkyl), this reaction also 
performed smoothly giving the corresponding 
unsymmetrical disulfanes in moderate to good yields (4e - 
4m, 46% - 71%).

Finally, the robustness of this method was shown by the 
late-stage modification of the scaffolds of natural products 
and pharmaceuticals (Table 4). Disulfur motif BnSS- was 
smoothly installed at C7-position of coumarin, which is a 
universally bioactive scaffold in many natural products 
(3ar, 51%). Modification of estrone, a natural hormone as 
well as a medication, was also achieved to deliver 3as and 
3at in moderate yields (3as, 50%; 3at, 40%). Besides, 
captopril, a potent and competitive angiotensin-converting 
enzyme (ACE) inhibitor used in the treatment of 
hypertension, was successfully modified (4n, 49%) through 
preparation of phthalimide-carried disulfur reagent (1n), 
and the structure of 4n was characterized by X-ray 
diffraction (CCDC Number:1948200).
Table 3. Substrate scopes of disulfur transfer rea-
gents[a,b]

Ph
S

S

Ph
S

S

Ph
S

S
n-C12H25

Ph
S S

Ph
S

S

Ph
S

S

Me

Ph
S

S

ClS
S Ph

S
S S

S
Ph

4a' 47%

R1
S

S
R2R1B(OH)2N

O

O

SSR2

4

PhPh
S S

CO2Me

S
S

Ph

OMe

4b 61% 4c 63%

4e 71% 4f 54% 4g 53%

4h 51% 4i 57% 4j 48%

4k 53% 4l 55% 4m 46%

21

Cu(OAc)2 (20 mol%)

Bipy (20 mol%), K3PO4

H2O (1.5 equiv), THF, 40 oC

S
S Ph

t-Bu

4a 54%

Ph
S

S

aStandard conditions: 1 (0.20 mmol, 1.0 equiv), 2 (0.40 mmol, 
2.0 equiv), Cu(OAc)2 (0.04 mmol, 0.2 equiv), Bipy (0.04 mmol, 
0.2 equiv), H2O (0.30 mmol, 1.5 equiv), K3PO4 (0.40 mmol, 2.0 
equiv) and THF (2 mL) , 40 oC, 10 h, Ar. bIsolated yields.

Table 4. Late-stage modification of natural product and 
pharmaceuticals[b]

O OBnSS

H H

H

Me O

BnSS
3ar 51% 3at 40%

4n 49%

N
OMe

O

OS
CH3

S
Ph

Coumarin Estrone

Captopril methyl ester

H H

H

Me O

RSS
3as 50% R=4-MePh

ORTEP of 1n[a]

R1
S

S
R2R1B(OH)2N

O

O

SSR2

21

Cu(OAc)2 (20 mol%)
Bipy (20 mol%), K3PO4

H2O (1.5 equiv), THF, 40 oC
3
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aNon-hydrogen atoms are shown as 30% ellipsoids. bIsolated 
yields.

Based on the control experiments in Table 1 (entries 12 - 
15) and literatures,18 a possible mechanism was described 
in Scheme 2. Initially, transmetalation (I) of boronic acid 
derivatives took place. In this step, water may play a crucial 
role in facilitating the transmetalation in some aspects, 
similar to previous works.15, 17, 19 In addition to increasing 
the solubility of K3PO4 and Cu(OAc)2, 15, 19c it was likely to 
favor the generation of more-reactive boronate anion 2’’ in 
the presence of K3PO4,17, 19 and also contribute to 
suppressing the formation of less-reactive boroxine 2’’’ 
which was easily produced by trimerization of boronic 
acids.17, 19c Despite these hypotheses, the exact role of water 
remains unclear to date. Following the transmetalation, 
disproportionation (II) of CuII species B proceeds to give CuI 
intermediate C and CuIII.18b, 18c Subsequently, oxidation 
insertion of C into N-S bond takes place to form D (III).18a, 18d 
Lastly, reductive elimination of D releases the target 
product and CuI (IV), which go through transmetalation (V) 
to reenter the next catalytic cycle.18 

In summary, we have disclosed an unprecedented 
phthalimide-carried disulfur transfer strategy to deliver 
categories of unsymmetrical disulfanes. The reaction was 
highlighted by the use of low-cost metal catalyst and 
excellent compatibility with diversely sensitive functional 
groups, especially applicable for the transfer of aryldisulfur 
moieties (ArSS-) onto aryls to deliver diaryl disulfanes. 
Meanwhile, the robust nature of the reaction was 
demonstrated by the late-stage modification of natural 
product and pharmaceuticals. The practical reaction 
conditions and extensive applicability of this reaction 
suggest it may have further applications in sulfur-
containing lead compounds discovery, and related works 
are under progress in our lab.
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