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ABSTRACT: Although the parent 2-pyrone is known to react
with simple o-benzynes to produce naphthalene derivatives, there
appear to be no examples of the successful reaction of coumarin, a
benzo-annulated 2-pyrone analogue, with an aryne. We report such
a process here using benzynes generated by the hexadehydro-
Diels−Alder reaction to produce phenanthrene derivatives (i.e.,
benzo-annulated naphthalenes). Density functional theory compu-
tations were used to help understand the difference in reactivity
between 2-pyrone and the slower trapping agent, coumarin. Finally, the reaction of o-benzyne itself [from o-(trimethylsilyl)phenyl
triflate and CsF] with coumarin was shown to be viable, although slow.

The reaction of pyrone (4) with o-benzyne (3) to produce
naphthalene (6) was first described by Wittig and

Hoffmann in 1962.1 Heating the thiadiazole 1,1-dioxide 1
gave 6 in 36% yield, following ejection of CO2 from the
presumed Diels−Alder intermediate adduct 5. Over time,
reactions of benzynes (or strained cycloalkynes) with a variety
of pyrone-containing substructures have been reported.2

Conspicuously absent from that body of work is a successful
reaction or an aryne with coumarin (7a, 2H-chromen-2-one).
Indeed, in 1997, Guitiań and co-workers reported reactions of
substituted pyrones with 3, the latter produced from
anthranilic acid (2).2i In that study, an attempt to effect an
analogous reaction of 3 with coumarin (7a) to produce
phenanthrene (8) was unsuccessful. This was attributed to the
lower reactivity of 7a as a diene because a greater loss of
aromatic resonance stabilization vis-a-̀vis the analogous
reaction with 4 itself would attend the formation of potential
intermediate 8.
Many triynes such as 10 will cycloisomerize to benzynes 11

in a process now commonly called the hexadehydro-Diels−
Alder (HDDA) reaction.3 We describe here a variety of
reactions between HDDA-benzynes 11 and coumarins. To the
best of our knowledge, these are the first examples of trapping
reactions of arynes using coumarin or substituted coumarins
(Figure 1).2

As a prelude to introducing our experimental observations,
we show in Figure 2 the results of DFT calculations of the
reactions of the parent o-benzyne (3) with pyrone (4, panel a)
as well as with coumarin (7a, panel b). As expected intuitively,
the reaction to form the initial bicyclic adduct 5 is more
exergonic than that leading to 8 because of the aforementioned
increased loss of aromaticity that attends the addition to
coumarin. Accordingly, the activation barrier through tran-
sition structure TScoumarin is also larger than that through
TSpyrone. These data support the earlier assessment2i that

coumarin is a less reactive 4π-diene than pyrone toward
benzyne. It is interesting to note the difference in the extent of
asynchronicity in the two TSs. In TSpyrone, the bond lengths of
the two forming C−C bonds (labeled in blue) are nearly the
same as is the deformation of the two carbon atoms of the
pyrone moiety (7.5° and 9.4° of puckering at C3 and C6,
respectively). In contrast, in TScoumarin, the extent of bond
formation is considerably different (blue), as is the degree of
puckering at C3 (16.6°) versus C8a (5°). The reduced amount
of rehybridization at C8a is a computational validation of the
reluctance of the coumarin diene to sacrifice its benzenoid
aromatic resonance stabilization.
In our first experiment (Figure 3a), a solution containing

triyne 13 and coumarin (7a, 3 equiv) in chloroform was
warmed to 85 °C. Rate-limiting HDDA cycloisomerization
gave benzyne 14, which, following capture by 7a, lost CO2 to
produce the (red-colored) naphthofluorenone 16a-syn in 38%
yield. Further scrutiny of the NMR spectrum of the crude
product mixture suggested the possible presence of a second
isomeric product. When this reaction was then performed neat
(1:10, 13:7a), both 16a-syn and 16a-anti were isolated in 28%
and 5% yields, respectively. The constitution of the major
product was established by the clear NOEs indicated in
structures 16a-syn and 16a-anti. In addition, (i) the proton
resonance for the aromatic methyl group was significantly
deshielded in the anti isomer and (ii) the indicated aromatic
protons showed diagnostic differences that reflected their
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relative extent of embeddedness in the bay region of the
pentacycle (see the Supporting Information for details).
To gain an understanding of the sense of regioselectivity

shown by the reaction of benzyne 14 with coumarin (7a), we
identified the optimized transition structures of the species
leading to TSsyn versus TSanti by DFT calculations. We used

Figure 1. (a) Reaction of o-benzyne (3) with pyrone (4) to produce
naphthalene (6), following loss of CO2 from initial adduct 5. (b)
Reactions of HDDA-benzynes 11 with coumarin derivatives 7a−e to
give phenanthrenes 12.

Figure 2. DFT calculations [SMD(CHCl3)/B3LYP/6-311G+(d,p) at 298 K] of the reaction of o-benzyne (3) with (a) pyrone (4) and (b)
coumarin (7a). Gibbs energies in kilocalories per mole.

Figure 3. (a) Reaction of triyne 13 with coumarin gives isomeric
naphthofluorenones 16a-syn (major) and 16a-anti (minor). (b)
Competition experiment showing that trapping by furan (2 equiv) is
considerably faster than that by coumarin (7a, 10 equiv) (see the
Supporting Information for the NMR spectrum of the crude product
mixture in which 16a-syn was detected).
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the same functional, basis set, and solvation model that were
used for the reactions with benzyne itself (Figure 2). The
results are summarized in Figure 4. The computed activation
barrier leading to adduct 15-syn* is 1.5 kcal mol−1 lower than
that proceeding to 15-anti* in the competing pathway. This is
remarkably consistent with the observed 16a-syn:16a-anti
product ratio (5:1, 1H NMR of the crude product mixture for
the neat reaction at 85 °C).
This preference for the regioselective addition of the

unsymmetrical benzyne dienophile to coumarin can be
explained by a careful examination of the two TS geometries.
As with o-benzyne itself, there is a significantly advanced
degree of bond formation at C3 versus C8a for each of the
transition structures TSsyn and TSanti, indicating substantially
asynchronous reactions. The shorter distance of 2.0 Å is
identical in both; curiously, the second partial bond is shorter
in TSanti (2.7 Å vs 3.0 Å in TSsyn) even though TSanti is slightly
higher in energy. Subtle remote steric compressions are likely
responsible for this seeming anomaly. The difference in
puckering angle at the benzenoid C8a in each is, again,
informative; the slightly larger deformation in TSanti (8.1°)
(and 17.2° at C3) versus that in TSsyn (5.5°) (and 17.5° at C3)
reflects a greater degree of sacrifice in aromaticity. Finally, we
note that an FMO analysis of this cycloaddition is not a
meaningful approach for rationalizing the sense of regiose-
lectivity. That is, the π-type orbital coefficients at C3 versus
C8a in the HOMO of coumarin are computed to be virtually
identical (see the Supporting Information for details).
The imperfect yield of this transformation implied that the

rate of the trapping by coumarin was slow (although
serviceable), again consistent with the earlier conclusion of
Guitiań et al.2i To further evaluate that point, consider the
computed activation barriers for the reactions of coumarin

versus pyrone with o-benzyne (Figure 2). A competition
experiment (Figure 3b) was performed in which 13 was heated
in CDCl3 in the presence of the excellent trapping reagent
furan (2 equiv) and coumarin (10 equiv). Direct NMR analysis
of this reaction mixture after 14 h showed quite clean
conversion to furan adduct 17 and that ∼0.05% of 16a-syn was
present (see the Supporting Information for details). We
conclude that coumarin reacts >1000 times more slowly with
the benzyne than does furan.
Having established the ability of a HDDA-benzyne to

engage coumarin itself, we explored (a) several coumarin
derivatives (7b−e) as well as (b) several aryl-substituted triyne
substrates (18a−e) to establish some of the generality of the
process. The results are shown in Figure 5. In each instance,
only the major syn isomer of products 16 or 19 was isolated
and characterized (although when the crude product mixture
was analyzed, a second minor isomer was present).
We also examined the reaction of a tricyclic coumarin

derivative, namely, benzocoumarin 20a and its brominated
analogue, 20b. These were reacted with triyne 13 to give
chrysene derivatives 21a and 21b, respectively, by processes
that closely paralleled those with coumarin itself. Bromo
analogue 21b readily afforded phenyl-substituted chrysene 21c.
The molecular skeleton of compound 21b was established by a
single-crystal X-ray diffraction analysis, which also revealed the
twisted4 nature of the polycyclic indenochrysenone skeleton
(Figure 6).
Finally, we briefly re-examined the reaction of coumarin with

o-benzyne (3) itself,2i here generated via the Kobayashi
method.5 Most informative was an experiment performed in
CD3CN using silylated phenyl triflate 22 and CsF in the
presence of coumarin (7a, 3 equiv). Direct monitoring of the
reaction by 1H NMR spectroscopy (see the Supporting

Figure 4. DFT calculations [SMD(CHCl3)/B3LYP/6-311G+(d,p) at 358 K] for the reaction of benzyne 14 (the truncated nor-methoxy analogue
of the benzyne from triyne 13) with coumarin (7a). The small differences in TS energies are consistent with, in fact, remarkably close to, that
reflected by the 16a-syn:16a-anti product ratio (6:1).
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Information for details) clearly showed the formation of,
principally, phenanthrene (9) along with a smaller amount of
the known benzyne dimer, biphenylene6 (23), in a ratio of
4.8:1 (Figure 7). Thus, 7a is capable of trapping o-benzyne (3)
itself, but the reaction rate is relatively slow, because
dimerization of two molecules of 3 is competitive, even

though the steady-state concentration of 3 is, of course, quite
small.7

In conclusion, we have described a new mode of aryne
reactivity with coumarins. Namely, coumarins and o-benzynes
undergo a [4+2] cycloaddition, albeit slowly, followed by a
cheletropic ejection of CO2 to afford conjugated polyaromatic
scaffolds. DFT computations have provided additional
mechanistic understanding of some of the elementary steps
involved in this class of transformation.
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