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Abstract

New secondary benzenesulphonamide-substituted coumarylthiazole derivatives were synthe-
sized and their inhibitory effects on purified carbonic anhydrase I and II were evaluated using
CO2 as a substrate. The result showed that all the synthesized compounds exhibited inhibitory
activity on both hCA I and hCA II with N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)naphthalene-2-
sulphonamide (5f, IC50 value of 5.63 and 8.48 mM, against hCA I and hCA II, respectively) as the
strongest inhibitor revealed from this study. Structure–activity relationship revealed that the
inhibitory activity of the synthesized compounds is related to the type of the halogen and bulky
substituent on the phenyl ring. In addition, the cupric reducing antioxidant capacities (CUPRAC)
and ABTS cation radical scavenging abilities of the synthesized compounds were assayed.
4-methoxy-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesulphonamide (5e) exhibited the
strongest ABTS and CUPRAC activity with IC50 value of 48.83 mM and A0.50 value of 23.29 mM,
respectively.
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Introduction

The carbonic anhydrases (CAs; EC 4.2.1.1) are a superfamily
of metalloenzymes, which catalyse the interconversion between
CO2 and HCO3� by using a metal hydroxide nucleophilic
mechanism1–4. These metalloenzymes are known in nature as
five different, genetically distinct families, the a-, b-, g-, d- and
f-CAs5–7. Additionally, a new genetic family of CAs, which was
called the Z-CA class, was discovered by Supuran’s group in the
last year8. The a-, b-, d-CAs use Zn(II) ions at the active site, the
g-CAs are Fe(II) enzymes [but they are active also with bound
Zn(II) or Co(II) ions], while the f-class uses Cd(II) or Zn(II) to
perform the physiologic reaction catalysis5–7. Sixteen different
a-CA isoforms were isolated in mammals, where they play crucial
physiological roles. Some of them are cytosolic (CA I, CA II, CA
III, CA VII, CA XIII), others are membrane-bound (CA IV, CA
IX, CA XII, CA XIV and CA XV), CA VA and CA VB are
mitochondrial, and CA VI is secreted in saliva and milk9,10. The
isozyme CA I is found in many tissues, and a presented study
from Gao et al.11 demonstrated that this enzyme is involved in
retinal and cerebral edema, and its inhibition may be a valuable
tool for fighting these conditions. The CA II is involved in several
diseases, such as glaucoma, edema, epilepsy, and probably
altitude sickness12. Although there are many studies on this

enzyme, the CA enzyme family continues to capture the attention
of drug discovery scientists and clinicians as the knowledge
regarding the therapeutic implications associated with this
enzyme class continues to grow4,13,14.

The CA inhibitor (CAI) targeting enzymes from mammals,
which belong to the a-CA has been classified as (i) metal ion
binders [inorganic anions; sulphonamides and their isosteres (such
as the sulfamates, sulfamides, N-hydroxy-sulphonamides)]; (ii)
compounds which anchor to the zinc-coordinated water molecule/
hydroxide ion (phenols, polyamines, sulfocoumarins, etc.); (iii)
compounds occluding the entrance of the active site (coumarins
and their isosteres); and (iv) compounds which bind in an
unknown manner (secondary/tertiary sulphonamides, imatinib,
nilotinib, etc.)15–22.

Sulphonamides are the best known CAIs and are used for the
treatment of glaucoma in medicinal chemistry. Members of this
class include aromatic, heterocyclic or aliphatic primary sul-
phonamides, but most drugs belong to the heterocyclic class23,24.
The coumarin is a common moiety found in many biologically
active natural and therapeutic products and thus represents a very
important pharmacophore25–27. Besides the numerous activities of
coumarin compounds, they were recently shown to constitute a
novel class of inhibitors of the metalloenzyme CA28–30.
In addition, Supuran et al.31 reported that the hydrolysis of
the sulfocoumarin to the vinyl sulfonic acid is mediated by the
zinc hydroxide nucleophile from the CA active site, as for
the coumarins which are transformed to 2-hydroxycinnamic acids.
Interestingly, this sulfonic acid moiety is not coordinated to the
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Zn(II) ion but it is anchored to the zinc-bound water molecule/
hydroxide ion31.

In this work, novel sulphonamides substituted coumarylthiazole
were synthesized and their antioxidant activities and inhibitory
effects on the activity of purified human carbonic anhydrase (hCA)
I and II were evaluated. In the present study, our main aim is to
check whether the new secondary sulphonamide derivatives
substituted coumarin modified by the addition of thiazole ring
(A) (Figure 1) may show higher inhibitory effect on CA enzymes
with respect to the compounds previously investigated.

Methods

Chemistry

Melting points were taken on a Barnstead Electrothermal 9200
(Staffordshire, UK). IR spectra were registered on a Shimadzu
Prestige-21 (200 VCE) spectrometer (Columbia, MD). 1H and
13C-NMR spectra were registered on a Varian Infinity Plus
spectrometer at 300 and at 75 Hz, respectively. 1H and 13C
chemical shifts are referenced to the internal deuterated solvent.
The elemental analyses were carried out with a Leco CHNS-932
(St. Joseph, MI) instrument. Spectrophotometric analyses were
performed by a BioTek Power Wave XS (BioTek, Winooski, VT).
Sepharose 4B, L-tyrosine, sulphonamide, synthetic starting mater-
ial, reagents and solvents were purchased from Merck, Alfa Easer,
Sigma-Aldrich and Fluka.

General procedure for the synthesis of
3-acetylcoumarin (2)

A mixture of benzaldehyde (3 mmol), reactive methylene com-
pound (3 mmol) and L-proline (10 mol%) was heated under neat
conditions for 0.5 h. The reaction was monitored by thin-layer
chromatography (TLC). After completion of reaction, the reaction
mixture was cooled and recrystallized from ethanol to get pure
crystalline 3-acetylcoumarin (2) in 92% yield (0.52 g). Spectral
data of this compound matched with the literature32.

General procedure for the synthesis of 3-(bromoacetyl)-
coumarin (3)

To a solution of 2 (0.01 mol) in 20 mL chloroform was added
0.01 mol of bromine in 5 mL chloroform, with intermittent
shaking and warming to decompose an addition product. The
mixture was heated for fifteen minutes on a water-bath to expel

most of the hydrogen bromide, then cooled and filtered. The solid
was washed with ether and recrystallizated with acetic acid.
About 2.60 g product was obtained in 98% yield. Spectral data of
this compound matched with the literature33.

General procedure for the synthesis of 3-(2-amino-1,3-
thiazol-4-yl)coumarin (4)

Thiourea (5 mmol) was added to the solution of 3 (5 mmol) in
boiling ethanol (20 mL). The mixture was refluxed for 1 h, then
cooled and neutralized with aqueous ammonia. The precipitate
was filtered off, washed with ethanol and used directly without
crystallization or other purification. About 1.098 g product was
obtained in 90% yield. Spectral data of this compound matched
with the literature34.

General procedure for the synthesis of sulphonamides
substituted coumarylthiazole (5a–j)

To a solution of 4 (1 mmol) in dry pyridine was added
sulfonylchloride derivatives (1 mmol). The mixture was refluxed
for 12 h with stirring, than cooled and added to ice water and 10%
HCl. The product was filtered off, washed with water and dried
under vacuum. The products were recrystallizated from ethanol
over 98% purity. Compounds 5a–j were obtained with 68–82%
yields.

4-Methyl-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesul-
phonamide (5a)

Yellow powder, 78% yield (310 mg), m.p.: 235–237 �C; IR: 3366
3287, 3042, 1712, 1634, 1599, 1522, 1365, 1271, 1134, 1081,
765 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 2.51 (3H, s),
7.37–7.48 (4H, m), 7.57 (1H, s), 7.67 (2H, t, J¼ 8.8 Hz), 7.77
(2H, t, J¼ 7.9 Hz), 8.63 (1H, s); 13C NMR (DMSO-d6, 75 MHz)
d/ppm: 21.6, 109.5, 116.7, 119.1, 119.4, 125.7, 126.7, 129.5,
130.2, 133.0, 133.3, 139.7, 139.8, 143.3, 153.0, 158.9, 169.5.
Anal. Calcd. for C19H14N2O4S2: C, 57.27; H, 3.54; N, 7.03;
found: C, 57.24; H, 3.50; N, 7.10.

2,5-Dimethyl-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzene-
sulphonamide (5b)

Orange powder, 82% yield (338 mg), m.p.: 160–162 �C; IR: 3328,
3124, 2965, 1710, 1607, 1528, 1361, 1292, 1131, 1060, 794,
593 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 2.35 (3H, s),

Figure 1. Design strategy of the reported
compounds.
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2.58 (3H, s), 7.24–7.38 (2H, m), 7.43 (2H, t, J¼ 7.9 Hz), 7.64
(1H, s), 7.69 (2H, t, J¼ 7.9 Hz), 7.77 (1H, s), 8.48 (1H, s); 13C-
NMR (DMSO-d6, 75 MHz) d/ppm: 20.2, 21.1, 111.0, 116.7,
119.0, 125.7, 126.2, 128.8, 129.5, 132.9, 133.3, 133.4, 134.0,
135.8, 139.7, 140.1, 142.9, 153.0, 158.3, 168.1. Anal. Calcd. for
C20H16N2O4S2: C, 58.24; H, 3.91; N, 6.79; found: C, 58.28; H,
3.95; N, 6.75.

4-Isopropyl-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzene-
sulphonamide (5c)

Orange powder, 80% yield (340 mg), m.p.: 182–184 �C; IR: 3276,
3142, 2960, 1712, 1606, 1524, 1454, 1360, 1306, 1148, 1090,
938, 755, 569 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 1.21
(6H, d, J¼ 5.8 Hz), 2.93–2.99 (1H, m), 7.37–7.51 (4H, m), 7.63
(1H, s), 7.69 (2H, d, J¼ 7.6 Hz), 7.79 (2H, d, J¼ 8.5 Hz), 8.46
(1H, s); 13C-NMR (DMSO-d6, 75 MHz) d/ppm: 24.1, 34.0, 111.2,
116.7, 119.9, 125.7, 126.8, 127.6, 129.5, 132.1, 133.3, 136.8,
139.6, 140.0, 143.8, 153.0, 158.4, 168.1. Anal. Calcd. for
C21H18N2O4S2: C, 59.14; H, 4.25; N, 6.57; found: C, 59.10; H,
4.28; N, 6.55.

4-(Tert-butyl)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benze-
nesulphonamide (5d)

Orange powder, 72% yield (316 mg), m.p.: 250–252 �C; IR: 3368,
2961, 1716, 1518, 1442, 1361, 1287, 1145, 1106, 1084, 755,
578 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 1.28 (9H, s),
7.34–7.51 (3H, m), 7.58–7.69 (4H, m), 7.79 (2H, d, J¼ 8.7 Hz ),
8.46 (1H, s); 13C-NMR (DMSO-d6, 75 MHz) d/ppm: 31.4, 35.4,
109.4, 111.2, 116.4, 116.7, 119.0, 125.3, 125.7, 126.5, 126.8,
127.7, 129.5, 133.3, 139.6, 153.0, 158.4, 168.1. Anal. Calcd. for
C22H20N2O4S2: C, 59.98; H, 4.58; N, 6.36; found: C, 59.95; H,
4.56; N, 6.38.

4-Methoxy-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzene-
sulphonamide (5e)

Yellow powder, 75% yield (310 mg), m.p.: 259–261 �C; IR: 3333,
3117, 2943, 1712, 1521, 1438, 1365, 1304, 1261, 1140, 1088,
927, 749, 556 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 3.82
(3H, s), 7.10 (2H, d, J¼ 7.9 Hz), 7.37–7.46 (3H, m), 7.64–7.69
(2H, m), 7.81 (2H, d, J¼ 8.2 Hz), 8.46 (1H, s); 13C-NMR
(DMSO-d6, 75 MHz) d/ppm: 56.3, 109.4, 111.3, 114.9, 116.7,
119.1, 125.4, 125.7, 128.8, 129.5, 133.2, 134.1, 139.6, 153.0,
158.4, 162.8, 168.1. Anal. Calcd. for C19H14N2O5S2: C, 55.06; H,
3.40; N, 6.76; found: C, 55.09; H, 3.45; N, 6.75.

N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)naphthalene-2-sulpho-
namide (5f)

Cream powder, 70% yield (304 mg), m.p.: 251–253 �C; IR: 3292,
3122, 3049, 1709, 1599, 1441, 1367, 1301, 1115, 1078, 922, 752,
669 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 7.39 (2H, t,
J¼ 8.4 Hz), 7.62–7.64 (5H, m), 7.84 (1H, d, J¼ 8.7 Hz), 8.00
(1H, d, J¼ 7.9 Hz), 8.09 (1H, d, J¼ 8.7 Hz), 8.17 (1H, d,
J¼ 6.7 Hz), 8.42 (1H, s), 8.52 (1H, s); 13C-NMR (DMSO-d6,
75 MHz) d/ppm: 111.3, 116.7, 119.0, 122.8, 125.7, 127.1, 128.2,
128.4, 129.3, 129.5, 129.9, 130.0, 132.3, 133.3, 134.8, 139.3,
139.7, 153.0, 158.4, 164.8. Anal. Calcd. for C22H14N2O4S2: C,
60.82; H, 3.25; N, 6.45; found: C, 60.84; H, 3.28; N, 6.40.

4-fluoro-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesul-
phonamide (5g)

Reddish powder, 74% yield (297 mg), m.p.: 248–250 �C; IR:
3299, 3123, 3073, 1702, 1608, 1524, 1432, 1366, 1292, 1069,
921, 753, 582 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm:
7.38–7.55 (3H, m), 7.60–7.74 (6H, m), 8.49 (1H, s); 13C-NMR

(DMSO-d6, 75 MHz) d/ppm: 111.3, 113.4, 113.7, 116.2, 116.7,
119.0, 120.0, 120.3, 122.8, 125.7, 129.5, 132.2, 132.3, 133.3,
139.7, 144.7, 144.8, 153.0, 158.3, 160.7, 163.9, 168.9. Anal.
Calcd. for C18H11FN2O4S2: C, 53.72; H, 2.76; N, 6.96; found: C,
53.74; H, 2.75; N, 6.94.

4-Chloro-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesul-
phonamide (5h)

Yellow powder, 82% yield (342 mg), m.p.: 264–266 �C; IR: 3145,
3043, 1720, 1567, 1526, 1440, 1362, 1306, 1267, 1139, 1086,
928, 752 cm�1; 1H-NMR (DMSO-d6, 300 MHz) d/ppm: 7.39–7.51
(3H, m), 7.64–7.70 (4H, m), 7.85 (2H, d, J¼ 8.2 Hz), 8.48 (1H, s);
13C-NMR (DMSO-d6, 75 MHz) d/ppm: 111.3, 116.8, 119.0,
125.8, 128.5, 129.9, 133.4, 137.8, 139.8, 140.2, 141.7, 144.7,
153.1, 158.4, 162.7, 168.4. Anal. Calcd. for C18H11ClN2O4S2: C,
51.61; H, 2.65; N, 6.69; found: C, 51.63; H, 2.62; N, 6.67.

4-Bromo-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesul-
phonamide (5i)

Reddish powder, 76% yield (351 mg), m.p.: 266–268 �C; IR:
3275, 3043, 1726, 1605, 1529, 1441, 1366, 1307, 1269, 1139,
1083, 936, 759, 553 cm�1; 1H-NMR (DMSO-d6, 300 MHz)
d/ppm: 7.35–7.45 (4H, m), 7.50–7.76 (5H, m), 8.45 (1H, s);
13C-NMR (DMSO-d6, 75 MHz) d/ppm: 111.2, 116.2, 116.8,
119.0, 122.7, 125.7, 128.6, 129.6, 132.8, 133.4, 139.8, 141.0,
153.1, 158.3, 162.4, 168.6. Anal. Calcd. for C18H11BrN2O4S2: C,
46.66; H, 2.39; N, 6.05; found: C, 46.64; H, 2.35; N, 6.08.

4-Iodo-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesulpho-
namide (5j)

Dark yellow powder, 68% yield (347 mg), m.p.: 244–246 �C; IR:
3382, 3154, 3042, 1701, 1605, 1532, 1438, 1361, 1265, 1140,
1086, 941, 759, 554 cm�1; 1H-NMR (DMSO-d6, 300 MHz)
d/ppm: 7.36–7.45 (2H, m), 7.58–7.67 (5H, m), 7.94 (2H, d,
J¼ 7.6 Hz), 8.46 (1H, s); 13C-NMR (DMSO-d6, 75 MHz) d/ppm:
111.2, 116.8, 119.0, 125.7, 128.3, 129.6, 133.4, 137.5, 138.6,
139.8, 142.2, 147.4, 153.1, 158.4, 161.1, 168.6. Anal. Calcd. for
C18H11IN2O4S2: C, 42.36; H, 2.17; N, 5.49; found: C, 42.39; H,
2.15; N, 5.47.

Preparation and purification of haemolysate from blood
red cells

Preparation and purification of haemolysate from blood red cells
made by the literature35. Blood samples (25 mL) were taken from
healthy human volunteers. They were anticoagulated with acid–
citrate–dextrose, centrifuged at 2000 g for 20 min at 4 �C and the
supernatant was removed. The packed erythrocytes were washed
three times with 0.9% NaCl and then haemolysed in cold water.
The ghosts and any intact cells were removed by centrifugation at
2000 g for 25 min at 4 �C, and the pH of the haemolysate was
adjusted to pH 8.5 with solid Tris-base. The 25 mL haemolysate
was applied to an affinity column containing L-tyrosine-sul-
phonamide-Sepharose-4B equilibrated with 25 mM Tris–HCl/
0.1 M Na2SO4 (pH 8.5). The affinity gel was washed with 50 mL
of 25 mM Tris–HCl/22 mM Na2SO4 (pH 8.5). The human CA
(hCA) isozymes were eluted with 0.1 M NaCl/25 mM Na2HPO4

(pH 6.3) and 0.1 M CH3COONa/0.5 M NaClO4 (pH 5.6), which
recovered hCA-I and hCA-II, respectively. Fractions of 3 mL were
collected and their absorbance measured at 280 nm.

CA enzyme assay

CA activity was measured by the Maren method which is based
on determination of the time required for the pH to decrease from
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10.0 to 7.4 due to CO2 hydration36. The assay solution was 0.5 M
Na2CO3/0.1 M NaHCO3 (pH 10.0) and Phenol Red was added as
the pH indicator. CO2-hydratase activity [enzyme units (EU)] was
calculated by using the equation t0�tc/tc where t0 and tc are the
times for pH change of the non-enzymatic and the enzymatic
reactions, respectively.

In vitro inhibition studies

For the inhibition studies of sulphonamides, five different
concentrations of these compounds were added to the medium
in 4.2 mL of total reaction volume including the enzyme solution.
Duration (in seconds) of the colour change from red to yellow in
solution was measured in a 10-ml glass tube with 1 cm diameter.
CA enzyme activity without a compound solution was accepted as
100% activity. All compounds were tested in triplicate at each
concentration used. Activity % values of CA for different
concentrations of each compound were determined by regression
analysis using Microsoft Office 2000 Excel. For the compounds
having an inhibition affect, the inhibitor concentration causing up
to 50% inhibition (IC50 values) was determined from the graphs.

Antioxidant activity assays

In CUPRAC assay, the absorbance values were used to calculate
for A0.50, but in ABTS assay, inhibition (%) values were used to
calculate for IC50.

ABTS cation radical decolourization assay

ABTS�+ scavenging activities of the synthesized compounds were
determined as previously reported37. The solution of ABTS�+

radical was generated by dissolving 19.2 mg of 2,20-azino-bis(3-
ethylbenzothiazoline-6-sulphonic acid) (7 mM ABTS) and 3.3 mg
K2S2O3 in distilled water (5 mL). This solution was kept in dark
for 24 h at room temperature, and the absorbance of the solution
was fixed to �0.70 at 734 nm by dilution. The solutions of the
samples were prepared in n-propanol at a concentration of
1000mg/mL. The absorbance was measured at room temperature
at 734 nm, after 6 min from ABTS�+ addition. The decrease in the
absorption was used to calculate the activities. The results were
expressed as IC50. Propyl alcohol was used as a control solvent.

Cupric reducing antioxidant capacity assay (CUPRAC)

Cupric reducing antioxidant capacities of the synthesized com-
pounds were determined in accordance with the literature
method38. The solutions of compounds and standards were
prepared in n-propanol at a concentration of 1000mg/mL.

Different volumes (1000 mg/L and 54.5 mL) of the sample were
added to a solution prepared by adding 61.0mL of 10 mM CuCl2,
61.0 mL 7.5 mM neocuproine and 61.0 mL of 1.0 mM
NH4CH3COO buffer (pH 7), respectively. The absorbance was
measured at room temperature at 450 nm, after an hour. The
results were calculated as A0.50. Propyl alcohol was used as a
solvent to controls.

Results and discussion

Sulphonamide derivatives are known as the strongest CAIs23. The
asetazolamide (AAZ) derivatives have also been reported as
potent CAI4. Our design strategy is that the 1,3,4-thidiazole ring
of AAZ was modified to thiazole ring and was added to
sulphonamides in order to increase inhibitory activity by forming
hydrogen bond. On the other hand, we think that the presence of
coumarin moiety contributes to inhibitor activity by hydrolysing
to 2-hydroxycinnamic acids or interacting with the enzyme active
sites (Figure 1).

The synthetic procedures employed to obtain the target
compounds 5a–j are depicted in Scheme 1. Compound 4 was
synthesized from salicylaldehydes in three steps according to the
literature39, and then it was reacted with various benzenesulfonyl
choloride derivatives in pyridine to get product sulphonamides
substituted coumarylthiazole (5a–j).

All the new compounds were characterized by 1H-NMR, 13C-
NMR, IR and elemental analysis. In the infrared spectra of the
synthesized compounds, it was possible to observe the absorp-
tions �3300 cm�1 relating to NH stretch of sulphonamide groups,
�1520 cm�1 relating to C¼N stretch for thiazole, absorptions in
�1710 cm�1 from coumarin carbonyl moiety stretch and absorp-
tions �1360 cm�1 relating to SO2 antisym stretch in sulphona-
mides. From the 1H-NMR spectra, the resonance due to the
hydrogen attached to the sulphonamide nitrogen was not detected.
The signals for aromatic hydrogens were observed between 7.10
and 8.17 ppm, the signal of proton at thiazole ring was detected at
�8.48 ppm. From the 13C-NMR spectra, the signals can be seen
�158 and 168 ppm relating to coumarin carbonyl and thiazole
ring, respectively.

For evaluation, the physiologically relevant human CA
isozyme hCA I and II inhibitory activity, all the synthesized
compounds were subjected to CA inhibition assay with CO2 as a
substrate.

The result showed that all synthesized compounds (5a–j)
inhibited the hCA I and II enzyme activity. The IC50 values for
hCA I and II inhibitions are summarized in Table 1. The IC50

values were between 5.63 and 22.63mM for hCA I and between
8.48 and 23.87mM for hCA II inhibitory activity. Among
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Scheme 1. Synthesis of new sulphonamides substituted coumarylthiazole (5a–j) derivatives.
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Table 1. In vitro inhibition IC50 and A0.50 values (mM) of sulphonamides substituted coumarylthiazole (5a–j) for
hCA I and hCA II and antioxidant activities.

O

N

S

N
H

S
R

O O

O

5a-j

Compound R
hCA I

IC50 (lM)
hCA II

IC50 (lM)
ABTS�+

IC50 (mM)*
CUPRAC

A0.50 (mM)y

5a 22.63 23.87 70.95 ± 2.51 61.36 ± 0.31

5b 8.64 11.68 54.77 ± 2.87 40.26 ± 0.40

5c 6.46 11.12 116.62 ± 1.56 43.70 ± 0.32

5d 6.21 10.91 104.77 ± 2.08 49.71 ± 0.30

5e

H3CO

10.90 18.00 48.83 ± 1.38 23.29 ± 0.02

5f 5.63 8.48 64.42 ± 3.06 80.62 ± 0.33

5g F 16.21 18.30 50.45 ± 2.98 81.19 ± 0.40

5h Cl 9.55 15.72 60.40 ± 1.11 71.06 ± 0.34

5i Br 7.67 11.35 81.29 ± 1.38 49.58 ± 0.30

5j I 5.88 8.69 87.65 ± 1.12 41.96 ± 0.39

Quercetinz 15.49 ± 2.33 18.47 ± 0.04

*IC50 values represent the mean ± standard error of mean of three parallel measurements (p50.05).
yA0.50 values represent the mean ± standard error of mean of three parallel measurements (p50.05).
zStandard.
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synthesized compounds, 5f (IC50¼ 5.63 and 8.48 mM, for hCA I
and hCA II, respectively) showed the highest inhibitory activity
against hCA I and II. Most of the primary sulphonamide
compounds are mentioned very potent inhibitor of the cytosolic
isoform hCAs6. All the synthesized sulphonamides in this study
are moderate inhibitory activity for the hCAs, because they are
secondary sulphonamides and contain big bulky groups. Up to
now, many sulphonamide and coumarin derivatives have been
synthesized as strong CAIs by Supuran’s group28–30,40–45. The
inhibition values of them ranged from low micromolar to
nanomolar. These compounds have stronger inhibitory effect
than the sulphonamides substituted coumarylthiazole in this study.
But, 5f (IC50¼ 5.63 and 8.48 mM, for hCA I and hCA II,
respectively) showed higher inhibitory properties against hCA I
and II compared to some sulphonamide and coumarin derivatives,
reported in our previously study46–51, with an IC50 value of
between 6.79 and 620mM, for hCA I; between 6.54 and 51.45mM,
for hCA II.

The following structure–activity relationship (SAR) observa-
tions can be drawn from data of Table 1: (i) the best inhibitor
among the newly synthesized and investigated compounds was
naphthalene substituted derivative (5f) for hCA I and II; (ii) the
alkyl series at the phenyl ring showed a qualitative relationship
between increasing inhibitory activity and bulky group for hCA I
and II [5d (R¼ 4-tert-butyl-benzene, IC50¼ 6.21 and 10.91 mM
for hCA I and II, respectively)45c (R¼ 4-isopropyl-benzene,
IC50¼ 6.46 and 11.12mM for hCA I and II, respectively)45b
(R¼ 2,5-dimethyl-benzene, IC50¼ 8.64 and 11.68mM for hCA I
and II, respectively)45a (R¼ 4-methyl-benzene, IC50¼ 22.63
and 23.87 mM for hCA I and II, respectively)]; and (iii) the
inhibitory activity on both hCA I and II seems to be strongly
dependent on the size and polarizability of the halogen substituent
at the para-position of the phenyl ring [for size and polarizability,
I4Br4Cl4F, for inhibitory activity, 5j (R¼ 4-iodobenzene,
IC50¼ 5.88 and 8.69 mM for hCA I and II, respectively)45i
(R¼ 4-bromobenzene, IC50¼ 7.67 and 11.35mM for hCA I and
II, respectively)45h (R¼ 4-cholorobenzene, IC50¼ 9.55 and
15.72mM for hCA I and II, respectively)45g (R¼ 4-fluoroben-
zene, IC50¼ 16.21 and 18.30mM for hCA I and II, respectively)].

According to SAR study, it is clear that the bulky substituents
(such as tert-butyl, naphthalene and iodine) increase inhibitory
activity of the compound due to steric effect. The sulphonamide
drug binds in deprotonated form to the catalytically critical Zn(II)
ion, also participating in extensive hydrogen bond and van der
Waals interactions with amino acid residues both in the hydro-
phobic and hydrophilic halves of the enzyme active site, as shown
by X-ray crystallographic studies of enzyme–inhibitor com-
plexes6. The inhibition mechanism of coumarins is different
compared to that of the classical CAIs of the sulphonamide
type40. Several kinetic and X-ray crystallographic studies have
revealed that coumarins are mechanism-based inhibitors, which
undergo hydrolysis under the influence of the zinc hydroxide,
nucleophilically active species of the enzyme, with generation of
substituted-2-hydroxycinnamic acids (Figure 2)28,41,42. Supuran’s
group reported that inhibitor (as for coumarin/sulfocoumarin) and
enzyme solutions were pre-incubated together for �6 h prior to
assay in order to allow for the formation of the E�I complex or
for the eventual active site mediated hydrolysis of the inhibitor31.

On the other hand, the two endocyclic nitrogen of the 1,3,4-
thidiazole ring of AAZ derivatives participates in two hydrogen
bonds with the OH of Thr2004.

Based on the above consideration, we consider that the
coumarin ring should not undergo ring opening without pre-
incubation on enzyme and inhibitor. Also it is difficult that the
sulphonamide moiety of the synthesized compounds could bind to
zinc cation in traditional manner due to contain big bulky groups.

So we suppose that the bulky substituents (such as tert-butyl,
naphthalene and iodine), increasing inhibitory activity, could
locate at the entrance of the enzyme active site. We also think that
the nitrogen of the thiazole ring of the synthesized compounds
contribute to inhibition by forming hydrogen bonds.

Antioxidant activity assay

It is known that many natural and synthetic coumarin, sulphona-
mide and thiazole derivatives have various pharmacological
properties. Among these properties, their antioxidant effects
were examined52–54. Also, Gocer et al.53 have recently reported
that some sulphonamides demonstrated effective antioxidant
properties (for Cu2+ reducing capabilities and ABTS�+). In
addition, Supuran’s group investigated the the interaction of CA
isozymes with some antioxidant compounds, such as resveratrol,
dobutamine, curcumin, catechin, silymarin, salicyclates and
quercetin. It was reported that all these antioxidant compounds
showed effective hCA I and II inhibitory activity55–58. In view of
these findings, it was considered that the synthesized compounds
might possess certain antioxidant activity due to include sul-
phonamide, coumarin and thiazole moiety containing sulfonyl,
carbonyl, imine and methoxy groups.

The ABTS method is based on the ability of hydrogen or
electron-donating antioxidants to decolourize the performed
radical monocation of 2,20-azino-bis(3-ethylbenzthiazoline-6-sul-
fonic acid) generated due to oxidation of ABTS with potassium
persulfate37. The results in Table 1 indicated that all synthesized
compounds exhibited moderate radical scavenging ability. 5e and
5g exhibited the strongest ABTS activity with IC50 values of
48.83 and 50.45mM, respectively. These potencies of 5e and 5g
was 3.3-fold less than that of quercetin (IC50¼ 15.49mM) used as
the reference compound.

The halogen substituent at the para-position of the phenyl ring
showed an inverse relationship for increasing ABTS activity with
growing size and polarizability [for size and polarizability,
I4Br4Cl4F; for ABTS activity, 5j (R¼ 4-iodobenzene,
IC50¼ 87.65 mM)55i (R¼ 4-bromobenzene, IC50¼
81.29mM)55h (R¼ 4-cholorobenzene, IC50¼ 60.40 mM)55g
(R¼ 4-fluorobenzene, IC50¼ 50.45 mM)].

CUPRAC assays have a distinct advantage over other electron-
transfer based assays (e.g. Folin, FRAP, ABTS, DPPH). This
advantage is its realistic pH close to that physiological, favourable
redox potential, accessibility and stability of reagents and
applicability to lipophilic antioxidants as well as hydrophilic
ones38. The cupric reducing antioxidant capacities of the
synthesized compounds (5a–j) were determined according to
the literature method38 using quercetin as the reference com-
pound. Among the synthesized compounds, only 5e
(A0.50¼ 23.29mM) showed close cupric reducing antioxidant

O

OH

O O

CA

O

OH

OH

O O OH

COO−

COO−

CA

rt, pH 7.4
4-6h

rt, pH 7.4
4-6h

A A1

B B1

Figure 2. Formation of 2-hydroxy-cinnamic acids A1 and B1 by the CA-
mediated hydrolysis of coumarin A and B28,41,42.
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activity to quercetin (A0.50¼ 18.47mM). The others have less the
cupric reducing antioxidant capacity than quercetin.

Interestingly, in contrast ABTS activity, the CUPRAC activity
seems to be strongly dependent on the increasing size and
polarizability of the halogen substituent at the para-position
of the phenyl ring [for size and polarizability, I4Br4Cl4F;
for CUPRAC activity, 5j (R¼ 4-iodobenzene, A0.50¼
41.96mM)45i (R¼ 4-bromobenzene, A0.50¼ 49.58mM)45h
(R¼ 4-cholorobenzene, A0.50¼ 71.06mM)45g (R¼ 4-fluoro-
benzene, A0.50¼ 81.19mM)].

Conclusions

A series of new secondary benzenesulphonamide substituted
coumarylthiazole derivatives (5a–j) was synthesized and their
activities as hCA I and hCA II inhibitors and structure–activity
relationship were examined. All synthesized compounds inhibited
hCA I and II. 5f exhibited the strongest inhibition against hCA I
and II with IC50 value of 5.63 and 848mM, respectively. The
SARs revealed that the inhibitory activity of the synthesized
compounds could also be affected by the type of the halogen
substituent on the phenyl ring. Also the bulky substituents (such
as tert-butyl, naphthalene and iodine) increase inhibitory activity
of the compounds due to steric effect. Additionaly, the
synthesized compounds showed moderate antioxidant activity.
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