Accepted Manuscript

Design, synthesis and anticancer activity of fluorocyclopentenyl-purines and – pyrimidines

Ji-seong Yoon, Dnyandev B. Jarhad, Gyudong Kim, Akshata Nayak, Long Xuan Zhao, Jinha Yu, Hong-Rae Kim, Ji Yun Lee, Varughese A. Mulamoottil, Girish Chandra, Woong Sub Byun, Sang Kook Lee, Yong-Chul Kim, Lak Shin Jeong

PII: S0223-5234(18)30493-8

DOI: 10.1016/j.ejmech.2018.06.003

Reference: EJMECH 10473

To appear in: European Journal of Medicinal Chemistry

Received Date: 23 April 2018

Revised Date: 31 May 2018

Accepted Date: 1 June 2018

Please cite this article as: J.-s. Yoon, D.B. Jarhad, G. Kim, A. Nayak, L.X. Zhao, J. Yu, H.-R. Kim, J.Y. Lee, V.A. Mulamoottil, G. Chandra, W.S. Byun, S.K. Lee, Y.-C. Kim, L.S. Jeong, Design, synthesis and anticancer activity of fluorocyclopentenyl-purines and – pyrimidines, *European Journal of Medicinal Chemistry* (2018), doi: 10.1016/j.ejmech.2018.06.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Y: H > halogen

X = NH₂, NHMe, NH-cyclopropyl or OH Y = H or NH₂ P = H or phosphoramidite Anticancer activity X : NH₂ > NHMe > NHCP > OH Y : H > NH₂ P : H > phosphormidite

A systematic structuire-activity relationship study of 6'-fluorocyclopentenyl-

pyrimidines and -purines as anticancer agents is described

CEP (E)

Design, Synthesis and Anticancer Activity of Fluorocyclopentenyl-purines and – pyrimidines

Ji-seong Yoon,¹ Dnyandev B Jarhad,¹ Gyudong Kim,¹ Akshata Nayak,¹ Long Xuan Zhao,² Jinha Yu,¹ Hong-Rae Kim,¹ Ji Yun Lee,¹ Varughese A. Mulamoottil,¹ Girish Chandra,¹ Woong Sub Byun,¹ Sang Kook Lee,¹ Yong-Chul Kim,^{3,*} and Lak Shin Jeong^{1,*}

¹Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea ²College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116-029, China and ³School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Korea

Corresponding authors:

Lak Shin Jeong, Ph.D.

Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul 151-742, Korea, Tel) 82-2-880-7850 e-mail) <u>lakjeong@snu.ac.kr</u>

Yong-Chul Kim, Ph.D.

School of Life Sciences Gwangju Institute of Science and Technology (GIST) Gwangju, 500-712, Korea e-mail) <u>yongchul@gist.ac.kr</u>

Key words: Fluorocyclopentenyl nucleoside; Structure-activity relationship; Fluorination; Phosphorylation; Prodrug; Anticancer

Abstract

Based on the potent anticancer activity of 6'-fluorocyclopentenyl-cytosine 2b in phase IIa clinical trials for the treatment of gemcitabine-resistant pancreatic cancer, we carried out a systematic structure-activity relationship study of 6'-fluorocyclopentenyl-pyrimidines 3a-i and -purines 3j-o to discover novel anticancer agents. We also synthesized the phosphoramidate prodrug **3p** of adenine derivative **1b** to determine if the anticancer activity depended on the inhibition of DNA and/or RNA polymerase in cancer cells and/or on the inhibition of S-adenosylhomocysteine (SAH) hydrolase. All of the synthesized pyrimidine nucleosides exhibited much less potent anticancer activity in vitro than the cytosine derivative 2b, acting as RNA and/or DNA polymerase inhibitor, indicating that they could not be efficiently converted to their triphosphates for anticancer activity. Among all the synthesized purine nucleosides, adenine derivative 1b and N^6 -methyladenine derivative 3k showed potent anticancer activity, showing equipotent inhibitory activity as the positive control, neplanocin A (1a) or Ara-C. However, the phosphoramidate prodrug 3p showed less anticancer activity than 1b, indicating that it did not act as a RNA and/or DNA polymerase inhibitor like 2b. This result also demonstrates that the anticancer activity of 1b largely depends on the inhibition of histone methyltransferase, resulting from strong inhibition of SAH hydrolase. The deamination of the N^6 -amino group, the addition of the bulky alkyl group at the N^6 -amino group, or the introduction of the amino group at the C2 position almost abolished the anticancer activity.

1. Introduction

Neplanocin A (**1a**) [1], a naturally occurring nucleoside exhibits potent antiviral and antitumor activities by inhibition of *S*-adenosylhomocysteine (SAH) hydrolase, which catalyzes the interconversion of SAH into adenosine and L-homocysteine (Figure 1) [2].

Figure 1. The rationale for the design of target nucleosides 3a-p

Its 6'-fluoro analogue, fluoro-neplanocin A (**1b**) is also a potent inhibitor (IC₅₀ = 0.48 μ M) of SAH hydrolase [3] and exhibits potent antiviral activity [3] and anticancer activity in combination with 5-azacytidine [4]. On the other hand, the cyclopentenyl-cytosine (**2a**) [5] exhibits potent antiviral and/or antitumor activities by reducing the cytidine-5'-phosphate (CTP) pools and its 6'-fluoro analogue **2b** also displays highly potent antitumor effects in a broad range of tumor cell lines [6], but it shows different mechanisms of action [7] from that of **2a**. Compound **2b** is intracellularly taken by a human equilibrative nucleoside transporter

(hENT) and is phosphorylated by uridine-cytidine kinase (UCK) to its monophosphate and subsequently to its triphosphate, which can be incorporated into RNA. Compound **2b** is also incorporated into DNA by the action of ribonucleotide reductase and/or it acts as a DNA methyl transferase (DNMT) inhibitor [6] either by the incorporation of **2b** into DNA by the formation of a complex with the enzyme or directly by its triphosphate [7]. Compound **2b** is now undergoing phase IIa clinical trials for the treatment of gemcitabine-resistant pancreatic cancer.

Inspired by the potent anticancer activity of **1b** and **2b**, it was of great interest to synthesize novel 6'-fluorocyclopentenyl-pyrimidines **3a-i** and -purines **3j-o** for a systematic structure-activity relationship (SAR) study and to evaluate them for anticancer activity. We also synthesized the phosphoramidate prodrug **3p** from the adenine analog **1b** to determine if the anticancer activity depended on the inhibition of SAH hydrolase or DNA and/or RNA polymerase. Herein, we report the comprehensive structure-activity relationships of 6'-fluorocyclopentenyl-pyrimidines **3a-i** and -purines **3j-o** and the phosphoramidate prodrug **3p** as novel antitumor agents.

2. Results and discussion

2.1. Chemistry

For the synthesis of the target nucleosides **3**, the key fluoro intermediate **8a** was first synthesized from D-ribose, as shown in Scheme 1. D-Ribose was converted to the key intermediate **4**, according to our previously published procedure [8]. The iodination of **4** with iodine in the presence of pyridine afforded α -iodo compound **5** [9], which was reduced with NaBH₄ followed by the protection of the resulting alcohol **6** with the TBDPS group to yield **7** [9], which is the precursor for the α -fluorination. Treatment of **7** with *N*-fluorobenzenesulfonimide (NFSI) in the presence of *n*-BuLi in the mixed solvents (THF,

methyl *tert*-butyl ether (MTBE), heptane) at -78 °C yielded the desired 6-fluoro compound **8a** with concomitant formation of 6-H derivative **8b** and TBDPS-migrated derivative **8c** in a 2 : 1 : 1 ratio [3,9].

Scheme 1

Reagents and Conditions: a) I₂, pyridine, THF, rt, 4 h; b) NaBH₄, CeCl₃-7H₂O, MeOH, 0 °C, 30 min; c) TBDPSCI, imidazole, DMF, 40 °C, 12 h; d) NFSI, *n*-BuLi, THF/MTBE/heptane, -78 °C, 30 min.

The key fluoro intermediate **8a** was converted to the glycosyl donor **9** by treating it with TBAF, which was subjected to the Mitsunobu condensation to synthesize the final pyrimidine nucleosides **2b** and **3a-i**, as illustrated in Scheme 2. The condensation of **9** with N^3 -benzoyl-pyrmidines under the standard Mitsunobu conditions followed by the removal of the N^3 -benzoyl group, yielded the condensed products **10a-e**. The treatment of **10a-e** with 2 *N* HCl afforded the final pyrimidine nucleosides **3a-e**, respectively [6]. For the conversion of the uracil derivatives **3a-e** into the cytosine derivatives **2b** and **3f-i**, compounds **3a-e** were peracetylated to give **11a-e**, which were treated with 1,2,4-triazole and POCl₃ in the presence of Et₃N to give the N^4 -triazole derivatives **12a-e**, respectively. Treatment of **12a-e** with ammonia water in 1,4-dioxane followed by the successive treatment with methanolic

ammonia afforded the final cytosine derivatives **2b** and **3f-i** [6]. This conventional method [10a] turned out to be superior to other methods using 2,4,6-triisopropylbenzenesulfonyl chloride/NH₃ [10b] or POCl₃/NaN₃/Pd-C [10c] in terms of overall yield.

Scheme 2

Reagents and Conditions: a) TBAF, THF, 0 °C to rt, 3 h; b) N^3 -benzoyluracil or N^3 -benzoyl-5-halouracil, PPh₃, DIAD, THF, 0 °C to rt, 16 h; c) NH₃, MeOH, rt, 15 h; d) 2 N HCI, MeOH, rt, 18 h; e) Ac₂O, pyridine, rt, 16 h; f) POCl₃, 1,2,4-triazole, Et₃N, MeCN, rt, 16 h; g) NH₄OH, H₂O, 1,4-dioxane, rt, 18 h, then NH₃, MeOH, rt, 3 h.

The synthesis of the fluorocyclopentenyl- N^6 -substituted-purines **1b** and **3j-l** was accomplished by condensing the glycosyl donor **9** with 6-chloropurine, as shown in Scheme 3. The condensation of **9** with 6-chloropurine under the standard Mitsunobu conditions afforded the 6-chloropurine derivative **13**. To remove the acid-sensitive protecting groups such as

trityl (Tr) and 2,3-isopropylidene, compound **13** was treated with 50% aqueous trifluoroacetic acid (TFA) to yield the 6-chloropurine derivative **14** (75%), with the concomitant minor formation of the N^6 -hydrolyzed hypoxanthine analog **3j** (4%). It should be noted that higher concentration of TFA, elevated temperature, and prolonged reaction time increased the formation of **3j** significantly and use of 2 *N* HCl instead of 50% TFA yielded the hypoxanthine analog **3j** as the major product. Treatment of **14** with ammonia, methylamine, and cyclopropylamine afforded the final adenine analog **1b** [3c], the N^6 -methyladenine analog **3k**, and the N^6 -cyclopropyladenine analog **3l**, respectively.

Reagents and Conditions: a) 6-chloropurine, PPh₃, DIAD, THF, 0 $^{\circ}$ C to rt, 15 h; b) TFA/H₂O (1:1), rt, 15 h; c) NH₃, *t*-BuOH, steel bomb, 70-90 $^{\circ}$ C, 20 h; d) MeNH₂/H₂O (40 wt%), EtOH, sealed tube, rt, 20 h; e) cyclopropylamine, Et₃N, EtOH, 60-67 $^{\circ}$ C, 24 h;

To prepare the 2,6-disubstituted-purine analogs 3m-o, the glycosyl donor 9 was condensed with 2-amino-6-chloropurine under the standard Mitsunobu conditions to afford the 2-amino-6-chloropurine derivative 15 (Scheme 4). Compound 15 was treated with 50% aqueous TFA to yield the guanine analog 3m. Treatment of 15 with ammonia and cyclopropylamine followed by treatment with 50% aqueous TFA, afforded the 2,6-diaminopurine derivative 3n and the 2-amino- N^6 -cyclopropylaminopurine 3o, respectively.

Scheme 4

Reagents and Conditions: a) 2-amino-6-chloropurine, PPh₃, DIAD, THF, 0 $^{\circ}$ C to rt, 15 h; b) TFA/H₂O (1:1), rt, 15 h; c) NH₃, *t*-BuOH, steel bomb, 70-90 $^{\circ}$ C, 20 h; d) cyclopropylamine, Et₃N, EtOH, 60-67 $^{\circ}$ C, 24 h.

In order to determine if the anticancer activity depended on inhibiting DNA and/or RNA polymerase in cancer cells, we prepared the phosphoramidate prodrug **3p**, as shown in Scheme 5. The adenine derivative **1b** was protected as 2,3-acetonide **16**, which was treated with di*-tert*-butyl dicarbonate (Boc₂O) to give a mixture of mono-Boc- and di-Boc-adenine derivatives **17** and **18**. Treatment of the mixture of **17** and **18** with the phosphoramidate

reagent (**P**) [11] in the presence of *t*-butylmagnesium chloride afforded the phosphoramidate derivative **19**, which was treated with 50% HCOOH to yield the final phosphoramidate derivative **3p**.

Reagents and Conditions: a) acetone, $conc.H_2SO_4$, 6 h; b) i. HMDS, DMAP, TMSOTf, 75 °C, 2 h; ii. Boc₂O, THF, rt, 4 h; iii. MeOH:Et₃N (5:1), 55 °C, 16 h; c) **P**, *t*-BuMgCl, molecular seives, THF, 0 °C to rt, 48 h; d) 50% HCOOH, rt, 8 h.

2.2. Biological evaluation

All of the synthesized final nucleosides **1b**, **2b**, and **3a-p** were assayed for the anticancer activity in various human cancer cell lines including A549 (lung cancer cells), HCT-116 (colon cancer cells), SNU-638 (stomach cancer cells), MDA-MB-231 (breast cancer cells),

SK-Hep-1 (liver cancer cells), and PC-3 (prostate cancer cells), using the SRB method (Table

1) [12,13].

Table 1. Anticancer activity of the 6'-fluorocyclopentenyl-pyrimidines 2b, 3a-i and –purines1b, 3j-p in human cancer cell lines

Compound No.	IC ₅₀ (μM)							
	A549	HCT-116	SNU-638	MDA- MB-231	SK-Hep-1	PC-3		
2b $(X = NH_2, Y = H)^a$	0.76	0.18	0.31	0.48	0.62	0.64		
3a $(X = OH, Y = H)^{a}$	>100	>100	>100	>100	>100	>100		
3b (X = OH, Y = F)	>100	52.34	27.79	67.72	71.57	43.73		
3c (X = OH, Y = Cl)	>100	>100	86.83	>100	>100	61.88		
$\mathbf{3d} (X = OH, Y = Br)$	>100	33.09	31.97	44.01	74.99	32.05		
3e (X = OH, Y = I)	>100	84.5	70.24	55.15	>100	46.4		
$3f(X = NH_2, Y = F)$	>100	>100	>100	>100	>100	>100		
$3\mathbf{g} (\mathbf{X} = \mathbf{NH}_2, \mathbf{Y} = \mathbf{Cl})$	>100	>100	>100	>100	>100	>100		
$\mathbf{3h} (\mathbf{X} = \mathbf{NH}_2, \mathbf{Y} = \mathbf{Br})$	>100	>100	>100	>100	>100	>100		
3i (X= NH ₂ , Y = I)	>100	99.84	83.65	79.79	>100	82.89		
1b $(X = NH_2, Y = H)^c$	2.17	1.10	1.88	1.45	1.35	1.52		
3j (X= OH, Y = H)	>100	>100	>100	>100	>100	>100		
$3\mathbf{k}$ (X= NHMe, Y = H)	2.39	2.14	2.28	8.05	2.76	15.3		
3l (X = NHCPb, Y = H)	>100	>100	>100	>100	>100	>100		
$\mathbf{3m} (X=OH, Y=NH_2)$	>100	>100	>100	>100	>100	>100		

ACCEPTED MANUSCRIPT										
3n (X= NH ₂ , Y = NH ₂)	85.43	21.9	32.19	22.77	>100	>100				
30 (X= NHCP ^b , Y = NH ₂)	>100	>100	>100	>100	>100	>100				
3p (P = phosphoramidate)	18.61	4.57	3.05	18.37	23.96	10.54				
Neplanocin A (1a) ^d	2.16	1.45	0.82	0.86	2.36	2.14				
Ara-C ^d	1.75	4.4	1.08	10.49	1.8	48.4				

^aref 6; ^bCP = cyclopropyl; ^cref 3c; ^dpositive control

As shown in Table 1, the cytosine analog 2b exhibited the most potent anticancer activity among the pyrimidine nucleosides. The introduction of a halogen at the C-5 position of the pyrimidine nucleosides dramatically dropped the anticancer activity, indicating that they could not be efficiently converted to their triphosphates by cellular kinases, unlike the cytosine derivative 2b, which was efficiently converted by UCK, resulting in potent anticancer activity. The 5-halouracil derivatives **3a-e** generally exhibited slightly better anticancer activity than the corresponding 5-halocytosine derivatives 3f-i, demonstrating that the 5-halouracil moiety was a somewhat better substrate for cellular kinases than the 5halocytosine moiety in this series, although they exhibited weak anticancer activity. This result was interesting in that the cytosine derivative 2b was very potent, while the corresponding uracil derivative **3a** was inactive up to 100 µM. Among the synthesized purine nucleosides, the adenine derivative $\mathbf{1b}$ (X = NH₂, Y = H) exhibited potent anticancer activity, and it was as equipotent as the positive control, neplanocin A (1a) or 2'-\beta-arabinofuranosylcytosine (Ara-C), but its N^6 -deaminated compound **3j** (X = OH, Y = H) was totally inactive up to 100 μ M, indicating that the adenine derivative **1b** was not the substrate for adenosine deaminase. The addition of a methyl group at the N^6 -amino group, giving **3k** (X = NHMe, Y = H), still maintained a similar anticancer activity, when compared to 1b. However, the introduction of a bulkier group, like cyclopropyl, giving **30**, totally abolished the anticancer activity. To our disappointment, the introduction of the amino group at the C2 position, such

as 3m-n, resulted in abolished anticancer activity, indicating that no substitution at the C2 position favored anticancer activity. Surprisingly, the phosphoramidate analog **3p** exhibited less potent anticancer activity than the parent nucleoside **1b**. The phosphoamidate prodrug generally exhibits better biological activity than the parent drug because critical 5'-monophosphorylation by cellular kinase is skipped [11a], which indicates that the inhibition of DNA and/or RNA polymerase in cancer cells responsible for anticancer activity of 1b, is a minor pathway, although it is converted to the triphosphate. It has been reported that inhibition of SAH hydrolase increases the intracellular SAH concentration and reduction in the level of S-adenosylmethionine (SAM), which results in the inhibition of enhancer of zeste homolog 2 (EZH2) histone methyltransferase [14]. Inhibition of EZH2 activity induces apotosis in different types of cancer cells [15]. The phosphoramidate prodrug **3p** is not active against SAH hydrolase up to 100 μ M, but the parent compound **1b** is a strong inhibitor (IC₅₀) = 0.48 μ M) of SAH hydrolase [3], which in turns inhibits EZH2 histone methyltransferase [4]. Similarly, the anticancer activity of **3k** is attributed to the inhibition of SAH hydrolase (IC₅₀ = 3.5 uM). Thus, it is suggested that the major pathway for the anticancer activity of 1b is the inhibition of histone methyltransferase, resulting from strong inhibition (IC₅₀ = 0.48μ M) of SAH hydrolase.

3. Conclusions

Based on the potent anticancer activity of the 6'-fluorocyclopentenyl-cytosine 2b, we carried out a structure-activity relationship study of the 6'-fluorocyclopentenyl-pyrmidines 3a-i and – purines 3j-p, which were synthesized from D-ribose via a vinyl fluorination as a key step. From this study, the cytosine derivative 2b exhibited the most potent anticancer activity among all of the tested compounds. The steric and electronic effects induced by halogen atoms, which were substituted at the C5 position, were detrimental to cellular

phosphorylation of the final nucleosides, resulting in weak anticancer activity. The adenine derivative **1b** and the N^6 -methyladenine derivative **3k** demonstrated potent anticancer activity comparable to the positive control, neplanocin A (**1a**) or Ara-C. It was quite surprising in that only the cytosine derivative **2b** without any substitution at the C5 position was acceptable for anticancer activity in the pyrimidine series, whereas a small substituent such as H (**1b**) or Me (**3k**) in the N^6 -substituted-aminopurine series was only tolerable for potent anticancer activity, demonstrating a very narrow structural requirement for biological activity. The phosphoramidate prodrug **3p** of **1b** did not improve the anticancer activity dramatically, indicating that **1b** did not seem to act as a DNA and/or RNA polymerase inhibitor after being converted to its triphosphate, but acted as a histone methyltransferase inhibitor, resulting from the inhibition of SAH hydrolase. All of these findings will contribute greatly to the design of biologically active fluoro-carbocyclic nucleosides.

4. Experimental section

4.1. Chemistry

The proton (¹H), carbon (¹³C) NMR and fluorine (¹⁹F) NMR spectra were obtained on a Jeol JNM-LA300 (300/75 MHz), Bruker AV 400 (400/376/100 MHz), Bruker AMX 500 (500/125 MHz), Jeol JNM-ECA600 (600/150 MHz), or Bruker AVANCE III 800 (800/200 MHz) spectrometer. The chemical shifts are reported in ppm units with Me₄Si or CHCl₃ as the internal standard. All reactions were routinely carried out under an inert atmosphere of dry nitrogen. The reactions were checked by thin layer chromatography (Kieselgel 60 F254, Merck). The spots were detected by viewing them under a UV light, and by colorizing them with charring after dipping them in a *p*-anisaldehyde solution or phosphomolybdic acid solution. In aqueous work-up, all organic solutions were dried over anhydrous magnesium sulfate and filtered prior to rotary evaporation at water pump pressure. The crude compounds were purified by column chromatography on a silica gel (Kieselgel 60, 70-230 mesh, Merck).

Unless otherwise noted, the materials were obtained from commercial suppliers and were used without purification. All of the solvents were purified and dried by standard techniques just before use. THF and Et₂O were freshly distilled from sodium and benzophenone. Methylene chloride, toluene, and benzene were purified by refluxing with CaH₂. The hexanes and ethyl acetate were purified by simple distillation. The mass spectra were obtained on a Jeol JMS-700 (FAB) or Agilent 6530 Accurate-Mass Q-TOF (ESI). The optical rotations were determined on JASCO P-2000 in the appropriate solvent. The UV spectra were recorded on a Perkin Elmer Lambda 25. The melting points were determined on a Barnstead Electrothermal IA9100.

4.1.1. tert-Butyl((3aR,4R,6aR)-5-fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6a-dihydro-3aH-cyclopenta[d][1,3]dioxol-4-yloxy)diphenylsilane (8a).

n-Butyllithium (11 mL, 17.6 mmol, 1.6 M solution in hexanes) was added dropwise to a cooled (–78 °C) solution of **7** [9] (5.58 g, 7.04 mmol) and *N*-fluorobenzenesulfonimide (3.33 g, 10.56 mmol) in anhydrous THF/*tert*-butyl methyl ether/*n*-heptane (3:1:1.5, 90 mL total, 0.08 M) over a period of 1 h under N₂. After stirring at the same temperature for 30 min, the reaction mixture was quenched with saturated aqueous NH₄Cl (100 mL) and was diluted with EtOAc (100 mL). Then the layers were separated and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H₂O and brine, dried over anhydrous MgSO₄, filtered, and evaporated. Finally, the residue was purified by medium pressure liquid chromatography (silica gel, hexanes/EtOAc = 25/1) to give vinyl fluoride **8a** (2.17 g, 45%), **8b** (1.03 g, 22%) and **8c** (0.84 g, 18%). **8a**: $[\alpha]_D^{25} = -8.42$ (*c* 0.19, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 6.6 Hz, 2 H), 7.72 (d, *J* = 6.6 Hz, 2 H), 7.35-7.44 (m, 13 H), 7.16-7.27 (m, 8 H), 4.93 (t, *J* = 6.6 Hz, 1 H), 4.34 (s, 1 H), 3.22-3.25 (m, 1 H), 3.89 (d, *J* = 11.8 Hz, 1 H), 3.77 (d, *J* = 12.3 Hz, 1 H), 1.44 (s, 3 H), 1.38 (s, 3 H), 1.07 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3 (d, *J* = 288.0 Hz), 143.8, 136.0 (d, J = 23.1 Hz), 133.5 (d, J = 21.2 Hz), 129.7 (d, J = 4.9 Hz), 127.7, 127.5 (d, J = 9.2 Hz), 127.0, 115.6 (d, J = 4.2 Hz), 111.8, 87.0, 78.6 (d, J = 8.8 Hz), 75.3 (d, J = 7.2 Hz), 71.0 (d, J = 18.9 Hz), 56.3, 29.5 (d, J = 29.8), 27.9, 27.2, 26.7, 19.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –128.2; MS (ESI+) found 707.2968 [calcd for C₄₄H₄₅FNaO₄Si (M+Na)⁺ 707.2969]. **8b**: ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.81 (m, 4 H), 7.34-7.45 (m, 13 H), 7.16-7.29 (m, 8 H), 5.76 (s, 1 H), 4.66 (d, J = 5.6 Hz, 1 H), 4.53-4.58 (m, 1 H), 4.42 (t, J = 5.5 Hz, 1 H), 3.84 (d, J = 14.2 Hz, 1 H), 3.58 (d, J = 14.2 Hz, 1 H), 1.42 (s, 3 H), 1.32 (s, 3 H), 1.09 (s, 9 H). **8c**: ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.81 (m, 4 H), 7.35-7.45 (m, 13 H), 7.22-7.30 (m, 8 H), 5.13 (m, 2 H), 4.80 (d, J = 13.6 Hz, 1 H), 4.19 (d, J = 14.4 Hz, 1 H), 3.73 (t, J = 5.2 Hz, 1 H), 1.31 (s, 3 H), 1.22 (s, 3 H), 1.12 (s, 9 H).

4.1.2. (3aS,4R,6aR)-5-Fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6a-dihydro-3aHcyclopenta[d][1,3]dioxol-4-ol (**9**).

Tetra-*n*-butylammonium fluoride (9.1 mL, 1.0 M solution in THF) was added dropwise to a cooled (0 °C) solution of **8a** (2.50 g, 3.65 mmol) in anhydrous THF (20 mL) under N₂. After stirring at room temperature for 2 h, the reaction mixture was evaporated. Finally, the residue was purified by medium pressure liquid chromatography (silica gel, hexanes/EtOAc = 4/1) to give **9** (1.417 g, 87%) as a white foam: $[\alpha]_D^{25} = +20.77$ (*c* 0.39, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.48 (m, 6 H), 7.21-7.31 (m, 9 H), 5.13 (t, *J* = 6.6 Hz, 1 H), 4.66-4.69 (m, 1 H), 4.40 (t, *J* = 6.6 Hz, 1 H), 3.92 (d, *J* = 12.0 Hz, 1 H), 3.77 (dd, *J* = 1.6, 12.0 Hz, 1 H), 2.81 (d, *J* = 9.3 Hz, 1 H), 1.42 (s, 3 H), 1.41 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7 (d, *J* = 287.8 Hz), 143.7, 128.6, 127.8, 127.0, 115.7 (d, *J* = 4.5 Hz), 112.3, 87.1, 78.7 (d, *J* = 8.9 Hz), 73.8 (d, *J* = 7.7 Hz), 69.1 (d, *J* = 21.0 Hz), 56.2, 27.7, 26.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -130.1; MS (ESI+) found 469.1779 [calcd for C₂₈H₂₇FNaO₄ (M+Na)⁺ 469.1791].

4.1.3. General Procedure for Mistunobu Condensation

Diisopropyl azodicarboxylate (2.5 equiv) was added dropwise to a cooled (0 °C) suspension of triphenylphosphine (2.5 equiv) and 5-halo- N^3 -benzoyluracil (2.5 equiv) in anhydrous THF (0.2 M) under N₂. After stirring at room temperature for 15 min, the reaction mixture was re-cooled to 0 °C. Then, a solution of **9** (1.0 equiv) in anhydrous THF (0.2 M) was added dropwise to the mixture. After stirring at room temperature for 24 h, the reaction mixture was evaporated. Finally, the residue was purified by medium pressure liquid chromatography (silica gel, hexanes/EtOAc = 3/1) to give the base condensed derivatives.

4.1.4. General Procedure for Debenzoylation

Saturated methanolic ammonia (5 mL) was added to the above generated base condensed derivatives at room temperature. After stirring at room temperature for 15 h, the reaction mixture was evaporated. Finally, the residue was purified by column chromatography (silica gel, hexanes/EtOAc = 2/1) to give the debenzoylated derivatives **10a**-**e** as white foams.

4.1.4.1. 1-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-((trityloxy)methyl)-4,6a-dihydro-3aH-cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (**10a**).

Yield: 81%; $[\alpha]_D^{25} = -37.04$ (*c* 0.20, MeOH); UV (MeOH) λ max 263 nm; ¹H NMR (500 MHz, CDCl₃) δ 9.43 (bs, 1 H), 7.46 (d, *J* = 7.4 Hz, 6 H), 7.46 (t, *J* = 7.2 Hz, 6 H), 7.22 (d, *J* = 7.3 Hz, 3 H, merged with CDCl₃), 6.90 (d, *J* = 8.0 Hz, 1 H), 5.73 (dd, *J* = 1.5, 8.0 Hz, 1 H), 5.34 (t, *J* = 5.4 Hz, 1 H), 5.27 (s, 1 H), 4.56 (t, *J* = 5.0 Hz, 1 H), 3.97 (d, *J* = 12.7 Hz, 1 H), 3.83 (d, *J* = 12.7 Hz, 1 H), 1.44 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ

163.1, 150.3, 149.9 (d, J = 228.4 Hz), 143.6, 141.2, 128.6, 127.9, 127.1, 122.6, 112.3, 103.0, 87.4, 80.3 (d, J = 5.3 Hz), 79.7 (d, J = 7.3 Hz), 65.7 (d, J = 19.1 Hz), 56.9, 27.4, 25.7; ¹⁹F NMR (378 MHz, CDCl₃) δ –130.5; HRMS (FAB+) found: 541.2132 [calcd for C₃₂H₃₀FN₂O₅ (M+H)⁺ 541.5594].

4.1.4.2. 5-Fluoro-1-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6adihydro-3aH-cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (**10b**)

Yield: 63%; $[α]_D^{25} = -16.94$ (*c* 0.36, MeOH); UV (MeOH) $λ_{max}$ 268 nm; ¹H NMR (400 MHz, CDCl₃) δ 9.14 (bs, 1 H), 7.45-7.48 (m, 6 H), 7.22-7.32 (m, 9 H), 6.97 (d, *J* = 5.4 Hz, 1 H), 5.31 (m, 2 H), 4.52 (t, *J* = 5.2 Hz, 1 H), 4.01 (d, *J* = 12.6 Hz, 1 H), 3.86 (d, *J* = 12.8 Hz, 1 H), 1.35 (s, 3 H), 1.44 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3 (d, *J* = 26.8 Hz), 149.5 (d, *J* = 285.5 Hz), 148.9, 143.5, 140.8 (d, *J* = 238.7 Hz), 128.6, 127.9, 127.3, 125.2 (d, *J* = 32.8 Hz), 123.4 (d, *J* = 3.1 Hz), 112.6, 87.5, 80.3 (d, *J* = 6.8 Hz), 79.5 (d, *J* = 9.2 Hz), 65.6 (d, *J* = 19.6 Hz), 56.9, 27.3, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -128.2, -165.4; MS (ESI–) found: 557.1891 [calcd for C₃₂H₂₇F₂N₂O₅ (M-H)⁻ 557.1888].

4.1.4.3. 5-Chloro-1-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6adihydro-3aH-cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (**10c**).

Yield: 62%; $[\alpha]_D^{25} = -55.26$ (*c* 0.19, MeOH); UV (MeOH) λ_{max} 276 nm; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (bs, 1 H), 7.46 (d, *J* = 7.4 Hz, 7 H), 7.19-7.32 (m, 9 H), 5.32-5.35 (m, 2 H), 4.55 (t, *J* = 5.3 Hz, 1 H), 3.98 (d, *J* = 12.8 Hz, 1 H), 3.82 (d, *J* = 12.8 Hz, 1 H), 1.44 (s, 3 H), 1.35(s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 149.6 (d, *J* = 285.7 Hz), 149.3, 143.5, 137.8, 128.6, 127.9, 127.2, 123.3 (d, *J* = 3.1 Hz), 112.6, 109.9, 87.5, 80.3 (d, *J* = 6.7

Hz), 79.6 (d, J = 9.2 Hz), 66.0 (d, J = 20.2 Hz), 56.9, 27.3, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) $\delta - 128.2$; MS (ESI+) found 597.1556 [calcd for C₃₂H₂₈ClFN₂NaO₅ (M+Na)⁺ 597.1568].

4.1.4.4. 5-Bromo-1-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6adihydro-3aH-cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H, 3H)-dione (**10d**).

Yield: 51%; $[α]_D^{25} = -52.50$ (*c* 0.20, MeOH); UV (MeOH) $λ_{max}$ 279 nm; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (bs, 1 H), 7.46-7.48 (m, 6 H), 7.22-7.32 (m, 10 H), 5.34 (t, *J* = 6 Hz, 1 H), 5.30 (s, 1 H), 4.57 (t, *J* = 5.1 Hz, 1 H), 3.98 (d, *J* = 12.6 Hz, 1 H), 3.80 (d, *J* = 12.6 Hz, 1 H), 1.44 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 149.7 (d, *J* = 285.4 Hz), 149.6, 143.5, 140.4, 128.6, 127.9, 127.2, 123.2 (d, *J* = 2.9 Hz), 112.6, 97.6, 87.5, 80.3 (d, *J* = 6.6 Hz), 79.7 (d, *J* = 9.3 Hz), 66.2 (d, *J* = 20.2 Hz), 56.9, 27.3, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -128.2; MS (ESI+) found 619.1073 [calcd for C₃₂H₂₉BrFN₂O₅ (M+H)⁺ 619.1244].

4.1.4.5. 1-((3aS,4S,6aR)-5-Fluoro-2,2-dimethyl-6-(trityloxymethyl)-4,6a-dihydro-3aH-cyclopenta-[d][1,3] dioxol-4-yl)-5-iodopyrimidine-2,4(1H,3H)-dione (**10e**).

Yield: 63%; $[\alpha]_D^{25} = -70.67$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 284 nm; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (bs, 1 H), 7.43-7.48 (m, 7 H), 7.22-7.33 (m, 9 H), 5.35 (t, *J* = 5.4 Hz, 1 H), 5.27 (s, 1 H), 4.58 (t, *J* = 5.1 Hz, 1 H), 3.96 (d, *J* = 12.5 Hz, 1 H), 3.78 (d, *J* = 12.5 Hz, 1 H), 1.43 (s, 3 H), 1.35(s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 149.9, 149.8 (d, *J* = 285.7 Hz), 145.6, 143.5, 128.6, 127.9, 127.2, 123.0 (d, *J* = 2.8 Hz), 112.5, 110.0, 87.4, 80.3 (d, *J* = 6.5 Hz), 79.7 (d, *J* = 9.2 Hz), 69.1, 66.3 (d, *J* = 21.2 Hz), 56.9, 27.3, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -128.2; MS (ESI+) found: 689.0916 [calcd for C₃₂H₂₈FIN₂NaO₅ (M+Na)⁺ 689.0925].

4.1.5. General Procedure for Trityl and Isopropylidene Group Deprotection

A 2 *N* HCl solution (0.6 M) was added dropwise to a cooled (0 °C) solution of **10a-e** (1.0 equiv) in MeOH (0.6 M). After stirring at room temperature for 18 h, the reaction mixture was co-evaporated with MeOH three times. The residue was diluted with MeOH and was neutralized with saturated methanolic ammonia. The resulting reaction mixture was allowed to stir at room temperature for 1 h, and was then evaporated. Finally, the crude residue was purified by column chromatography (¹⁸C reverse-phase silica gel, H₂O/MeCN = 99/1) to give the 5-halouracil derivatives **3a-e** as white solids.

4.1.5.1. 1-((1S,4R,5S)-2-Fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2-en-1yl)pyrimidine-2,4(1H,3H)-dione (**3a**)[6]

Yield : 80%; mp 78-79 °C; $[α]_D^{27.2} = -93.5$ (*c* 1.2, MeOH); UV (MeOH) λ_{max} 264.0 nm; ¹H NMR (400 MHz, CD₃OD) δ 4.12 (dt, *J* = 2.4, 13.2 Hz, 1 H), 4.19 (td, *J* = 1.2, 5.6 Hz 1 H), 4.37 (d, *J* = 12.8 Hz, 1 H), 4.68 (td, J = 1.2, 6.0 Hz, 1 H), 5.43 (bs, 1 H), 5.73 (d, *J* = 8.0 Hz, 1 H), 7.47 (dd, *J* = 1.2, 8.0 Hz, 1 H); ¹³C (100 MHz, CD₃OD) δ 166.8, 155.4 (d, *J* = 284.6 Hz), 153.6, 144.7, 123.8 (d, *J* = 1.9 Hz), 104.1, 75.5 (d, *J* = 5.3 Hz), 71.6 (d, *J* = 8.8 Hz), 66.1 (d, *J* = 17.6 Hz), 55.1; ¹⁹F (376 MHz, CD₃OD) δ -128.9; HRMS (ESI+) found 259.0722 [calculated for C₁₀H₁₂FN₂O₅ 259.065 (M+H)⁺]; Anal. calcd for C₁₀H₁₁FN₂O₅: C, 46.52; H, 4.29; N, 10.85. Found: C, 46.55; H, 4.31; N, 10.91.

4.1.5.2. 5-*Fluoro-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-*2-enyl)pyrimidine-2,4(1H,3H)-dione (**3b**). Yield: 52%; m.p: charred above 213 °C; $[\alpha]_D^{25} =$ -10.00 (c 0.21, MeOH); UV (MeOH) λ_{max} 272 nm; ¹H NMR (400 MHz, CD₃OD) δ 7.74 (dd, J = 0.8, 6.4 Hz, 1 H), 5.46 (bs, 1 H), 4.68 (td, J = 1.6, 6.0 Hz, 1 H), 4.37 (d, J = 13.2 Hz, 1 H), 4.19 (td, J = 1.6, 5.6 Hz, 1 H), 4.14 (t, J = 2.4 Hz, 1 H), 4.11 (t, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CD₃OD) δ 159.5 (d, J = 25.8 Hz), 154.5 (d, J = 284.9), 151.7, 143.6 (d, J = 233.2 Hz), 127.8 (d, J = 34.2 Hz), 123.6, 74.8 (d, J = 5.3 Hz), 70.9 (d, J = 8.3 Hz), 65.4 (d, J = 18.2 Hz), 54.4; ¹⁹F NMR (376 MHz, CD₃OD) δ -126.9, -162.6 (d, J = 6.4 Hz); MS (FAB) found: 277.0645 [calcd for C₁₀H₁₁F₂N₂O₅ (M+H)⁺ 277.0636]; Anal. Calcd for C₁₀H₁₁F₂N₂O₅: C, 43.49; H, 3.65; N, 10.14. Found: C, 43.09; H, 3.61; N, 9.98.

4.1.5.3. 5-Chloro-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2-enyl)pyrimidine-2,4(1H,3H)-dione (**3c**). Yield: 50%; m.p: 124-126 °C; $[\alpha]_D^{25} = -121.33$ (c 0.15, MeOH); UV (MeOH) λ_{max} 278 nm; ¹H NMR (400 MHz, CD₃OD) δ 7.82 (d, J = 0.8 Hz, 1 H), 5.46 (bs, 1 H), 4.69 (td, J = 1.6, 6.0 Hz, 1 H), 4.38 (d, J = 13.2 Hz, 1 H), 4.21 (td, J = 1.2, 6.0 Hz, 1 H), 4.14 (t, J = 2.4 Hz, 1 H), 4.11 (t, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CD₃OD) δ 161.5, 154.4 (d, J = 284.2 Hz), 152.1, 140.9, 123.5, 110.3, 74.9 (d, J = 5.3 Hz), 70.8 (d, J = 8.4 Hz), 65.8, 65.7, 54.4; ¹⁹F NMR (376 MHz, CD₃OD) δ -126.9; MS (FAB+) found 293.0345 [calcd for C₁₀H₁₁ClFN₂O₅ (M+H)⁺ 293.0341]; Anal. Calcd for C₁₀H₁₁ClFN₂O₅: C, 41.04; H, 3.44; N, 9.57. Found: C, 41.34; H, 3.04, N, 9.17.

4.1.5.4. 5-Bromo-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2enyl)pyrimidine-2,4(1H,3H)-dione (**3d**). Yield: 74%; m.p: 68-70 °C; $[\alpha]_D^{25} = -163.68$ (c 0.19, MeOH); UV (MeOH) λ max 281 nm; ¹H NMR (400 MHz, CD₃OD) δ 7.89 (s, 1 H), 5.45 (bs, 1 H), 4.67 (t, J = 5.2 Hz, 1 H), 4.37 (d, J = 13.0 Hz, 1 H), 4.21 (t, J = 5.6 Hz, 1 H), 4.11 (d, J = 13.0 Hz, 1 H); ¹³C NMR (100 MHz, CD₃OD) δ 161.7, 154.5 (d, J = 284.2 Hz), 152.4, 143.5, 123.4, 98.0, 74.9 (d, J = 5.4 Hz), 70.9 (d, J = 8.4 Hz), 65.8 (d, J = 17.4 Hz), 54.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -126.9; MS (FAB+) found 337.1014 [calcd for C₁₀H₁₀BrFN₂O₅ (M+H)⁺

336.9835]; Anal. Calcd for C₁₀H₁₀BrFN₂O₅: C, 35.63; H, 2.99; N, 8.31. Found: C, 35.34; H, 2.67; N, 8.32.

4.1.5.5. $1 \cdot ((15,4R,5S)-2 \cdot Fluoro \cdot 4,5 \cdot dihydroxy \cdot 3 \cdot (hydroxymethyl) cyclopent \cdot 2 \cdot enyl) \cdot 5 \cdot iodopyrimidine \cdot 2,4(1H,3H) \cdot dione (3e)$. Yield: 61%; m.p: 87-89 °C; $[\alpha]_D^{25} = -153.24$ (c 0.37, MeOH); UV (MeOH) λ_{max} 287 nm; ¹H NMR (400 MHz, CD₃OD) δ 7.90 (d, J = 0.8 Hz, 1 H), 5.43 (bs, 1 H), 4.68 (td, J = 1.2, 5.6 Hz, 1 H), 4.38 (d, J = 12.8 Hz, 1 H), 4.22 (td, J = 1.2, 5.6 Hz, 1 H), 4.38 (d, J = 12.8 Hz, 1 H), 4.22 (td, J = 1.2, 5.6 Hz, 1 H), 4.12 (dt, J = 2.4, 12.8 Hz, 1 H); ¹³C NMR (100 MHz, CD₃OD) δ 162.9, 154.6 (d, J = 284.2 Hz), 152.7, 148.5, 123.2, 74.9 (d, J = 4.6 Hz), 70.8 (d, J = 8.3 Hz), 69.5, 65.7 (d, J = 17.5 Hz), 54.4; ¹⁹F NMR (376 MHz CD₃OD) δ -126.8; MS (ESI+) found 406.9514 [calcd for C₁₀H₁₀FIN₂NaO₅ (M+Na)⁺ 406.9516]; Anal. Calcd for C₁₀H₁₀FIN₂NaO₅: C, 31.27; H, 2.62; N, 7.29. Found: C, 31.45; H, 2.23; N, 7.08.

4.1.6. General Procedure for the Conversion of the Uracil Derivatives **3a-e** to the Cytosine Derivatives **2b** and **3f-i**.

[*Acetylation*] Acetic anhydride (4.0 equiv) was added dropwise to a stirred solution of the pyrimidine derivatives **3a-e** (1.0 equiv) in anhydrous pyridine (0.17 M) under N₂. After stirring at room temperature for 18 h, the reaction mixture was evaporated. Then, the residue was diluted with CH_2Cl_2 and H_2O , and the organic layer was separated, dried over MgSO₄, filtered, and evaporated. Finally, the residue was purified by medium pressure liquid chromatography (silica gel, hexanes/EtOAc = 9/1) to give the triacetates **11a-e** as a thick liquid.

[*Introduction of 1,2,4-triazole*] POCl₃ (10.0 equiv) was added dropwise- to a cooled (0 $^{\circ}$ C) suspension of 1,2,4-triazole (10.0 equiv) in anhydrous CH₃CN (1.1 M) under N₂. After stirring at room temperature for 1 h, the reaction mixture was cooled to 0 $^{\circ}$ C and Et₃N (10.0

equiv) was added, followed by **11a-e** (1.0 equiv) in anhydrous CH_3CN (0.1 M). After stirring for an additional 24 h at room temperature, the reaction mixture was evaporated to a half-volume, diluted with CH_2Cl_2 , and washed with H_2O . The layers were separated, the organic layer was dried over MgSO₄, filtered, and evaporated to give **12a-e**, which were used for the next step without further purification.

[*Amination with Deacetylation*] Aqueous ammonia (0.2 M) was added to a stirred solution of **12a-e** in 1,4-dioxane (0.13 M). After stirring at room temperature for 16 h in glass-sealed tube, the reaction mixture was evaporated. A methanolic ammonia solution (5.0 mL) was added to the above-generated reaction mixture. After stirring for an additional 15 h at room temperature, the reaction mixture was evaporated. Finally, the residue was purified by column chromatography (¹⁸C reverse-phase silica gel, H₂O/MeCN = 99/1) to give **2b** and **3f-i** as white solids.

4.1.6.1. 4-Amino-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2en 1-yl)pyrimidin-2(1H)-one (**2b**) [6]. Yield : 40%; mp 101-102 °C; $[\alpha]_D^{27.2} = -135.47$ (c 5.3, MeOH); UV (MeOH) λ max 274.5 nm; ¹H NMR (400 MHz, CD₃OD) δ 4.10 (dt, J = 2.4, 12.8 Hz, 1 H), 4.24-4.27 (m, 1 H), 4.36 (d, J = 12.8 Hz, 1 H), 4.68 (td, J = 1.2, 6.0 Hz 1H), 5.34 (bs, 1 H), 5.92 (d, J = 7.2 Hz, 1 H), 7.47 (J = 6.8 Hz, 1 H); ¹³C (100 MHz, CD₃OD) δ 167.6, 158.8, 155.6 (d, J = 284.9 Hz), 145.0, 122.0, 96.6, 74.6 (d, J = 3.9 Hz), 70.9 (d, J = 8.9 Hz), 67.1 (d, J = 17.5 Hz), 54.3; ¹⁹F (376 MHz, CD₃OD) δ -128.1; HRMS (ESI+) found 258.0822 [calculated for C₁₀H₁₃FN₃O₄ (M+H)⁺ 258.081]; Anal. calcd for C₁₀H₁₂FN₃O₄: C, 46.59; H, 4.70; N, 16.34. Found: C, 46.63; H, 4.77; N, 16.40. 4.1.6.2. 4-Amino-5-fluoro-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl) cyclopent-2-enyl)pyrimidin-2(1H)-one (**3**f). Yield: 21%; m.p: 121-123 °C; $[\alpha]_D^{25} = -60.00$ (c 0.21, MeOH); UV (MeOH) λ_{max} 276 nm; ¹H NMR (400 MHz, DMSO-d₆) δ 7.94 (d, J = 3.0 Hz, 1 H), 5.82 (s, 1 H), 4.84 (bs, 2 H), 4.51 (s, 1 H), 4.02 (d, J = 7 Hz, 1 H), 3.87-3.93 (m, 2 H); ¹³C NMR (100 MHz, DMSO-d₆) δ 159.8, 154.9 (d, J = 13.7 Hz), 154.1 (d, J = 282.6 Hz), 143.4, 141.0, 139.7 (d, J = 20.2 Hz), 121.9, 79.8 (d, J = 18.2 Hz), 73.4 (d, J = 6.3 Hz), 68.5 (d, J = 9.3 Hz), 52.3; ¹⁹F NMR (376 MHz, CD₃OD) δ -128.6, -157.3 (d, J = 8.6 Hz); MS (ESI+) found 276.0793 [calcd for C₁₀H₁₂F₂N₃O₄ (M+H)⁺ 276.0796]; Anal. Calcd for C₁₀H₁₂F₂N₃O₄: C, 43.32; H, 4.73; N, 15.16. Found: C, 43.45; H, 4.44; N, 14.98.

4.1.6.3. 4-Amino-5-chloro-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl) cyclopent-2-enyl)pyrimidin-2(1H)-one (**3g**). Yield: 42%; m.p: 135-137 °C; $[\alpha]_D^{25} = -166.19$ (c 0.21, MeOH); UV (MeOH) λ_{max} 289 nm; ¹H NMR (400 MHz, DMSO-d₆) δ 7.88 (s, 1 H, D₂O exchangeable), 7.80 (s, 1 H), 7.25 (s, 1 H, D₂O exchangeable), 5.31 (s, 1 H), 5.17 (d, J = 7.1 Hz, 1 H, D₂O exchangeable), 4.98 (d, J = 5.9 Hz, 1 H, D₂O exchangeable), 4.78 (dd, J = 6.2, 4.6 Hz, 1 H, D₂O exchangeable), 4.47 (dd, J = 10.2, 4.8 Hz, 1 H), 4.10-16 (m, 2 H), 3.87-91 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 161.3, 154.1, 152.5 (d, J = 281.9 Hz), 141.4, 121.4, 99.1, 72.7 (d, J = 4.8 Hz), 68.9 (d, J = 9.1 Hz), 64.5 (d, J = 20.4 Hz), 52.6; ¹⁹F NMR (376 MHz, DMSO-d₆) δ –134.5; MS (ESI+) found 292.0492 [calcd for C₁₀H₁₂CIFN₃O₄ (M+H)⁺ 292.0500]; Anal. Calcd for C₁₀H₁₂CIFN₃O₄: C, 40.90; H, 4.46; N, 14.31. Found: C, 40.98; H, 4.06; N, 13.98.

4.1.6.4. 4-Amino-5-bromo-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)
cyclopent-2-enyl)pyrimidin-2(1H)-one (3h). Yield: 42%; m.p: 219-221 °C; [α]_D²⁵ = -188.42
(c 0.19, MeOH); UV (MeOH) λ_{max} 290 nm; ¹H NMR (400 MHz, CD₃OD) δ 7.85 (s, 1 H),

5.37 (bs, 1 H), 4.69 (t, J = 5.2 Hz, 1 H), 4.37 (d, J = 12.8 Hz, 1 H), 4.28 (td, J = 1.2, 5.6 Hz, 1 H), 4.11 (dt, J = 2.4, 12.8 Hz, 1 H); ¹³C NMR (100 MHz, CD₃OD) δ 164.9, 158.4, 157.4 (d, J = 284.4 Hz), 146.4, 123.1, 90.0, 75.5 (d, J = 5.2 Hz), 71.6 (d, J = 8,8 Hz), 68.3 (d, J = 16.8 Hz), 55.1; ¹⁹F NMR (376 MHz, CD₃OD) δ –133.8; MS (ESI+) found 335.9994 [calcd for C₁₀H₁₂BrFN₃O₄ (M+H)⁺ 335.9995]; Anal. Calcd for C₁₀H₁₂BrFN₃O₄: C, 35.52; H, 3.88; N, 12.43. Found: C, 35.13; H, 4.23; N, 12.04.

4.1.6.5. 4-Amino-1-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2enyl)-5-iodopyrimidin-2(1H)-one (**3i**). Yield: 38%; m.p: 228-230 °C; $[\alpha]_D^{25} = -199.44$ (c 0.18, MeOH); UV (MeOH) λ_{max} 297 nm; ¹H NMR (500 MHz, CD₃OD) δ 7.88 (s, 1 H), 5.32 (bs, 1 H), 4.67 (t, J = 5.5 Hz, 1 H), 4.36 (d, J = 13.0 Hz, 1 H), 4.27 (t, J = 6.0 Hz, 1 H), 4.09 (dt, J = 2.0, 13.0 Hz, 1 H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.1, 154.7, 153.2 (d, J = 282.2 Hz), 149.8, 121.5, 73.1, 69.3 (d, J = 9.1 Hz), 65.0 (d, J = 17.9 Hz), 53.0, 49.0; ¹⁹F NMR (376 MHz, CD₃OD) δ -133.7; MS (ESI+) found 384.1259 [calcd for C₁₀H₁₂FIN₃O₄ (M+H)⁺ 383.9857]; Anal. Calcd for C₁₀H₁₂FIN₃O₄: C, 31.19; H, 3.40; N, 10.91. Found: C, 31.56; H, 3.80; N, 9.89.

4.1.7. 6-Chloro-9-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-((trityloxy)methyl)-3a,6adihydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-9H-purine (13). Compound **9** was converted to **13**, using a procedure similar to the one used in the preparation of **10**: ¹H NMR (300 MHz, CDCl₃) δ 8.76 (s, 1 H), 8.01 (s, 1 H), 7.43-7.50 (m, 6 H), 7.20-7.35 (m, 9 H), 5.53-5.62 (m, 2 H), 4.78 (t, J = 5.7 Hz, 1 H), 4.02 (d, J = 12.6 Hz, 1 H), 3.83 (d, J = 12.6 Hz, 1 H), 1.48 (s, 3 H), 1.37 (s 3 H); The resulting **13**, contaminated with DIAD, was used in the next step. 4.1.8. (1S,2R,5S)-5-(6-Chloro-9H-purin-9-yl)-4-fluoro-3-(hydroxymethyl)cyclopent-3ene-1,2-diol (14) and 9-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2en-1-yl)-1H-purin-6(9H)-one (3j).

A suspension of **13** (1.0 g, 1.72 mmol) in 50% TFA (10 mL, 0.17 M) was stirred at room temperature for 15 h. The mixture was evaporated and the residue was purified by column chromatography (silica gel, $CH_2Cl_2/MeOH = 9/1$ to 4/1) to give the 6-chloropurine derivative **14** (387 mg, 75% from **9**) as a pale yellow solid and **3j** (19 mg, 4% from **9**) as a white solid.

Compound **14**: m.p: 103-105 °C; $[\alpha]_D^{20} = -12.52$ (*c* 0.24, MeOH); UV (MeOH) λ_{max} 265 nm; ¹H NMR (600 MHz, CD₃OD) δ 8.72 (s, 1 H), 8.62 (s, 1 H), 5.73 (s, 1 H), 4.83 (m, 1 H, merged with H₂O), 4.63 (t, *J* = 5.5 Hz, 1 H), 4.41 (d, *J* = 12.8 Hz, 1 H), 4.19-4.22 (m, 1 H); ¹³C NMR (150 MHz, CD₃OD) δ 154.5 (d, *J* = 284.4 Hz), 154.1, 153.9, 152.4, 148.2, 133.6, 124.0, 76.1 (d, *J* = 4.3 Hz), 71.8 (d, *J* = 8.6 Hz), 64.8 (d, *J* = 18. Hz), 55.2; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.8, -134.7; MS (ESI+) found 301.0511 [calcd for C₁₁H₁₁ClFN₄O₃ (M+H)⁺ 301.0504].

Compound **3j**: m.p: 280 °C (decomp.); $[\alpha]_D^{20} = -3.23$ (*c* 0.22, MeOH); UV (MeOH) λ_{max} 250 nm; ¹H NMR (800 MHz, CD₃OD) δ 8.11 (s, 1 H), 8.02 (s, 1 H), 5.59 (s, 1 H), 4.78 (t, *J* = 5.0 Hz, 1 H), 4.52 (t, *J* = 5.6 Hz, 1 H), 4.39 (d, *J* = 13.2 Hz, 1 H), 4.17 (dt, *J* = 12.8, 2.2 Hz, 1 H); ¹³C NMR (200 MHz, CD₃OD) δ 159.7, 155.0 (d, *J* = 284.4 Hz), 151.3, 147.5, 141.8, 126.5, 123.5, 76.6 (d, *J* = 4.7 Hz), 71.7 (d, *J* = 8.5 Hz), 64.3 (d, *J* = 18.1 Hz), 55.1; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.7, -132.4, -134.7; MS (ESI+) found: 283.0842 [calcd for C₁₁H₁₁FN₄O₄ (M+H)⁺ 283.0843]; Anal. Calcd for C₁₁H₁₁FN₄O₄: C, 46.81; H, 3.93; N, 19.85. Found: C, 46.98; H, 4.13; N, 19.65.

4.1.9. (1S,2R,5S)-5-(6-Amino-9H-purin-9-yl)-4-fluoro-3-(hydroxymethyl)cyclopent-3-ene-1,2-diol (1b) [3c].

Saturated ammonia in *tert*-butanol (10.0 mL) was added to a solution of **14** (69 mg, 0.23 mmol) in *tert*-butanol (1.0 mL, 0.23 M) in a steel bomb. After stirring at 70 °C for 24 h, the reaction mixture was evaporated. Finally, the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 4/1) to give **1b** (36 mg, 56%) as a white solid: mp 181-184 °C; $[\alpha]_D^{25} = -181.1$ (*c* 0.62, MeOH); UV (H₂O) λ max 260.0 nm; ¹H NMR (400 MHz, CD₃OD) δ 8.17 (s, 1 H), 8.15 (s, 1 H), 5.56 (bs, 1 H), 4.79 (t, *J* = 5.2, 6.0 Hz, 1 H), 4.56 (t, *J* = 5.6 Hz, 1 H), 4.41 (d, *J* = 13.2 Hz, 1 H), 4.16 (td, *J* = 2.4, 13.2 Hz, 1 H); ¹³C NMR(100 MHz, CD₃OD) δ 157.7, 154.7 (d, *J* = 285.3 Hz), 154.2, 151.2, 142.1, 122.8 (d, *J* = 2.3 Hz), 120.8, 75.7 (d, *J* = 4.6 Hz), 71.2 (d, *J* = 8.5 Hz), 63.6 (d, *J* = 18.4Hz), 54.7; ¹⁹F NMR (376 MHz, CD₃OD) δ -133.1; MS (FAB+) found 282 [calcd for C₁₁H₁₃FN₅O₃ 282.2554 (M+H⁺)]; Anal. Calcd for C₁₁H₁₂FN₅O₃: C, 46.98; H, 4.30; N, 24.90. Found: C, 46.99; H, 4.28; N, 25.20.

4.1.10. (1S,2R,5S)-4-Fluoro-3-(hydroxymethyl)-5-(6-(methylamino)-1H-purin-9(6H)yl)cyclopent-3-ene-1,2-diol (**3k**).

Aqueous methylamine (40 wt%, 1 mL) was added to a stirred solution of **14** (57 mg, 0.19 mmol) in ethanol (2.0 mL, 0.1 M) in a glass-seal tube. After stirring for 20 h at room temperature, the mixture was evaporated. Finally, the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 9/1) to give **3k** (24 mg, 43%) as a white solid: m.p: 157-160 °C; $[\alpha]_D^{20} = -14.95$ (*c* 0.36, MeOH); UV (MeOH) λ_{max} 266 nm; ¹H NMR (600 MHz, CD₃OD) δ 8.23 (s, 1 H), 8.08 (s, 1 H), 5.55 (s, 1 H), 4.79 (t, *J* = 5.9 Hz, 1 H), 4.55 (t, *J* = 6.0 Hz, 1 H), 4.41 (d, *J* = 12.8 Hz, 1 H), 4.14-4.19 (m, 1 H), 3.10 (bs, 3 H); ¹³C NMR (150

MHz, CD₃OD) δ 157.6, 155.3 (d, J = 284.4 Hz), 154.6, 150.6, 142.0, 123.2, 121.9, 76.2 (d, J = 5.0 Hz), 71.7 (d, J = 8.7 Hz), 64.1 (d, J = 17.9 Hz), 55.2, 28.5; ¹⁹F NMR (376 MHz, CD₃OD) δ –78.7, –134.3; MS (ESI+) found: 296.1159 [calcd for C₁₂H₁₅FN₅O₃ (M+H)⁺ 296.1159]; Anal. Calcd for C₁₂H₁₅FN₅O₃: C, 48.81; H, 4.78; N, 23.72. Found: C, 48.90; H, 4.48; N, 23.43.

4.1.11. (1S,2R,5S)-5-(6-(Cyclopropylamino)-9H-purin-9-yl)-4-fluoro-3-

(hydroxymethyl)cyclopent-3-ene-1,2-diol (3l).

Cyclopropylamine (82 µL, 1.18 mmol) and triethylamine (230 µL, 1.65 mmol) were successively added to a solution of **14** (71 mg, 0.24 mmol) in ethanol (1.5 mL, 0.16 M) in a steel bomb. The reaction mixture was stirred at 67 °C for 24 h, and was evaporated. The residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 7/1) to give **31** (20 mg, 25%) as a white solid: m.p: 93-95 °C; $[\alpha]_D^{20} = -12.85$ (*c* 0.11, MeOH); UV (MeOH) λ_{max} 270 nm; ¹H NMR (600 MHz, CD₃OD) δ 8.27 (s, 1 H), 8.11 (s, 1 H), 4.79 (t, *J* = 6.0 Hz, 1 H), 4.56 (t, *J* = 5.9 Hz, 1 H), 4.41 (d, *J* = 12.7 Hz, 1 H), 4.14-4.20 (m, 1 H), 2.96 (bs, 1 H), 0.87-0.92 (m, 2 H), 0.62-0.68 (m, 2 H); ¹³C NMR (150 MHz, CD₃OD) δ 157.9, 155.2 (d, *J* = 285.1 Hz), 151.0, 149.5, 142.4, 123.3, 121.9, 76.2 (d, *J* = 4.3 Hz), 71.7 (d, *J* = 4.6 Hz), 64.2 (d, *J* = 18.7 Hz), 55.2, 25.3, 8.36; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.8, -134.4; MS (ESI+) found 322.1326 [calcd for C₁₄H₁₇FN₅O₃ (M+H)⁺ 322.1315]; Anal. Calcd for C₁₄H₁₇FN₅O₃: C, 52.33; H, 5.02; N, 21.80. Found: C, 52.76; H, 4.98; N, 21.99.

4.1.12. 6-Chloro-9-((3aS,4S,6aR)-5-fluoro-2,2-dimethyl-6-((trityloxy)methyl)-3a,6adihydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-9H-purin-2-amine (15). Compound 9 (123 mg, 0.28 mmol) was converted to 15 (90 mg, 55%) as a white foam, using a procedure similar to the preparation of **10**: $[\alpha]_D^{20} = -1.23$ (*c* 0.47, MeOH); UV (MeOH) λ_{max} 255 nm; ¹H NMR (600 MHz, CDCl₃) δ 7.65 (s, 1 H), 7.45-7.49 (m, 6 H), 7.22-7.31 (m, 9 H), 5.58 (t, *J* = 4.56 Hz, 1 H), 5.33 (s, 1 H), 5.00 (s, 2 H), 4.72 (t, *J* = 5.46 Hz, 1 H), 4.04 (d, *J* = 11.8 Hz, 1 H), 3.77-3.82 (m, 1 H), 1.46 (s, 3 H), 1.38 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 153.3, 151.8, 150.2 (d, *J* = 285.1 Hz), 143.7, 140.8, 128.6, 127.9, 127.2, 125.7, 121.5, 112.4, 87.3, 80.5 (d, *J* = 5.8 Hz), 80.2 (d, *J* = 9.3 Hz), 62.4 (d, *J* = 20.1 Hz), 56.5, 27.5, 26.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -129.0; MS (ESI+) found 598.2027 [cacld for C₃₃H₃₀FN₅O₃ (M+H)⁺ 598.2021].

4.1.13. 2-Amino-9-((1S,4R,5S)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopent-2-en-1yl)-1H-purin-6(9H)-one (**3m**).

A suspension of **15** (65 mg, 0.11 mmol) in 50% TFA (6 mL, 0.018 M) was stirred for 15 h at room temperature. The reaction mixture was evaporated and the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 7/1) to give **3m** (19 mg, 59%) as a white solid: m.p: 223 °C (decomp.); $[\alpha]_D^{20} = -6.70$ (*c* 0.29, MeOH); UV (MeOH) λ_{max} 255 nm; ¹H NMR (800 MHz, CD₃OD) δ 7.73 (s, 1 H), 5.38 (s, 1 H), 4.76 (t, *J* = 4.8 Hz, 1 H), 4.49 (t, *J* = 5.6 Hz, 1 H), 4.39 (d, *J* = 12.9 Hz, 1 H), 4.13-4.17 (m, 1 H); ¹³C NMR (200 MHz, CD₃OD) δ 160.2, 156.1, 155.6 (d, *J* = 284.7 Hz), 154.3, 139.2, 123.0, 118.8, 76.2 (d, *J* = 4.9 Hz), 71.7 (d, *J* = 8.6 Hz), 63.7 (d, *J* = 18.1 Hz), 55.0; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.7, -134.3; MS (ESI+) found 298.0950 [calcd for C₁₁H₁₃FN₅O₄ (M+H)⁺ 298.0952]; Anal. Calcd for C₁₁H₁₃FN₅O₄: C, 44.45; H, 4.07; N, 23.56. Found: C, 44.12; H, 3.89; N, 23.16.

4.1.14. (1S,2R,5S)-5-(2,6-Diamino-9H-purin-9-yl)-4-fluoro-3-(hydroxymethyl)cyclopent-3ene-1,2-diol (**3n**).

[*Amination*] Saturated ammonia in *tert*-butanol (10.0 mL) was added to a solution of **15** (110 mg, 0.18 mmol) in *tert*-butanol (1.0 ml, 0.18 M) in a steel bomb. After heating at 90 °C for 20 h, the reaction mixture was evaporated. Finally, the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 19/1) to give a diamino intermediate (26 mg, 25 %) as a white foam: $[\alpha]_D{}^{20} = -2.07$ (*c* 0.08, MeOH); UV (MeOH) λ_{max} 258, 282 nm; ¹H NMR (600 MHz, CDCl₃) δ 7.45-7.51 (m, 7 H), 7.19-7.31 (m, 9 H), 5.67 (bs, 2 H), 5.57 (t, *J* = 5.52 Hz, 1 H), 5.27 (s, 1 H), 4.69-4.80 (m, 3 H), 4.00 (d, *J* = 12.4 Hz, 1 H), 3.76 (d, *J* = 11.9 Hz, 1 H), 1.44 (s, 3 H), 1.36 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 155.8, 150.9 (d, *J* = 288.0 Hz), 143.8, 136.7, 128.7, 128.5, 127.9, 127.1, 120.8, 114.8, 112.2, 87.3, 80.7 (d, *J* = 7.2 Hz), 80.3 (d, *J* = 9.3 Hz), 62.0, 56.7, 27.6, 26.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -129.0; MS (ESI+): found 579.2501 [Calcd for for C₃₃H₃₂FN₆O₃ (M+H)⁺ 579.2520].

[*Deprotection*] A 50% TFA (2.0 mL) was added to a solution of the above generated diamino intermediate (26 mg, 0.045 mmol) in 1,4-dioxane (0.2 mL, 0.2 M), and it was stirred for 20 h at room temperature. Finally, the mixture was evaporated, and the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 7/1) to give **3n** (11 mg, 83%) as a white solid: m.p: 219 °C (decomp.); $[\alpha]_D{}^{20} = -9.01$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 257, 283 nm; ¹H NMR (600 MHz, CD₃OD) δ 7.80 (s, 1 H), 5.39 (s, 1 H), 4.77 (t, *J* = 4.6 Hz, 1 H), 4.51 (t, *J* = 5.4 Hz, 1 H), 4.40 (d, *J* = 13.2 Hz, 1 H), 4.14-4.18 (m, 1 H); ¹³C NMR (150 MHz, CD₃OD) δ 161.9, 157.8, 155.6 (d, *J* = 284.4 Hz), 154.1, 139.5, 123.1, 115.1, 76.1 (d, *J* = 5.0 Hz), 71.7 (d, *J* = 8.6 Hz), 63.6 (d, *J* = 18.0 Hz), 55.1; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.8, -134.0; MS (ESI+) found 297.1108 [calcd for C₁₁H₁₄FN₆O₃ (M+H)⁺ 297.1111]; Anal. Calcd for C₁₁H₁₄FN₆O₃: C, 44.60; H, 4.42; N, 28.37. Found: C, 44.98; H, 4.13; N, 28.19.

4.1.15. (1S,2R,5S)-5-(2-Amino-6-(cyclopropylamino)-9H-purin-9-yl)-4-fluoro-3-

(hydroxymethyl)cyclopent-3-ene-1,2-diol (30).

[*Amination*] Cyclopropylamine (32 µL, 0.46 mmol, 5.0 equiv) and triethylamine (90 µL, 0.644 mmol, 7.0 equiv) were added to a solution of **15** (55 mg, 0.092 mmol, 1.0 equiv) in ethanol (1.0 mL, 0.1 M) in a steel bomb. The reaction mixture was stirred at 60 °C for 24 h, and was then evaporated. The residue was purified with column chromatography (silica gel, CH₂Cl₂/MeOH = 33/1) to give a cyclopropylamino intermediate (27 mg, 47%) as a white foam: $[\alpha]_D^{25} = -0.94$ (*c* 0.45, MeOH); UV (MeOH) λ_{max} 261, 286 nm; ¹H NMR (600 MHz, CDCl₃) δ 7.15-7.50 (m, 6 H), 7.36 (s, 1 H), 7.20-7.30 (m, 9 H), 5.72 (bs, 1 H), 5.57 (t, *J* = 5.0 Hz, 1 H), 5.27 (s, 1 H), 4.73 (t, *J* = 5.0 Hz, 1 H), 4.68 (bs, 2 H), 3.99 (d, *J* = 11.8 Hz, 1 H), 3.75 (d, *J* = 12.4 Hz, 1 H), 2.97 (bs, 1 H), 1.43 (s, 3 H), 1.36 (s, 3 H), 0.81-0.85 (m, 2 H), 0.56-0.62 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 160.0, 156.3, 151.1 (d, *J* = 285.8 Hz), 143.7, 135.9, 128.7, 128.5, 127.9, 127.1, 120.7, 115.1, 112.1, 87.3, 80.7 (d, *J* = 5.7 Hz), 80.3 (d, *J* = 9.3 Hz), 61.8 (d, *J* = 20.8 Hz), 56.6, 27.6, 26.1, 22.6, 7.4; ¹⁹F NMR (376 MHz, CD₃OD) δ -117.1, -128.9; MS (ESI+) found: 619.2828 [calcd for C₃₆H₃₆FN₆O₃ (M+H)⁺ 619.2833].

[*Deprotection*] A 50% TFA (2 mL) was added to a solution of the cyclopropylamino intermediate (27 mg, 0.044 mmol) generated above, in 1,4-dioxane (0.2 mL, 0.2 M) and it was stirred for 20 h at room temperature. Finally, the mixture was evaporated and the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 7/1) to give **3o** (13 mg, 89%) as a white solid: m.p: 57-60 °C; $[\alpha]_D^{20} = -16.27$ (*c* 0.07, MeOH); UV (MeOH) λ_{max} 260, 287 nm; ¹H NMR (600 MHz, CDCl₃) δ 7.82 (s, 1 H), 5.40 (s, 1 H), 4.77 (t, *J* = 5.0 Hz, 1 H), 4.49 (t, *J* = 5.0 Hz, 1 H), 4.39 (d, *J* = 12.8 Hz, 1 H), 4.14-4.18 (m, 1 H), 2.89 (bs, 1 H), 0.89-0.94 (m, 2 H), 0.67-0.73 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 157.2, 153.9, 153.3 (d, *J* = 284.4 Hz), 151.4, 138.1, 121.1, 114.2, 113.0, 74.0 (d, *J* = 5.0 Hz), 69.6 (d, *J* = 8.6 Hz), 61.5 (d, *J* = 18.0 Hz), 53.0, 22.9, 6.3; ¹⁹F NMR (376 MHz, CD₃OD) δ -78.8, -134.2; MS (ESI+)

found: 337.1421 [calcd for C₁₄H₁₈FN₆O₃ (M+H)⁺ 337.1424]; Anal. Calcd for C₁₄H₁₈FN₆O₃: C, 50.00; H, 5.09; N, 24.99. Found: C, 50.23; H, 4.98; N, 25.04.

4.1.16. ((3aS,4S,6aR)-4-(6-Amino-9H-purin-9-yl)-5-fluoro-2,2-dimethyl-3a,6a-dihydro-4H-cyclopenta[d][1,3]dioxol-6-yl)methanol (**16**).

cH₂SO₄ (1 drop) was added dropwise to a stirred suspension of **1b** (21 mg, 0.074 mmol) in acetone (40 mL), at 0 °C under N₂, and the reaction mixture was stirred at room temperature for 6 h. The reaction mixture was then neutralized with solid NaHCO₃, filtered, and evaporated. Finally, the residue was further purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 9/1) to give **16** (21 mg, 92%) as a colorless liquid: ¹H NMR (400 MHz, CD₃OD): δ 8.20 (s, 1 H), 8.13 (s, 1 H), 5.62 (br s, 1 H), 5.54 (td, *J* = 1.7, 6.3 Hz, 1 H), 4.85-4.81 (m, merged with signal due to H₂O in CD₃OD, 1 H), 4.43 (d, *J* = 13.3 Hz, 1 H), 4.17 (dt, *J* = 2.2, 13.3 Hz, 1 H), 1.48 (s, 3 H), 1.36 (s, 3 H); HRMS (ESI+) (m/z): found 322.1309 [calcd for C₁₄H₁₇FN₅O₃ (M+H)⁺ 322.1310].

4.1.17. Tert-butyl (9-((3aS,4S,6aR)-5-fluoro-6-(hydroxymethyl)-2,2-dimethyl-4,6a-dihydro 3aH-cyclopenta[d][1,3]dioxol-4-yl)-9H-purin-6-yl)carbamate (17) and ((3aS,4S,6aR)-4-(N6,N6-Bis(tert-Butoxycarbonyl)-6-amino-9H-purin-9-yl)-5-fluoro-2,2-dimethyl-3a,6adihydro-4H-cyclopenta[d][1,3]dioxol-6-yl)methanol (18).

Trimethylsilyl trifluoromethanesulfonate (5 μ L) was added dropwise to a suspension of **16** (19 mg, 0.059 mmol), hexamethyldisilazane (2 mL), and 4-dimethylaminopyridine (120 mg) and the reaction mixture was heated at 75 °C for 2 h. After concentration, anhydrous THF (10 mL) and di-*t*-butyl dicarbonate (64 mg, 0.29 mmol) were added to the reaction mixture at 0 °C under N₂. After stirring at room temperature for 4 h, the reaction mixture was evaporated and methanol/trimethylamine (5:1, total 12 mL) was added to the residue. Then, it was

heated with stirring at 55 °C for 16 h. Finally, the reaction mixture was evaporated, and the residue was purified by column chromatography (silica gel, $CH_2Cl_2/MeOH = 19/1$) to give **17** (11.5 mg, 48%) and **18** (6.7 mg, 28%) as colorless liquids.

Compound **17**: ¹H NMR (500 MHz, CD₃OD): δ 8.56 (s, 1 H), 8.31 (s, 1 H), 5.69 (br s, 1 H), 5.57 (m, 1 H), 4.89 (m, 1 H), 4.43 (d, *J* = 13.4 Hz, 1 H), 4.18 (d, *J* = 13.4 Hz, 1 H), 3.63 (br s, 1 H), 1.57 (s, 9 H), 1.49 (s, 3 H), 1.36 (s, 3 H); HRMS (ESI+) (m/z): found 422.1839 [calcd for C₁₉H₂₅FN₅O₅ (M+H)⁺ 422.1834].

Compound **18**: ¹H NMR (500 MHz, CD₃OD): δ 8.85 (s, 1 H), 8.56 (s, 1 H), 5.78 (br s, 1 H), 5.62 (m, 1 H), 4.96 (m, 1 H), 4.43 (d, *J* = 13.5 Hz, 1 H), 4.19 (d, *J* = 13.5 Hz, 1 H), 1.50 (s, 3 H), 1.38 (s, 18 H), 1.37 (s, 3 H); HRMS (ESI+) (m/z): found 522.2366 [calcd for C₂₄H₃₃FN₅O₇ (M+H)⁺ 522.2359].

4.1.18. (S)-Isopropyl 2-(((S)-(((3aR,6S,6aS)-6-(6-((tert-butoxycarbonyl)amino)-9H-purin-9-yl)-5-fluoro-2,2-dimethyl-6,6a-dihydro-3aH-cyclopenta[d][1,3]dioxol-4-

yl)methoxy)(phenoxy)phosphoryl)amino)propanoate (19).

A *tert*-butylmagnesium chloride solution (0.15 mL, 1.0 M in THF, 0.15 mmol) was added to a cooled (0 °C) suspension of **17** (8 mg, 0.018 mmol), **18** (5 mg, 0.0095 mmol) and powdered molecular sieves (4 Å, 35 mg) in anhydrous THF (25 mL) under N₂. After 5 min, a solution of pentafluro-phosphoramidate reagent **P** (20 mg, 0.046 mmol) [10] in anhydrous THF (5 mL) was added dropwise and the reaction mixture was stirred at room temperature for 48 h. Next, the reaction mixture was cooled in an ice bath and then quenched by dropwise addition of methanol (10 mL). The reaction mixture was filtered through a Celite and was washed with methanol (50 mL) and evaporated. Finally, the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 9/1) to give the phosphoramidate **19** (6.9 mg,

33%) as a colorless liquid: ¹H NMR (500 MHz, CD₃OD): δ 8.53 (s, 1 H), 8.33 (s, 1 H), 7.30 (m, 2 H), 7.22-7.13 (m, 3 H), 5.72 (br s, 1H), 5.53 (m, 1 H), 4.91-5.02 (m, 3 H), 4.65 (m, 1 H), 4.40 (br s, 1 H), 3.90-3.98 (m, 1 H), 1.58 (s, 9 H), 1.52 (s, 3 H), 1.32-1.38 (m, 6 H), 1.20-1.26 (m, 6 H); HRMS (ESI+) found 691.2671 [calcd for C₃₁H₄₁FN₆O₉P (M+H)⁺ 691.2651].

4.1.19. (S)-Isopropyl 2-(((S)-(((3S,4S,5R)-3-(6-amino-9H-purin-9-yl)-2-fluoro-4,5-

dihydroxycyclopent-1-en-1-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate (3p).

A solution of **19** (4 mg, 0.005 mmol) in 5 mL of formic acid/H₂O (1:1, 2 mL) was stirred at room temperature for 8 h. The reaction mixture was evaporated at 25 °C, and the residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 6/1) followed by lyophilization (H₂O/acetonitrile = 3:1, 3 mL) to give **3p** (2.7 mg, 85%) as a white solid: UV (MeOH) λ_{max} 259.5 nm; ¹H NMR (500 MHz, CD₃OD): δ 8.23 (s, 1 H), 8.19 (s, 1 H), 7.40 (m, 2 H), 7.24 (d, *J* = 8.5 Hz, 2 H), 7.18 (m, 1 H), 5.62 (br s, 1 H), 4.92-5.01 (m, 2 H), 4.75-4.80 (m, 1H), 4.70 (m, 1H), 4.56 (m, 1 H), 3.90-3.99 (m, 1 H), 1.35 (d, *J* = 7.0 Hz, 3 H), 1.22 (d, *J* = 6.3 Hz, 6 H); HRMS (ESI+) (m/z): found 551.1799 [calcd for C₂₃H₂₉FN₆O₇P (M+H)⁺ 551.1814]; Anal. Calcd for C₂₃H₂₈FN₆O₇P: C, 50.18; H, 5.13; N, 15.27; Found: C, 50.15; H, 5.11; N, 15.23.

4.2. Biology

4.2.1. Cell culture

The human lung cancer (A549), colon cancer (HCT-116), stomach cancer (SNU-638), breast cancer (MDA-MB-231), liver cancer (SK-Hep-1), and prostate cancer (PC-3) cell lines were provided by the Korean Cell Line Bank (Seoul, Korea). The cells were grown in medium (DMEM for the MDA-MB-231 and SK-Hep-1 cells and RPMI 1640 medium for the A549, HCT-116, SNU-638 and PC-3 cells) supplemented with 10% fetal bovine serum (FBS)

and antibiotics–antimycotics (PSF: 100 units/mL penicillin G sodium, 100 μ g/mL streptomycin, and 250 ng/mL amphotericin B). All cells were incubated at 37 °C in a humidified atmosphere containing 5% CO₂.

4.2.2. Cytotoxicity assay (sulforhodamine B assay)[12,13]

The anticancer activity of the test compounds against various human cancer cells was determined using the sulforhodamine B (SRB) assay. The cells were seeded in 96-well plates at a density of 5×10^4 cells/mL and were treated with various concentrations of the test compounds for 72 h. the cells were fixed with 10% trichloroacetic acid solution, washed with tap water, and dried in air. The cells were stained with 0.4% SRB in 1% acetic acid solution. After washing the unbound dye and drying, the stained cells were dissolved in 10 mM Tris (pH 10.0), and the absorbance was measured at 515 nm. Cell viability was calculated by comparison with the absorbance of the vehicle-treated control group. The IC₅₀ values were determined by nonlinear regression analysis using TableCurve software.

Acknowledgements

This work was supported by a grant from the Mid-career Research program (370C-20160046) of National Research Foundation (NRF), Korea and the R&D Convergence Center Support Program of the Ministry of Agriculture, Food and Rural Affairs, Korea.

References

 (a) S. Yaginuma, N. Muto, M. Tsujino, Y. Sudate, M. Hayashi, M. Otani, Studies on neplanocin A, new antitumor antibiotic I. producing organism, isolation and characterization, J. Antibiot. 34 (1981) 359–366. (b) M. Hayashi, S. Yaginuma, H. Yoshioka, K. Nakatsu,

Studies on neplanocin A, new antitumor antibiotic II. Structure determination, J. Antibiot. 34 (1981) 675–680.

[2] (a) M.A. Turner, X. Yang, D. Yin, K. Kuczera, R.T. Borchardt, P.L. Howell, Structure and function of *S*-adenosylhomocysteine hydrolase, Cell Biochem. Biophys. 33 (2000) 101–125. (b) G.L. Cantoni, The centrality of *S*-adenosylhomocysteinase in the regulation of the biological utilization of *S*-adenosylmethionine, In Biological Methylation and Drug Design; RT. Borchardt, C.R. Creveling, P.M. Ueland, Eds.; Humana Press: Clifton, NJ, 1986; pp 227–238. (c) B.T. Keller, R.T. Borchardt, Metabolism and mechanism of action of neplanocin A-A potent inhibitor of *S*-adenosylhomocysteine hydrolase, In Biological Methylation and Drug Design; R.T. Borchardt, C.R. Creveling, P.M. Ueland, Eds.; Humana Press: Clifton, NJ, 1986; pp 385–396.

[3] (a) L.S. Jeong, H.R. Moon, J.G. Park, D.H. Shin, W.J. Choi, K.M. Lee, H.O. Kim, M.W. Chun, H.D. Kim, J.H. Kim, Synthesis and biological evaluation of haloneplanocin A as novel mechanism-based inhibitors of *S*-adenosylhomocysteine hydrolase, Nucleosides, Nucleotides Nucleic Acids 22 (2003) 589–592. (b) L.S. Jeong, S.J. Yoo, K.M. Lee, M.J. Koo, W.J. Choi, H.O. Kim, H.R. Moon, M.Y. Lee, J.G. Park, S.K. Lee, M.W. Chun, Design, synthesis, and biological evaluation of fluoroneplanocin A as the novel mechanism-based inhibitor of *S*-adenosylhomocysteine hydrolase, J. Med. Chem. 46 (2003) 201–203. (c) K.M. Lee, W.J. Choi, Y. Lee, H.J. Lee, L.X. Zhao, H.W. Lee, J.G. Park, H.O. Kim, K.Y. Hwang, Y. Heo, X-ray crystal structure and binding mode analysis of human *S*-adenosylhomocysteine hydrolase complexed with novel mechanism-based inhibitors, haloneplanocin A analogues, J. Med. Chem. 54 (2011) 930–938. (d) G. Chandra, Y.W. Moon, Y. Lee, J.Y. Jang, J. Song, A. Nayak, K. Oh, V.A. Mulamoottil, P.K. Sahu, G. Kim, T.-S. Chang, M. Noh, S.K. Lee, S. Choi, L.S. Jeong, Structure–activity relationships of neplanocin A analogues as *S*-adenosylhomocysteine hydrolase inhibitors and their antiviral and antitumor activities, J.

Med. Chem. 58 (2015) 5108–5120.

[4] A.S.F. do Nascimento, S. Côté, L.S. Jeong, J. Yu, R.L. Momparler, Synergistic antineoplastic action of 5-aza-2'-deoxycytidine (decitabine) in combination with different inhibitors of enhancer of zeste homolog 2 (EZH2) on human lung carcinoma cells, J. Cancer Res. Ther. 4 (2016) 42–49.

[5] V.E. Marquez, M.-I. Lim, S.P. Treanor, J. Plowman, M.A. Priest, A. Markovac, M.S. Khan, B. Kaskar, J.S. Driscoll, Cyclopentenylcytosine. A carbocyclic nucleoside with antitumor and antiviral properties, J. Med. Chem. 31 (1988) 1687–1694.

[6] W.J. Choi, H.-J. Chung, G. Chandra, V.A. Mulamoottil, L.X. Zhao, H.W. Lee, A. Nayak, M.S. Majik, H.O. Kim, J.-H. Kim, Y.B. Lee, C.H. Ahn, S.K. Lee, L.S. Jeong, Fluorocyclopentenyl-cytosine with broad spectrum and potent antitumor activity, J. Med. Chem. 55 (2012) 4521–4525.

[7] G.J. Peters, K. Smid, L. Vechhi, I. Kathmann, D. Sarkisjan, R.J. Honeywell, N. Losekoot,
O. Ohne, A. Orbach, E. Blaugrund, L.S. Jeong, Y.B. Lee, C.H. Ahn, D.J. Kim, Metabolism,
mechanism of action and sensitivity profile of fluorocyclopentenylcytosine (RX-3117; TV-1360), Invest. New Drugs 31 (2013) 1444–1457.

[8] W.J. Choi, H.R. Moon, H.O. Kim, B.N. Yoo, J.A. Lee, D.H. Shin, L.S. Jeong, Preparative and stereoselective synthesis of the versatile intermediate for carbocyclic nucleosides: effects of the bulky protecting groups to enforce facial selectivity, J. Org. Chem. 69 (2004) 2634–2636.

[9] A. Nayak, P.K. Sahu, J. Song, S.K. Lee, L.S. Jeong, Regio- and stereoselective synthesis of 2'-β-substituted-fluoroneplanocin A analogues as potential anticancer agents, Org. Biomol. Chem.13 (2015) 9236–9248.

[10] (a) K.J. Divaker, C.B. Reese, 4-(1,2,4-Triazol-1-yl)- and 4-(3-nitro-1,2,4-triazol-1-yl)-1-(β-D-2,3,5-tri-*O*-acetylarabinofuranosyl)pyrimidin-2(1*H*)-ones. Valuable intermediates in the

synthesis of derivatives of 1-β-D-arabinofuranosyl)cytosine (Ara-C), J. Chem. Soc. Perkin I (1982) 1171–1176. (b) J. Wang, Y. Jin, K.L. Rapp, R.F. Schinazi, C.K. Chu, D- and L-2',3'-Didehydro-2',3'-dideoxy-3'-fluoro-carbocyclic nucleosides: Synthesis, anti-HIV activity and mechanism of resistance, J. Med. Chem. 50 (2007) 1828–1839. (c) K. Ciszewski, L. Celewicz, K. Golankiewicz, Novel synthetic route to 1-substituted cytosines, Synthesis 7 (1995) 777–779.

[11] (a) A.Q. Siddiqui, C. Balatore, C. McGuigan, T.N. Pathirana, J. Balzarini, E. De Clercq, The presence of substituents on the aryl moiety of the aryl phosphoramidate derivative of d4T enhances anti-HIV efficacy in cell culture: a structure–activity relationship, J. Med. Chem.
42 (1999) 393-399. (b) B.S. Ross, P.G. Reddy, H.-R. Zhang, S. Rachakonda, M. Sofia, J. Synthesis of diastereomerically pure nucleotide phosphoramidates, J. Org. Chem. 76 (2011) 8311–8319.

[12] J.I. Kang, J. Hong, J.S. Choi, S.K. Lee, Columbianadin inhibits cell proliferation by inducing apoptosis and necroptosis in HCT116 colon cancer cells, Biomol. Ther. 24 (2016) 320–327.

[13] S. Jo, J. Hong, H.J. Park, S.K. Lee, Anticancer activity of novel daphnane diterpenoids from *Daphne genkwa* through cell-cycle arrest and suppression of Akt/STAT/Src Signalings in human lung cancer cells, Biomol. Ther. 20 (2012) 513–519.

[14] T.B. Miranda, C.C. Cortez, C.B. Yoo, G. Liang, M. Abe, T.K. Kelly, V.E. Marquez, P.A. Jones, DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8 (2009) 1579–1588.

[15] A. Hayden, P.W. Johnson, G. Packham, S.J. Crabb. *S*-Adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res. Treat. 127 (2011) 109–119.

· Eighteen 6'-fluorocyclopentenyl-pyrimidines and -purines were designed and synthesized.

 \cdot The mechanism of action of the cytosine analog **2b** is related to the inhibition of DNA/RNA polymerase.

 \cdot The mechanism of action of the adenosine analogs, **1b** and **3k** is related to the inhibition of SAH hydrolase, associated with the inhibition of histone methyltransferase.

Chillip Marine