
molecules

Article

Coumarins as Potential Antioxidant Agents
Complemented with Suggested Mechanisms and
Approved by Molecular Modeling Studies

Yasameen K. Al-Majedy 1, Dunya L. Al-Duhaidahawi 2, Khalida F. Al-Azawi 3,
Ahmed A. Al-Amiery 1,3,*, Abdul Amir H. Kadhum 1 and Abu Bakar Mohamad 1

1 Department of Chemical & Process Engineering, University Kebangsaan Malaysia (UKM), Bangi,
Selangor 43000, Malaysia; yasmin.chem79@gmail.com (Y.K.A.); amir@eng.ukm.my (A.A.H.K.);
drab@eng.ukm.my (A.B.M.)

2 Department of Pharmaceutical Chemistry, College of Pharmacy, Kufa University, Najaf 31001, Iraq;
dunialafta1982@yahoo.com

3 Branch of Chemistry, Department of Applied Science, University of Technology (UOT), Baghdad 10001, Iraq;
Khalidachemistry@gmail.com

* Correspondence: dr.ahmed75@ukm.edu.my; Tel.: +964-77-006-71-115; Fax: +60-389-216-148l

Academic Editor: Derek J. McPhee
Received: 5 December 2015; Accepted: 19 January 2016; Published: 23 January 2016

Abstract: Syntheses of coumarins, which are a structurally interesting antioxidant activity, was done
in this article. The modification of 7-hydroxycoumarin by different reaction steps was done to yield
target compounds. Molecular structures were characterized by different spectroscopical techniques
(Fourier transformation infrared and nuclear magnetic resonance). Antioxidant activities were
performed by using various in vitro spectrophometric assays against 1,1-diphenyl-2-picrylhydrazyl
(DPPH) radical and hydrogen peroxide (H2O2). All compounds exhibited high efficiency as
antioxidants compared to ascorbic acid. The highest efficiency scavenging activity was found for
compound 3 (91.0 ˘ 5.0), followed by compounds 2 and 4 (88.0 ˘ 2.00; and 87.0 ˘ 3.00). Ascorbic
acid C was used as a standard drug with a percentage inhibition of 91.00 ˘ 1.5. The mechanism of the
synthesized compounds as antioxidants was also studied. Hartree–Fock–based quantum chemical
studies have been carried out with the basis set to 3-21G, in order to obtain information about the
three-dimensional (3D) geometries, electronic structure, molecular modeling, and electronic levels,
namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular
orbital), to understand the antioxidant activity for the synthesized compounds.
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1. Introduction

Coumarins consisting of fused benzene and α-pyrone rings are present in significant amounts in
plants, and more than 1300 coumarins have been identified from natural sources [1,2]. Derivatives of
coumarins naturally occur as secondary metabolites present in seeds, roots, and leaves of many plant
species [3]. Coumarins have a variety of important biological activities such as anti-inflammatory,
antioxidant [4,5], antiviral [6], antimicrobial [7] and anti-cancer [8]. Coumarins are indicated to increase
central nervous system activity [9,10]. Recently, coumarins have attracted considerable attention for
electronic and photonic applications [11–13] due to their inherent photochemical characteristics,
reasonable stability and solubility in various organic solvents. Many coumarin derivatives have been
commercialized as blue-green lasers for fluorescent labels, fluorescent probes [14–16] and enzymatic
measurements [17]. They exhibit intense fluorescence upon substitution with various functional
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groups at different positions [18,19]. There is an increasing interest in antioxidants, particularly in
those intended to prevent the presumed deleterious effects of free radicals in the human body and to
prevent the deterioration of fats and other constituents of foodstuffs. In both cases, there is a preference
for antioxidants from natural rather than from synthetic sources [20]. As improved antioxidant status
helps to minimize the oxidative damage and thus delay or prevent pathological changes, potential
antioxidant therapy should be included either as natural free-radical-scavenging antioxidant enzymes
or as an agent which is capable of augmenting the activity of antioxidant enzymes [21]. In a study
of scavenging capacity, performed with synthetic coumarins of different substitution patterns, Paya
found that only 7,8-dihydroxylated coumarins were active [22]. Hydroxycoumarins are phenolic
compounds which act as potent metal chelators and free radical scavengers [23–26]. To explore
the medicinal applications of coumarin derivatives, and in continuation of previous studies [27,28],
we focused herein on the design of our approach to increase the antioxidant activity based on a
conjugated system and applied theoretical studies to associate the antioxidant activities with electronic
structures, with a good relationship between H atom abstraction and unpaired electron delocalization.
In order to understand the relationship between the electron delocalization and the reactivity of
the radicals, one can examine the electron distribution in the HOMO (highest occupied molecular
orbital) and LUMO (lowest unoccupied molecular orbital). The main aim of this work was to optimize
structures of all the studied compounds to explain the structure-antioxidant relationship. We had
also been concerned with the calculation of antioxidant descriptors: dipole moment, ionization
potential (IP), electron affinity (EA), hardness (η), softness (S), and electronegativity (µ) for synthesized
coumarins and also the standard compound (ascorbic acid), in addition to determination of the
preferred mechanism of antioxidants and the calculation of HOMO and LUMO energies and the
band gap. Structure-antioxidant relationships of the synthesized antioxidant and ascorbic acid have
been investigated employing the Hartree–Fock–based quantum chemical method together with the
3-21G basis set. Based on the obtained results we conclude that the N-H group is accountable for
the antioxidant abilities. Quantum chemical calculations confirmed high antioxidant activity of all
synthesized coumarins. Initially we were using 7-hydroxycoumarin as a starting material and all the
synthesized coumarins are shown in Scheme 1.
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2.1. Antioxidant Activity

Synthesized coumarins 1–4 were screened for in vitro scavenging activity utilizing DPPH and
hydrogen peroxide. These tested coumarins showed high scavenging activity (Figures 1 and 2).



Molecules 2016, 21, 135 3 of 11

2.1.1. DPPH Scavenging Assay

Figure 1 showed that (1–4) demonstrated a strong scavenging activity against DPPH at a very
low concentration of 250 µg/mL. The highest inhibition for all tested compounds was for the highest
concentration which was found at 1000 µg/mL (Figure 1). The highest efficiency scavenging activity
was for compound 3 (91.0 ˘ 5.0), followed by compounds 2 and 4 (88.0 ˘ 2.00 and 87.0 ˘ 3.00).
Ascorbic acid was used as a standard drug with a percentage inhibition of 91.00 ˘ 1.5. The
hydrogen-donating activity, measured utilizing DPPH as the hydrogen acceptor, demonstrated that a
strong association could be found between the concentration of the coumarin molecule and the rate
of inhibition [29,30]. Using the hydrogen peroxide test, coumarins 1–4 demonstrated their ability to
diminish the stable radical.
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2.1.2. H2O2 Scavenging Assay

Hydrogen peroxide can be highly reactive when crossing the cell membrane and form the
hydroxyl radical. Figure 2 showed that compounds (1–4) demonstrated a strong scavenging activity
against hydrogen peroxide at a very low concentration of 250 µg/mL, where we observed a
concentration-dependent decrease. A very weak inhibitory activity at the lowest concentration
(250 µg/mL) was found in compound 3 (42.0 ˘ 5.00). The highest concentration was found at
1000 µg/mL (Figure 2). The best percentage of scavenging activity was shown by compound 3
(90.0 ˘ 3.0), followed by compound 2 (89.0 ˘ 1.00). Ascorbic acid was used as a standard drug with a
percentage inhibition of 70.00 ˘ 2.5.
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2.2. Postulated Mechanisms for Coumarins 1, 2, 3 and 4 as Antioxidants

The suggested antioxidant for antioxidant coumarins, as shown in Figures 3–6 relies on the
hydrogen atoms of the amine group, which were under the influence of resonance and inductive
effects. The resonance and inductive effects facilitate the release of hydrogen, resulting in stability
of the molecule. Coumarins 1–4 have scavenging activities due to the stability of the free radical
intermediates of these compounds. An abstraction of a hydrogen atom from the amine group may
occur easily [31]. The presence of thiadiazoles, triazole and lactone rings enhances the antioxidant
activity. The steric hindrance enhances the antioxidant activity [32,33].
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2.3. Molecular Modeling Studies

To understand the antioxidant activity with the electronic levels, namely HOMO (highest occupied
molecular orbital) and LUMO (lowest unoccupied molecular orbital), for antioxidants 1–4, HF
(Hartree–Fock)–based quantum chemical studies were carried out with the basis set 3-21G. The
energies EHOMO and ELUMO in electron volt values were showed in Figure 7. The compounds with
higher antioxidant activity can be confirmed according to the values of EHOMO and ELUMO. In our
work we were using the methods of DPPH and peroxide. These methods showed clearly that the
scavenging activities of compounds 2 and 3 were higher than those of compounds 1 and 4 and ascorbic
acid because of the electron-withdrawing of thionyl, carbonyl and the resonance effect. Theoretically, it
was concluded that EHOMO is a good indicator of scavenging activities and the scavenging activities
do not depend on ELUMO. The varieties in activities of compounds 1–4, as antioxidants were shown
in the calculated EHOMO values, are mostly attributed to pi-electron delocalization, which leads
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to stability of the free radicals gained after proton abstraction so that pi-electrons delocalized in
compounds 1–4 also occur in the corresponding radical. The electron density of HOMO could be
fully considered to realize the relationship between the delocalizing electrons and the activities of free
radicals [34].
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compounds 1–4.

Antioxidants 1–4 with the highest occupied molecular orbital are delocalized over the whole
molecule, which harmonizes the orbital holding unshared electrons. Spin densities of the free radicals
that had been created from antioxidants 1–4 were compared. High delocalization means the easier
creation of free radicals. The spin density appears to be slightly more delocalized for the radicals issued
from compounds 2 and 3 than from antioxidants 1 and 4. The HOMO (highest occupied molecular
orbital) energies of target antioxidants 1–4, in addition to the ascorbic acid, are computed as ´8.504 eV,
´10.102 eV, ´8.753 eV, ´8.532 eV and ´10.772 eV, respectively, while the LUMO energies for target
antioxidants 1–4 and ascorbic acid are computed as ´4.332 eV, ´4.132 eV, ´4.532 eV, ´4.776 eV and
´1.115 eV, respectively. The energy gaps for antioxidants 1–4 as well as ascorbic acid were respectively
as follows: 4.172 eV, 5.790eV, 4.221eV, 3.756eV and 9.655 eV, and this might be due to shifted absorption
toward the blue spectrum. The electron delocalizing for thionyl and carbonyl for compounds 2 and 3,
respectively, reveal the variation between HOMO and LUMO of antioxidants 1–4. The comparison
of potential for antioxidants 1–4 and ascorbic acid as antioxidants according to the band gaps and
showed that the highest band gap was for ascorbic acid (control) and then compounds 2 and 3, and
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this is highly compatible with experimental results seen in Figures 1 and 2. Dipole moment values
of antioxidants 1–4 in addition to ascorbic acid demonstrate that all of them are polar molecules and
are soluble in polar solvents. IP (ionization potential) affords the understanding of initial energy for
releasing an electron from the molecules [35] which means an inverse relation for the antioxidant and
IP (Equation (1)).

IP “ ´EHOMO (1)

EA (electron affinity) is the amount of energy launched when an electron is absorbed by a molecule
(Equation (2)). Higher EA leads to easily absorbed electrons, in other words a positive relation with
the antioxidant.

EA “ ´ELUMO (2)

The η (hardness) is charge transfer resistance and S (softness) is the measure of the capacity of an
atom to receive electron (Equations (3) and (4)).

η “ ´
1
2
pEHOMO´ ELUMOq (3)

S “ ´
2

pEHOMO ´ ELUMOq
(4)

The µ (electronegativity) is defined as the capacity to attract electrons (Equation (5)) in the
chemical bond:

µ “ ´
1
2
pEHOMO` ELUMOq (5)

Table 1 describes the potential values of the above parameters. These parameters can be supported
by the good antioxidant potential. The experimental and calculated theoretical parameters were
compared with each other. The calculated data were compared with the experimental values using
HF with the basis set of 3-21G. The correlation between experimental and calculated data was found
to be good. In addition, HOMO and LUMO analysis of the title molecule were calculated using
corresponding methods with the 3-21G basis set. The calculated HOMO-LUMO energies were used to
calculate some properties of the title molecule.

Table 1. Electronic properties of antioxidants 1–4 were obtained by using HF method with the 3-21G
basis set.

Parameters Compound 1 Compound 2 Compound 4 Compound 3 Ascorbic Acid

Dipole moment Depy 4.665 7.117 6.613 5.229 9.549
Ionization potential (IP) eV 8.504 10.102 8.753 8.532 10.772

Electron affinity (EA) eV 4.332 4.132 4.532 4.776 1.115
Hardness (η) 2.86 2.895 2.110 1.378 4.827
Softness (S) 0.239 0.172 0.236 0.266 0.207

Electro negativity(µ) 6.418 7.117 6.142 6.518 5.9435
EHOMO ´8.504 ´10.102 ´8.753 ´8.532 ´10.772
ELUMO ´4.332 ´4.132 ´4.532 ´4.776 ´1.115

Band gap = EHOMO ´ ELUMO 4.172 5.790 4.221 3.756 9.655

3. Materials and Methods

3.1. Synthesis of Compounds 1–4

Compounds (1–4), namely 7-((5-amino-1,3,4-thiadiazol-2-yl)methoxy)coumarin; 5-(((coumarin-
7-yl)oxy)methyl)-1,3,4-thiadiazol-2(3H)-one; 7-((4-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-



Molecules 2016, 21, 135 8 of 11

yl)methoxy)coumarin and 7-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)methoxy)coumarine, were
synthesized according to Al-Amiery 2014 [36].

3.2. Antioxidant Activity

3.2.1. DPPH Free Radical Scavenging Activity

The antioxidant activity of synthesis compounds and the standard was assessed on the basis of
the radical scavenging effect of the Table 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical activity by
modified method [37]. The diluted working solutions of the test compound were prepared in methanol.
Ascorbic acid was used as standard in 1–100 µg/mL solution. Then 0.002% of DPPH was prepared in
methanol and 1 mL of this solution was mixed with 1 mL of sample solution and standard solution
separately. These solution mixtures were kept in dark for 30 min and optical density was measured at
517 nm using spectrophotometer. Methanol (1 mL) with DPPH solution (0.002%, 1 mL) was used as
blank [38]. The optical density was recorded and % inhibition was calculated using the formula given
in Equation (6):

DPPHscavenginig effect% “ A
˝

´
A
A

˝ ˆ 100 (6)

where Ao is the absorbance of the control reaction and A is the absorbance in the presence of the
samples or standards.

3.2.2. Hydrogen Peroxide Scavenging Activity

A solution of hydrogen peroxide (40 mM) was prepared in phosphate buffer (pH 7.4). Different
concentrations (250, 500, and 1000 µg/mL) of synthesized compounds (or ascorbic acid as control)
were added to a hydrogen peroxide solution (0.6 mL, 40 mM). Absorbance of hydrogen peroxide at
230 nm was determined after 10 min against a blank solution containing phosphate buffer without
hydrogen peroxide [39,40]. Hydrogen peroxide percentage scavenging activity was then calculated
using Equation (7):

H2O2 scavenginig effect% “ A
˝

´
A
A

˝ ˆ 100 (7)

where Ao is the absorbance of the control reaction and A is the absorbance in the presence of the
samples or standards.

3.3. Quantum Studies

The molecular representation sketch of the reference compound was plotted using ChemBioOffice
2010 software. All the quantum chemical calculations were performed using the HF methodology
with 3–21G basis set.

3.4. Statistical Analysis

The results were expressed as mean ˘ standard deviation and the statistical significance of
differences were determined utilizing one-way analysis of variance (ANOVA) using the SPSS 17.0
statistical software program. Differences were considered significant at p < 0.05. The values are
presented as mean ˘ SD (n = 3).

4. Conclusions

Coumarins were successfully synthesized and characterized by using spectroscopic techniques
(FT-IR and NMR). Antioxidant activities were evaluated by DPPH and hydrogen peroxide assays
and the results indicated that they have good scavenging activities. Compounds 3 and 2 were
found to be an inhibitor of the DPPH and H2O2 activities with levels of 91.0 ˘ 5.0, and 88.0 ˘ 2.00,
respectively. Compound 3 was better than the standard reference drug used, and these results were
confirmed by modeling studies. The mechanism of the synthesized compounds as antioxidants was



Molecules 2016, 21, 135 9 of 11

also studied. Hartree–Fock–based quantum chemical studies with the basis set 3-21G and molecular
modeling were carried out for the synthesized compounds to understand the antioxidant activity. The
electronic levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied
molecular orbital), were also studied. We had also been concerned with the calculation of antioxidant
descriptors: dipole moment, ionization potential (IP), electron affinity (EA), hardness (η), softness (S),
and electronegativity (µ) for synthesized coumarins and also the standard compound (ascorbic acid).
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