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Abstract: A series of coumarins and the corresponding 2-thioxocoumarines were prepared and 

tested for their inhibition profiles against four physiologically relevant human carbonic anhydrases 

(hCAs, EC 4.2.1.1), isoforms hCA I, II, IX and XII. The X-ray crystal structure of 6-hydroxy-2-

thioxocoumarin bound to hCA II revealed an unprecedented and unexpected inhibition mechanism 

for this new class of inhibitors, when compared to isostructural coumarins. Unlike coumarins which 

are hydrolyzed by the esterase CA activity to the corresponding 2-hydroxy-cinnamic acid 

derivatives, the 2-thioxocoumarin was observed intact when bound to hCA II, with its exo-sulphur 

atom anchored to the zinc-coordinated water molecule, whereas the scaffold establishing favorable 

contacts with amino acid residues from the active site. This inhibition mechanism is very different 

from the one observed for hydrolyzed coumarins, which occlude the entrance of the active site 

cavity. This versatility in the binding mode of coumarins/thioxocoumarins has important 

consequences for the design of isoform-selective CA inhibitors, some of which are in clinical use or 

clinical development for various pathologies, among which glaucoma, edema, epilepsy, neuropathic 

pain and hypoxic tumors. 

 

Key words: thioxocoumarin, coumarin, metalloenzyme, carbonic anhydrase; isoforms I, II, IX, XII, 

X-ray crystallography 
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Introduction. 

Among the metallo-enzymes possessing a crucial physiologic function, the carbonic 

anhydrases (CAs, EC 4.2.1.1) represent an interesting case, as they act on very simple substrates, 

such as CO2, COS, CS2 or cyanamide1-3 generating products which are either involved in pH 

regulation (bicarbonate and protons), biosynthetic processes (bicarbonate, urea) or in other 

important phenomena such as for example chemosensing (in vertebrates and invertebrates),4 sexual 

development (in pathogenic fungi),5 pH and CO2-sensing, pathogenicity, and survival in ambient air 

of many bacteria, fungi and/or protozoa.6-8 There are six genetic families encoding such enzymes in 

virtually all organisms known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, with the last class reported 

very recently.9 All CAs known so far are metal ion-dependent enzymes, with a metal-hydroxide 

species within the enzyme cavity acting as a nucleophile in the catalytic cycle, and a second step 

(usually rate-determining) involving a proton transfer reaction from a water molecule coordinated to 

the active site metal ion to the environment, for regenerating the nucleophile.10 Metal ions 

employed at the active site of the different CAs include Zn(II) (in all classes), Cd(II) (in ζ-CAs), 

Co(II) (in the δ class) or Fe(II) (for γ-CAs, in anaerobic conditions).11,12 This ping-pong mechanism 

makes some of the members of the CA superfamily among the most effective enzymes known in 

nature, with kcat/KM values close to the limit of the diffusion-controlled processes.13  

 Only α-CAs have been reported in vertebrates, but in most investigated species a large 

number of different isoforms were described.1-3 For example in humans, 15 CA isoforms are 

known, CA I - CA VA, CA VB, CA VI - CA XIV, with 12 of them being catalytically active and 

three (CA VIII, X and XI) devoid of activity but still playing significant functions in tumorigenesis 

and other physiologic as well as pathologic processes.14  

Due to the fact that the substrates/reaction products of α-CAs (CO2, bicarbonate and 

protons) are simple molecules/ions involved in a host of physiologic processes, their up- or down-

regulation is associated with a range of diseases.1-3,15-18 Indeed, CA inhibitors (CAIs) are clinically 

used for decades as diuretics,15b antiglaucoma agents,1b,d,3d antiepileptics,16 or more recently anti-

obesity agents,17 whereas compounds targeting the tumor-associated isoforms CA IX and XII are in 

clinical development as anticancer agents/diagnostic tools for hypoxic, metastatic tumors.3,18 CA 

activators (CAAs) may have potential for developing agents for Alzheimer’s disease or aging, as in 

these pathologies a diminishing of the activity of some physiologically relevant isoforms (such as 

CA I and II) has been reported.19 

 One of the main hurdles connected with the use of CAIs in the treatment of diverse 

conditions as those mentioned above, is related to the off-target inhibition of isoforms other than the 
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desired one.1-3 In fact the various pharmacological applications of the CAIs are due to the high 

number of isoforms and their involvement in different pathologies.15-18  

Recently a number of important advances in the field of designing isoform-selective CAIs 

targeting various isoforms has been achieved, mainly by using structure-based drug design 

approaches.1-3 Among them the so-called tail approach is one of the most employed one for such 

purposes.20,21 This approach was initially reported for the sulfonamide CAIs,20 and consists in 

attaching tails (moieties) able to interact with the middle and the rim part of the active site cavity, 

which is the most variable region among the 15 CA isoforms known in humans.1-3 Thereafter this 

approach was extended to all other classes of CAIs, such as the coumarins,22 sulfocoumarins,23 and 

dithiocarbamates.24 

It has been demonstrated that coumarins, a class of CAIs reported in 2009, do possess highly 

selective CA inhibition profiles, which rely on their particular inhibition mechanism.25 In fact the 

coumarin itself acts as a prodrug, whereas its hydrolysis products (formed due to the esterase CA 

activity which opens the lactone ring of the coumarin) represents the real inhibitor (Fig. 1).25 

Indeed, coumarins A or B in complex with hCA II were crystallized allowing the evidence of their 

hydrolysis products A1 and B1 (2-hydroxy-cinnamic acid derivatives) bound at the entrance of the 

active site cavity, occluding it.25b 

O OO

OH

OH
CO2O

OH
(Z)

O O

OH

(E)
CO2

OH OH

B

B1

A

A1  

 

Figure 1. Superposition of the coumarin A hydrolysis product (trans-2-hydroxy-cinnamic acid A1 

in yellow) with the coumarin B hydrolysis product (cis- 2-hydroxycinnamic acid B1, magenta)-hCA 

II adducts (PDB code 3F8E and 5BNL, respectively). The protein backbone is shown as green 

(PDB code 3F8E) and grey (PDB code 5BNL) ribbon, the catalytic Zn (II) ion as violet sphere, with 

its three protein ligands (His94, 96, and 119) also evidenced.25b 

 

With the aim to pursue the identification of new potent and selective coumarine-based CAIs 

we report here a series of coumarins and their corresponding thioxocoumarines 1-19 which were 

tested in vitro for their inhibition profiles against four most physiologically important hCAs, such as 
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the hCA I, II, IX and XII. The X-ray crystal structure adduct of 6-hydroxy-2-thioxocoumarin 8a 

bound hCA II at 1.1 Å resolution, is also reported. This data reveals an unprecedented and 

unexpected inhibition mechanism of the thioxocoumarins when compared to the structurally related 

coumarin scaffold. 

 

Results and Discussion 

 

Compound design and synthesis. Coumarins were discovered to act as prodrug inhibitors of the 

metalloenzyme carbonic anhydrase by this group.25 The first compound for which such an activity 

has been reported was the natural product coumarin B (reported in figure 1), which was isolated 

from the Australian plant Leionema elipticum.25a Its X-ray crystal structure in adduct with the 

ubiquitous cytosolic isoform hCA II surprisingly showed that the lactone ring of the inhibitor was 

hydrolysed due to the esterase activity of the CA, with formation of the Z-hydroxycinnamic acid 

derivative B1, which was observed bound at the entrance of the CA active site thus occluding it.25b 

No other inhibitors were ever observed in that region of the CA active site,26 which has been always 

associated with the binding of the CA activators.26-28 A similar behaviour was thereafter observed 

for the simple coumarin derivative A, which again by means X-ray crystallography, was found 

bound in the same active site region as B1, but in the case of A1 the E-hydroxycinnamic acid was 

observed (figure 1).25b The very new mechanism of CA inhibition revealed for coumarins inspired 

much research in this field, mainly because a large number of such derivatives possessing various 

substitution patterns at the coumarin ring proved to act as highly isoform-specific CAIs,25,29 a 

phenomenon never observed for the main class of clinically used such agents, the sulfonamides and 

their isosteres (sulfamates, sulfamides, etc.).30 

In a previous work31a we reported the 2H-chromene-2-thione 2 (2-thioxocoumarin) as well as the 

2H-thiochromen-2-one 3 (thiocoumarin) and the thiochromene-2-thione 4 (dithiocoumarin) as CAIs 

isosters of the simple coumarin 1, which was also used for their preparation as depicted in Scheme 

1.  
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Scheme 1. Synthesis of coumarin and thioxocoumarin derivatives 2-19. 

 

Moreover 4-, 6- and 7- substituted derivatives 6-10 were also prepared31b and assayed as CAIs 

(Table 1 and Scheme 1). As an extension of our previous studies we report here new derivatives, 
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such as compounds 11-19, which were obtained by means of known synthetic procedures. As 

shown in Scheme 1, the introduction of a terminal alkyne chain, such as in compounds 11 and 17, 

was accomplished by means of sonicated-mediated Mitsunobu coupling reactions, which allow fast 

and cleaner reaction procedures when compared to the standard thermal conditions (data not 

shown). The presence of a terminal alkyne moiety also allowed us to explore the effect of various 

moieties, also considering the liker lengths between the main scaffold and the alkyne functionality. 

Thus we investigated lipophylic bulky moieties such as in 13 and 19 or a phenyltriazole moiety 

(compound 15), which is expected to interact through hydrogen bonds with amino acid residues 

located at the rim of the enzymatic cavity. All obtained compounds were treated with Lawesson’s 

reagent to afford the corresponding thioxo derivatives 12, 14, 16 and 18. 

 

Carbonic anhydrase inhibition. As shown in Table 1, compounds 1-19 were tested in vitro for 

their inhibition profiles against four physiologycally relevant hCA enzymes, the cytosolic isoforms 

I and II and the trans-membrane, tumor associated IX and XII. 

 

Table 1. CA inhibition data against isoforms hCA I, II, IX and XII with compounds 2-19 and 

acetazolamide (AAZ) as standard, by a stopped-flow CO2 hydrase assay.32 

______________________________________________________________________ 

       Compound     KI (µM)* 

hCA I  hCA II  hCA IXa hCA XIIa 

______________________________________________________________________ 

1**   3.1  9.2  >100  >100 

2   >100  >100  6.7  95.2 

3   >100  >100  0.97  26.5 

4   >100  >100  19.6  96.0 

5a***   >100   >100   0.19   0.68 

5b***   58.4   >100   0.48   0.75 

5c***   95.0   >100   0.41   6.30 

6a***   8.78  >100  0.80  0.28 

6b***   8.32  >100  0.85  0.83 

7a***   7.57  >100  0.86  0.31 

7b***   8.18  >100  0.96  0.35 

8a***   7.17  >100#  0.80  0.34 

8b***   8.02  >100  0.78  0.32 
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9a***   30.3  >100   0.93  0.80 

9b***   72.9  >100   0.73  0.64 

9c***   43.2  >100  0.21  0.88 

10a***    8.51  >100  3.26  1.25 

10b***   7.60  >100  3.23  2.83 

10c***   9.24  >100  3.04  1.27 

11    72.0  >100  1.35  0.73 

12   950  >100  41.6  38.9 

13   85.8  >100  61.2  31.0 

14   >200  >100  47.3  30.2 

15    >200  >100  0.008  0.005 

16    >200  >100  0.004  0.027 

17    124  >100  0.83  0.37 

18    >200  >100  0.22  0.41 

19   >200  >100  52.3  61.2 

AAZ   0.20  0.012  0.025  0.006 

______________________________________________________________________ 
*Errors in the range of ±5 % of the reported values, from three different assays. ** From Ref.16b 
***From Ref.25a ;#A KI of 285 µM has been measured, working with higher concentrations of 

inhibitor 8a.a Catalytic domain.  

 

In general all compounds reported showed to be low- medium potency inhibitors of the slow 

cytosolic isoform hCA I (KIs of 7.17 µM or > 100 µM), were inactive against the hCA II isoform 

with the only exception represented by the simple coumarin 1, and were highly potent inhibitors of 

the tumor associated isoforms hCA IX and XII, with KIs spanning between 0.004-47 µM (hCA IX) 

and 0.005-95.2 µM (hCA XII), respectively. In particular the following structure-activity-

relationship (SAR) considerations for each hCA tested can be drawn: 

i) For the hCA I the replacement of one or both of the oxygen atoms into the simple coumarin 1 (KI 

3.1 µM) to afford compounds 2-4 resulted in a complete loss of the inhibitory activity (KIs > 100 

µM). The introduction of the phenolic moiety into the coumarin 1 at positions 4, 6 and 7 also 

spoiled the inhibition potency with KIs of 95.0, >100 and 58.4 for 5c, 5a and 5b respectively. 

Conversely the manipulation of the phenol moiety in compounds 5a-c through the introduction of a 

TBDMS or an allyl group restored the inhibition potencies against the hCA I to low-medium 

micromolar values. In particular silylation of 5a and 5b (KIs >100 and 58.4 µM) to afford 
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compounds 6a and 6b resulted in a significant reduction of the KI values to 8.78 and 8.32 µM 

respectively. The introduction of the allyl group in 5a-c resulted in a marked enhancement of the 

inhibition potencies only for the 5a and 5c derivative to afford 9a and 9c (KIs 30.3 and 42.9 µM), as 

for the 7-O- allyl susbstituted derivative 9b a 1.25 fold decrease of the inhibitory activity was 

observed (KI 72.9 µM). The same trend was also observed when coumarin 5b was propargylated 

(compounds 11 and 17, KIs 72 and 124 µM) and the terminal acetylenic moiety was further 

elaborated with a metallorganic species (compound 13 KI 85.8 µM) or subjected to a copper 

catalyzed click chemistry reaction to afford compound 15 (KI >200 µM). Interestingly, the 

introduction of an exo-sulfur atom into the species previously discussed strongly influenced the 

inhibitory potencies. As reported in Table 1 both silyl derivatives 7a,b, their corresponding phenolic 

derivatives 8a,b as well as the allyl substituted compounds 10a-c showed KIs in the low micromolar 

range and comprised between 7.17-9.24 µM, which make them among the most potent compounds 

within the series against hCA I. Conversely the substitution of the exo- lactonic oxygen with a 

sulphur in 11 to afford compound 12 resulted in a significant increase of the KI (> 100 µM) and all 

the other derivatives such as 14, 16 and 18 were inactive. 

ii) Contrary to hCA I, the replacement of one or both oxygen atoms within the coumarin 1 scaffold 

to afford the compounds 2-4 resulted in a significant increase of the inhibition activity against hCA 

IX with KI values of 6.7, 0.97 and 19.6 µM respectively. Also the introduction of hydroxyl moieties 

into the coumarin ring at positions 4, 6 and 7 led to a marked increase of the inhibition potency (KIs 

of 0.41, 0.19 and 0.48 µM for 5a-c, respectively). The conversion of the hydroxyl moieties in 5a 

and 5b, to the corresponding silylated derivatives, such as 6a and 6b, resulted in a slight increase of 

the KIs of up to 0.80 and 0.85 µM, respectively. In analogy, the introduction of an O-allyl group at 

position 6 and 7 to afford 9a and 9b resulted in a 4.9 and 1.5-fold reduction of the inhibition 

activities, respectively. The only exception in this case was represented by the O-allyl derivative at 

4 position (compound 9c), which KI was halved (0.41 µM for 5c and 0.21 µM for 9c). The 

introduction of a terminal alkyne moiety in 5b to afford compounds 11 and 17 resulted in a 2.8 and 

1.73 KI fold increase of the inhibitory power respectively (compared to the lead 1), which was 

further enhanced when the cobalt(II)-based protection of the terminal alkyne was installed (61.2 and 

52.3 µM for compounds 13 and 19 respectively). Interestingly, the introduction of the phenyl 

triazole moiety in 11 to afford compound 15 led to a great reduction of the KI to 8.0 nM, thus 

making it one of the most active inhibitors against hCA IX within the series herein reported. In 

general the replacement of the exo-oxygen atom of the coumarins with a sulphur, resulted in 

reduction of the inhibitory activity, which make the 2-thioxocoumarins a highly interesting class of 

CAIs. As shown in Table 1, the thioxo derivatives 8a and 8b had KIs 4.2 and 1.6- fold higher when 
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compared to the coumarin progenitors 5a and 5b. Analogous inhibition profiles were also observed 

for the silyl derivatives 7a and 7b (KI 0.86 and 0.96 µM), for the O-allyl thioxo derivatives 10a-c 

(KIs of 3.26, 3.23 and 3.04 µM respectively) and the propargyl derivative 12 (KI 41.6 µM). 

Interestingly, a slight improvement in the inhibition potency was reported for the pentyne derivative 

18 (KI 0.22 µM), for the bulky protected alkyne 14 (KI 47.3 µM) and for the phenyltriazolyl 

derivative 16, which was the most potent inhibitor reported within this series against the hCA IX 

(KI 4 nM). The phenyltriazolyl-containing compounds 15 and 16 were even more potent CAIs 

compared to the standard sulfonamide acetazolamide (KI 25 nM) 

iii) The inhibition profiles of the compounds reported here against hCA XII isoform were more 

intricate compared to what discussed above for the other three investigated isoforms, and a clear-cut 

structure-activity relationship is rather difficult to draw. As for hCA IX, the introduction of one or 

more sulphur atoms within the simple coumarine scaffold 1 (KI >100 µM) accounted for a 

restoration of the inhibition activity (KIs 95.2, 26.5 and 96.0 µM for 2-4, respectively). Also the 

introduction of the hydroxyl moiety at the 4, 6 and 7 positions of the coumarin ring resulted in a 

marked enhancement of the inhibitory activity (KIs 6.30, 0.68 and 0.75 µM for compounds 5c, 5a 

and 5b, respectively). The functionalisation of the hydroxyl moieties, as for the silyl derivatives 6a 

and 6b, determined different behaviours. Thus the 6-O-TBDMS derivative 6a was more active 

when compared to its progenitor 5a (KI 0.28 µM for 6a and 0.68 µM for 5a); conversely the 7-O-

TBDMS derivative 6b showed just a modest 1.1 fold decrease of its activity (KI 0.83 µM). The 

introduction of the O-allyl moiety into the coumarins 5a-c resulted in a reduction of the inhibition 

potency for the 4 and 7-substituted derivatives 9b and 9c (KIs 0.64 and 0.88 µM respectively) whilst 

the 6-O-allyl derivative 6a showed a 1.2 times increase of its inhibitory potency. Conversely to the 

hCA I and IX enzymes in which the introduction of the O-propargyl and O-pentenyl chains at the 7-

position of the coumarin scaffold determined a decrease of the inhibitory potencies, in the case of 

hCA XII a slight KI decrease was observed for compound 11 (KI 0.73 µM) and a 2 fold decrease for 

the longer-chain derivative 17 (KI 0.37 µM). The protection of the terminal alkyne moieties in 11 

and 17, to afford compounds 13 and 19, spoiled their inhibition potencies by a 42.5 and 165.4 fold 

KI increase, respectively. Interestingly the introduction of the phenyltriazolyl moiety in 11 to afford 

compound 15 resulted in a drastic reduction of the KI up to 5.0 nM, thus making this compound as 

the most active in the series (against hCA XII) and comparable to the inhibition value of the 

sulfonamide AAZ (KI 6.0 nM), which however is a promiscuous CAI unlike the 

coumarins/thioxocoumarins. Introduction of the exo-sulphur moiety into the simple hydroxyl 

coumarins 5a and 5b, as in compounds 8a and 8b, led to an enhancement of the inhibition potency 

(KI 0.34 and 0.32 µM respectively) compared to the corresponding coumarins. As for the silyl 
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derivatives 7a and 7b only a slight KI increase was observed for the former (KI 0.31 µM) whereas 

the latter showed a 0.42 fold increase of its potency (KI 0.35 µM). The insertion of the sulphur atom 

in compounds 9a-c to afford 10a-c, determined a reduction of the inhibition against the hCA XII 

(KIs 1.25, 2.83 and 1.27 µM, respectively). In analogy the conversion of 11 and 17 to their 

corresponding thioxo derivatives 12 and 18 resulted in reduction of the inhibition potencies (KIs 

38.9 and 0.41 µM respectively). Only a small KI reduction was observed for compound 14 when 

compared to its oxo-analogue 13 (KI 31.0 µM for 13 and 30.2 µM for 14). Finally the thioxo 

derivative of 15, i.e., 16, showed a 5.4 fold increase of its KI, thus making it the second most potent 

inhibitor against the hCA XII within this series. 

In summary among all the compounds reported here, the phenyltriazolyl bearing derivatives 

15 and 16 were the most potent and selective inhibitors of the tumor associated hCA IX and XII 

with KIs comparable or lower of the standard sulfonamide AAZ. In particular the introduction of 

the exo-sulphur atom within the coumarine scaffold of 15, to afford 16, halved the KI against the 

tumor associated isoform hCA IX. Such an inhibition profile was not observed against hCA XII. 

However both compounds 15 and 16 were highly active and selective for the tumor-associated 

isoforms among the derivatives belonging to this series. 

 

X-ray crystallography. In order to understand the structural elements which led to such interesting 

inhibitory profiles, as well as to dissect the inhibition mechanism with thioxocoumarins, we report 

here the high resolution (1.1 Å) crystal structure of the adduct of hCA II with thioxocoumarin 8a. A 

very interesting binding mode for this compound within the enzyme active site (Figure 2A and B, 

and experimental section Table 2) has been thus revealed. 
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Figure 2. A: Fo-Fc omit map of 8a and water molecules within the hCA II active site in the hCA II 

– 8a adduct; B: Tilted view of the electron density of 8a and water molecules within the hCA II 

active site. 

 

The sulphur (S1) atom of inhibitor 8a is hydrogen bonded to the water coordinating the zinc ion 

(Wat348 – S1 2.90 Å). The Wat348 to Zn(II) distance is of 1.91 Å, as in most X-ray structures of 

CA alone or in complex with inhibitors in which the non-protein zinc ligand is a water 

molecule/hydroxide ion.20 Furthermore, S1 forms a hydrogen bond with the Thr199 peptide 

nitrogen (S1···H– N Thr199 of 2.64 Å). This is very different from inhibitors which directly 

coordinate to the metal ion, in which a hydrogen bond with the OH of Thr199 is usually 

observed.21,22 A disordered second water molecule (Wat394) was observed in the electron density 

nearby the Zn(II) coordinated water molecule (Wat348). This is probably due to the fact that the 

occupancy of the inhibitor in the adduct is of 50% (also due to its low affinity for isoform hCA II; 

see Table 1) and to the high degree of disorder observed for the water molecules in the adduct (see 

below). This water is too far from the Zn(II) (Wat394 – Zn 2.58 Å) to be considered as coordinated, 

and too close to the S1 atom of the inhibitor (Wat394 – S1 1.71 Å). The bicyclic ring system of 

inhibitor 8a resides in a hydrophobic pocket formed by residues Phe131, Val121, Leu198 and 

Pro202 (Figures 3, 4). The inhibitor forms two C-H···O hydrogen bonds with Leu198 (CB 

Leu198···H–OAK, of 2.44 Å, and CD2 Leu198···H–OAK Leu198, and one with Thr200, 

OG1Thr200···H–CAL of 2.24 Å). The inhibitor was introduced at 0.5 of occupancy, as mentioned 

above (see also Supplementary Table 3 for the B factors of the inhibitor/water molecules). Some 

water molecules occupy the same position of the inhibitor and they were also introduced at partial 

occupancy. Interestingly they form in the active site the same hydrogen bonding network usually 

observed in native hCA II structures.  

 Thus, unlike coumarins investigated in detail by X-ray crystallography (and kinetic 

measurements) the structurally-related 2-thioxocoumarins possess a CA binding mode which 

resembles the phenols,33a polyamines,33b or sulfocoumarins,34 which all anchor to the zinc-

coordinated water molecule/hydroxide ion, with the scaffold participating in supplementary 

interactions with the active site, thus stabilizing the enzyme-inhibitor adduct. In fact as seen from 

Figure 3, where the present structure was superimposed on that of the hCA II – coumarin B adduct, 

the active site regions occupied by the two structurally similar inhibitors are quite distinct, with the 

main difference being that the coumarin B is hydrolyzed whereas the 2-thioxocoumarin 8a was 

observed intact within the enzyme active site. 
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Figure 3. Superposition of the hCA II - 8a adduct (sky blue, 4WL4) with the hCA II - hydrolyzed 

coumarin B1 adduct (5BNL) (silver). The zinc ion, its three His ligands and amino acid residues 

involved in the binding of inhibitors are shown. 

 

Conclusions. Coumarins and their isosteres represent very interesting classes of CAIs which led to 

highly isoform-selective compounds. Such derivatives investigated by X-ray crystallography and 

kinetic measurements allowed the discovery of new CA inhibition mechanisms, i.e., occlusion of 

the active site entrance.1-3 Here we report that the structurally-related sulfur containing coumarin 

derivatives, such as the 2H-chromene-2- thiones, possess a CA inhibition mechanism different form 

the parent oxygen-bearing compounds. The hCA II-8a adduct revealed the exo-sulfur atom of the 

inhibitor anchored to the zinc-coordinated water molecule/hydroxide ion, with the scaffold 

participating in supplementary interactions within the active site, thus contributing in stabilizing the 

enzyme-inhibitor adduct. Thus, the main difference of the binding modes between coumarins and 

2H-chromene-2-thione derivatives is that the first were observed hydrolyzed when bound to the 

enzyme, whereas the latter ones are not. This different behavior is amenable to drug design 

campaigns, also considering the simplicity of the scaffold of 8a and the relative facility with which 

some of its derivatives could be obtained. In fact the click chemistry applied to this class of 

compounds afforded low nanomolar inhibition of the tumor-associated isoforms hCA IX/XII with 

thioxocoumarins, these compounds being not inhibitory against the offtarget cytosolic isoforms 

hCA I and II. As one hCA IX-selective sulfonamide inhibitor is in Phase I clinical trials for the 

treatment of hypoxic, metastatic solid tumors, we estimate that the present findings may lead to 

even more interesting drug candidates for the treatment of this condition. 
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Experimental protocols 

 

Chemistry  

 

General. Anhydrous solvents and all reagents were purchased from Sigma-Aldrich, Alfa Aesar and 

TCI. All reactions involving air- or moisture-sensitive compounds were performed under a nitrogen 

atmosphere using dried glassware and syringes techniques to transfer solutions. Nuclear magnetic 

resonance (1H-NMR, 13C-NMR) spectra were recorded using a Bruker Advance III 400 MHz 

spectrometer in DMSO-d6. Chemical shifts are reported in parts per million (ppm) and the coupling 

constants (J) are expressed in Hertz (Hz). Splitting patterns are designated as follows: s, singlet; d, 

doublet; t, triplet; m, multiplet; brs, broad singlet; dd, double of doublets. The assignment of 

exchangeable protons (OH and NH) was confirmed by the addition of D2O. Analytical thin-layer 

chromatography (TLC) was carried out on Merck silica gel F-254 plates. Flash chromatography 

purifications were performed on Merck Silica gel 60 (230-400 mesh ASTM) as the stationary phase 

and ethyl acetate/n-hexane were used as eluents. Melting points (mp) were carried out in open 

capillary tubes using a Gallenkamp MPD350.BM3.5 apparatus and are uncorrected. 2H-Chromen-

2-one 1 and trans-cinnamic acid were commercially available from Sigma-Aldrich, Milan, Italy. All 

compounds reported here were > 98% pure. 

 

Synthesis of 2H-chromene-2-thione 2.31a 

 

 

2H-Chromen-2-one 1 (0.5 g, 1.0 eq) was dissolved in dry toluene (20 ml) and treated with 

Lawesson’s reagent (2.0 eq). The reaction mixture was refluxed until consumption of the starting 

material (TLC monitoring). Then the solvent was removed under vacuo and the obtained residue 

was purified by silica gel column chromatography eluting with 20% v/v ethyl acetate/n-hexane to 

afford the titled compound 2 as a yellow solid. 

2H-Chromene-2-thione 2: 60% yield; silica gel TLC Rf 0.27 (ethyl acetate/n-hexane 20% v/v); νmax 

(KBr) cm-1 1765, 1518, 1220; δH (400 MHz, DMSO-d6) 7.31 (1H, d, J 10.0, 3-H), 7.61 (1H, dt, J 

7.6, 1.2, 6-H), 7.64 (1H, d, J 8.4, 5-H), 7.74 (1H, dt, J 7.6, 1.2, 7-H), 7.85 (1H, d, J 8.4, 8-H), 7.96 

(1H, d, J 10.0, 4-H); δc (100 MHz, DMSO-d6), 198.5 (C=S), 157.0, 137.0, 133.6, 130.0, 129.6, 

126.8, 121.2, 117.1; Anal. Calc. C, 66.64; H, 3.73; S, 19.77; Anal. Found. C, 66.15; H, 3.43; S, 

12.38.  

O O O S

Lawesson's reagent

Toluene, Reflux

21
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Synthesis of 2H-thiochromen-2-one 3.31a 

 

3

OH

O

i) SOCl2, DCM, 40°C
ii) PhSH, Pyr.

S

O

S O

AlCl3
 Toluene

Intermediate 1

(E)-S-Phenyl 3-phenylprop-2-enethioate  

 

trans-Cinnamic acid (1.0 g, 1.0 eq) was dissolved in dry DCM (20 ml) and thionyl chloride (10.0 

eq) was added drop-wise at 0 °C. The solution was refluxed until starting material was consumed 

(TLC monitoring), then the solvents were removed under vacuo to give a sticky oily residue that 

was dissolved in dry pyridine (10 ml) at 0 °C and thiophenol (0.74 g, 1.0 eq) was added drop-wise. 

The yellow solution was stirred at r.t. for 2 h, quenched with H2O (30 ml), extracted with ethyl 

acetate (3 x 15 ml) and the combined organic layers were dried over Na2SO4, filtered and 

concentrated under vacuo to give a residue that was purified by silica gel column chromatography 

eluting with 5% v/v ethyl acetate/n-hexane to afford intermediate 1 as a pale yellow solid. 

(E)-S-Phenyl 3-phenylprop-2-enethioate (intermediate 1): 62% yield; 94-96 °C; silica gel TLC Rf 

0.17 (ethyl acetate/n-hexane 5% v/v); νmax (KBr) cm-1, 1670 (C=O), 1515 (aromatic); δH (400 MHz, 

DMSO-d6) 7.16 (1H, d, J 16.0, 2-H), 7.49 (3H, m, 2 x 6-H, 7-H), 7.54 (5H, s, S-Ar-H), 7.70 (1H, d, 

J 16.0, 3-H), 7.84 (2H, m, 2 x 5-H); δc (100 MHz, DMSO-d6), 188.0 (C=O), 142.5, 135.4, 134.6, 

132.0, 130.5, 130.3, 130.0, 129.9, 128.2, 125.2. 

 

(E)-S-Phenyl 3-phenylprop-2-enethioate (0.2 g, 1.0 eq) was dissolved in dry toluene (5.0 ml) and 

AlCl3 (0.56 g, 5.0 eq) was added. The orange solution was stirred at 70 °C for 5 h (TLC 

monitoring), cooled down to r.t., quenched with slush and extracted with ethyl acetate (3 x 20 ml). 

The combined organic layers were washed with H2O (2 x 20 ml), dried over Na2SO4, filtered-off 

and concentrated under vacuo to give an orange residue that was purified by silica gel column 

chromatography eluting with 5% v/v ethyl acetate/n-hexane to afford the titled compound 2 as a 

pale yellow solid. 

2H-Thiochromen-2-one 3: 55% yield; 77-78 °C; silica gel TLC Rf 0.11 (ethyl acetate/n-hexane 5% 

v/v); νmax (KBr) cm-1, 1660 (C=O), 1515 (aromatic); δH (400 MHz, DMSO-d6) 6.65 (1H, d, J 10.8, 

3-H), 7.64 (3H, m, 5-H, 6-H, 7-H), 7.92 (1H, d, J 8.0, 8-H), 8.12 (1H, d, J 10.8, 4-H); δc (100 MHz, 

DMSO-d6), 185.1 (C=O), 145.8, 137.2, 133.0, 131.4, 127.8, 126.8, 126.7, 124.4; Anal. Calc. C, 

66.64; H, 3.73; S, 19.77; Anal. Found. C, 62.96; H, 3.63; S, 12.08.  
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Synthesis of thiochromene-2-thione 4 

 

3

Lawesson's reagent
Toluene, reflux

S O

4

S S

 

 

2H-Thiochromen-2-one 3 (0.03 g, 1.0 eq) was dissolved in dry toluene (10 ml) and treated with 

Lawesson’s reagent (2.0 eq). The reaction mixture was refluxed until consumption of the starting 

material (TLC monitoring). Then the solvent was removed under vacuo and the obtained residue 

was purified by silica gel column chromatography eluting with 10% v/v ethyl acetate/n-hexane to 

afford the titled compound 4 as a red solid. 

2H-Thiochromene-2-thione 4: 33% yield; 103-105 °C; silica gel TLC Rf 0.20 (ethyl acetate/n-

hexane 10% v/v); νmax (KBr) cm-1, 1770, 1520, 1230; δH (400 MHz, DMSO-d6) 7.43 (1H, d, J 10.0, 

3-H), 7.61 (1H, dt, J 8.0, 1.6, 5-H), 7.28 (2H, m, 6-H, 7-H), 7.90 (1H, d, J 10.0, 4-H), 8.00 (1H, d, J 

8.0, 8-H); δc (100 MHz, DMSO-d6), 209.7 (C=S), 140.2, 136.9, 136.3, 133.0, 131.9, 129.2, 128.5, 

124.6; Anal. Calc. C, 60.63; H, 3.39; S, 35.97; Anal. Found. C, 59.48; H, 3.05; S, 21.27.  

 

Synthesis of 7-(prop-2-ynyloxy)-2H-chromen-2-one 11. 

 

5b

O OO

11

OH

Ph3P, DIAD
THF dry
Sonication
0°C--r.t.

O OHO

 

 

7-Hydroxy coumarin 5b (1.0 g, 1.0 eq), propargyl alcohol (1.0 eq) and triphenylphoshine (1.0 eq) 

were dissolved in dry THF (90 ml). Then the temperature was lowered to 0 °C and 

diisopropylazadicarboxylate (1.1 eq) was added drop-wise under sonication. The orange solution 

was sonicated at r.t. under a nitrogen atmosphere using a water bath sonication system working at 

40 kHz, until starting material was consumed (TLC monitoring). Solvents were removed under 

vacuo to give a white solid that was recrystallized from MeOH to give 2 as a white solid. 

7-(Prop-2-ynyloxy)-2H-chromen-2-one 11: 67% yield; m.p. 118 °C (Lit.35 120 °C); silica gel TLC 

Rf  0.53 (ethyl acetate/n-hexane 50% v/v); νmax (KBr) cm-1, 3310 (C≡C-H), 2160 (C≡CH), 1765 

(C=O), 1604 (Aromatic); δH (400 MHz, DMSO-d6) 3.69 (1H, t, J 2.4, 3’-H), 4.97 (2H, d, J 2.4, 1’-

H2), 6.36 (1H, d, J 9.6, 3-H), 7.03 (1H, dd, J 8.5, 2.3, 6-H), 7.09 (1H, d, J 2.3, 8-H), 7.69 (1H, d, J 

8.5, 5-H), 8.03 (1H, d, J 9.6, 4-H); δC (100 MHz, DMSO-d6) 161.1 (C-2), 161.0 (C-7), 156.0 (C-8a), 
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145.1 (C-4), 130.4 (C-5), 113.9 (C-3), 113.8 (C-4a), 113.7 (C-6), 102.7 (C-8), 79.8 (C-2’), 79.4 (C-

3’) and 57.0 (C-1’). Data in agreement with reported data.35 

 

Synthesis of 7-(prop-2-ynyloxy)-2H-chromene-2-thione 12 

 

O O

Lawesson's reagent
Toluene, refluxO

11

O SO

12  

 

7-(Prop-2-ynyloxy)-2H-chromen-2-one 11 (0.2 g, 1.0 eq) and Lawesson’s Reagent (1.5 eq) were 

dissolved in dry toluene (10 ml) and the yellow solution was refluxed until starting material was 

consumed (TLC monitoring). Then the solvent was removed under vacuo and the orange residue 

was partitioned between H2O and ethyl acetate. The organic phase was washed with H2O (2 x 20 

ml), brine (3 x 20 ml), dried over Na2SO4, filtered-off and concentrated under vacuo to give a red 

sticky oil that was purified by silica gel column chromatography eluting with 10 % ethyl acetate in 

n-hexane to afford the title compound 12 as a yellow solid. 

7-(Prop-2-ynyloxy)-2H-chromene-2-thione 12: 72% yield; m.p. 97-101 °C; silica gel TLC Rf  0.27 

(ethyl acetate/n-hexane 10% v/v); νmax (KBr) cm-1, 3300 (C≡C-H), 2165 (C≡C-H), 1601 (Aromatic); 

δH (400 MHz, DMSO-d6) 3.72 (1H, t, J 2.4, 3’-H), 5.02 (2H, d, J 2.4, 1’-H2), 7.13 (1H, dd, J 9.2, 

2.4, 6-H), 7.18 (1H, d, J 9.2, 3-H), 7.31 (1H, d, J 2.4, 8-H), 7.80 (1H, d, J 9.2, 5-H), 7.90 (1H, d, J 

9.2, 4-H); δC (100 MHz, DMSO-d6) 198.1 (C-2), 161.8 (C-7), 158.6 (C-8a), 137.4 (C-4), 130.6 (C-

5), 127.4 (C-3), 115.7 (C-4a), 115.6 (C-6), 102.3 (C-8), 80.0 (C-2’), 79.2 (C-3’) and 57.3 (C-1’). 

Anal. Calc%. C, 66.65; H, 3.73; S, 14.83; Anal. Found. C, 65.36; H, 3.71; S, 9.37. 

 

Synthesis of 7-(prop-2-ynyloxy)-2H-chromen-2-one hexacarbonyldicobalt 13 

 

O OO

11 13

O OO

(OC)6Co2
Co2(CO)8
THF dry

 

 

7-(Prop-2-ynyloxy)-2H-chromen-2-one 11 (0.1 g, 1.0 eq) was dissolved in THF (10ml) and then 

cobalt carbonyl (1.05 eq) was added. The black solution was stirred at r.t. for 40 min. Then SiO2 

(0.3 g) was added and solvent removed under vacuo to give a black solid that was purified by silica 

gel column chromatography eluting with 20% v/v ethyl acetate/n-hexane to afford 6 as a red solid. 
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7-(Prop-2-ynyloxy)-2H-chromen-2-onehexacarbonyldicobalt 13: 94% yield; silica gel TLC Rf  0.22 

(ethyl acetate/n-hexane 20% v/v); νmax (KBr) cm-1 1752 (C=O), 1600 (Aromatic); δH (400 MHz, 

DMSO-d6) 5.50 (2H, s, 1’-H2), 6.35 (1H, d, J 9.4, 3-H), 6.89 (1H, s, 3’-H), 7.00 (1H, dd, J 8.8, 2.4, 

6-H), 7.11 (1H, d, J 2.4, 8-H), 7.70 (1H, d, J 8.8, 5-H), 8.04 (1H, d, J 9.4, 4-H); δC (100 MHz, 

DMSO-d6) 200.9 (C=O), 161.7 (C-2), 161.0 (C-7), 156.2 (C-8a), 145.1 (C-4), 130.5 (C-5), 113.7, 

113.6, 113.4, 102.4 (C-8), 90.8 (C-3’), 73.9 and 69.4. 

 

Synthesis of 7-(prop-2-ynyloxy)-2H-chromene-2-thione hexacarbonyldicobalt 14 

O SO

12 14

O SO

(OC)6Co2
Co2(CO)8
THF dry

 

7-(Prop-2-ynyloxy)-2H-chromene-2-thione 12 (0.1 g, 1.0 eq) was dissolved in THF (10ml) and then 

cobalt carbonyl (1.05 eq) was added. The black solution was stirred at r.t. for 40 min. Then SiO2 

(0.3 g) was added and solvent removed under vacuo to give a black solid that was purified by silica 

gel column chromatography eluting 10% v/v ethyl acetate/n-hexane to afford 14 as a red solid. 

7-(prop-2-ynyloxy)-2H-chromene-2-thione hexacarbonyldicobalt 14: 79% yield; silica gel TLC Rf 

0.18 (ethyl acetate/n-hexane 10% v/v); νmax (KBr) cm-1 1775 (C=O), 1530 (aromatic); δH (400 MHz, 

DMSO-d6) 5.55 (2H, s, 1’-H2), 6.90 (1H, s, 3’-H), 7.09 (1H, dd, J 8.8, 2.4, 6-H), 7.18 (1H, d, J 9.2, 

3-H), 7.36 (1H, d, J 2.4, 8-H), 7.80 (1H, d, J 8.8, 5-H), 7.90 (1H, d, J 9.2, 4-H); δc (100 MHz, 

DMSO-d6), 200.7 (C≡O), 198.3 (C=S), 166.5, 162.4, 158.9, 137.2, 130.0, 127.1, 115.4, 101.9, 73.9, 

69.7, 57.4 ; Anal. Calc. C, 44.12; H, 2.14; S, 6.20; Anal. Found. C, 44.75; H, 2.08; S, 3.94. 

 

Synthesis of 7-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]-2H-chromen-2-one 15 

 

O OO

11

O OO
N

N
N 15

PhN3, Cu0 nanosized

TMACl

tert-BuOH/H2O

 

 

7-(Prop-2-ynyloxy)-2H-chromen-2-one 11 (0.08 g, 1.0 eq) and phenylazide (1.1 eq) were dissolved 

in tert-ButOH/H2O (1/1, 2.0 ml) and then tetramethylamonium chloride (1.0 eq) and copper 

nanosize (5% mol) were added. The mixture was vigorously stirred at r.t. until starting material was 

consumed (TLC monitoring). Solvents were removed under vacuo (temperature has not to exceed 

40 °C) and the brown residue was purified by silica gel column chromatography eluting with 25% 

v/v ethyl acetate/n-hexane to afford 15 as a white solid. 
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7-[(1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy]-2H-chromen-2-one 15: 54% yield; m.p. 170-174 °C 

silica gel TLC Rf  0.11 (ethyl acetate/n-hexane 25% v/v); νmax (KBr) cm-1 1750 (C=O), 1602 

(Aromatic); δH (400 MHz, DMSO-d6) 5.40 (2H, s, 1’-H2), 6.35 (1H, d, J 9.6, 3-H), 7.10 (1H, dd, J 

9.6, 2.4, 6-H), 7.24 (1H, d, J 2.4, 8-H), 7.55 (1H, tt, J 7.6, 1.2, Ar-H), 7.65 (2H, d, J 7.6, 2 x Ar-H), 

7.7 (1H, d, J 9.6, 5-H), 7.95 (2H, d, J 7.6, 2 x Ar-H), 8.04 (1H, d, J 9.6, 4-H), 9.04 (1H, s, 3’-H); δC 

(100 MHz, DMSO-d6) 162.0 (C-2), 161.2 (C-7), 156.2 (C-8a), 145.2 (C-2’), 144.1 (C-4), 138.0, 

130.9, 130.5, 129.8, 124.1, 121.2, 113.8, 113.7, 113.6,  102.6 (C-8) and 63.0 (C-1’). 

 

Synthesis of 7-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]-2H-chromene-2-thione 16 

 

O SO

12

O SO
N

N
N 16

PhN3, Cu0 nanosized

TMACl

tert-BuOH/H2O

 

 

7-(Prop-2-ynyloxy)-2H-chromene-2-thione 12 (0.1 g, 1.0 eq) and phenylazide (1.1 eq) were 

dissolved in tert-ButOH/H2O (1/1, 2.0 ml). Then tetramethylamonium chloride (1.0 eq) and copper 

nanosize (10% mol) were added. The mixture was vigorously stirred at r.t. until starting material 

was consumed (TLC monitoring). Solvents were removed under vacuo (temperature has not to 

exceed 40 °C) and the brown residue was purified by silica gel column chromatography eluting 

with 50% v/v ethyl acetate/n-hexane to afford 16 as a yellow solid. 

7-[(1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy]-2H-chromene-2-thione 16: silica gel TLC Rf  0.50 

(ethyl acetate/n-hexane 10% v/v); νmax (KBr) cm-1, 1604 (Aromatic); δH (400 MHz, DMSO-d6) 5.50 

(2H, s, 1’-H2), 7.12 (1H, dd, J 9.6, 2.4, 6-H), 7.26 (1H, d, J 9.6, 3-H), 7.35 (1H, d, J 2.4, 8-H), 7.58 

(1H, tt, J 7.6, 1.2, Ar-H), 7.70 (2H, d, J 7.6, 2 x Ar-H), 7.72 (1H, d, J 9.6, 5-H), 7.95 (2H, d, J 7.6, 2 

x Ar-H), 8.02 (1H, d, J 9.6, 4-H), 9.01 (1H, s, 3’-H); δC (100 MHz, DMSO-d6) 198.0 (C-2), 162.0 

(C-7), 157.0 (C-8a), 146.3 (C-2’), 144.0 (C-4), 136.0, 132.0, 131.0, 1230, 124.6, 121.0, 115.0, 

114.0, 113.7, 103.0 (C-8) and 63.0 (C-1’). 

 

Synthesis of 7-Pent-4-ynyloxy-chromen-2-one 17 

 

5b 17

OH

Ph3P, DIAD
THF dry
Sonication
0°C--r.t.

O OHO

3

O OO
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7-Hydroxy coumarin 5b (1.0 g, 1.0 eq), pent-4-yn-1-ol (1.0 eq) and triphenylphoshine (1.0 eq) were 

dissolved in dry THF (90 ml). Then the temperature was lowered to 0 °C and 

diisopropylazadicarboxylate (1.1 eq) was added drop-wise under sonication. The orange solution 

was sonicated at r.t. under a nitrogen atmosphere until starting material was consumed (TLC 

monitoring). Solvents were removed under vacuo to give a white solid that was purified by silica 

gel column chromatography eluting with 50% v/v ethyl acetate/n-hexane to afford the title 

compound 17 as white solid. 

7-Pent-4-ynyloxy-chromen-2-one 17: 52% yield; m.p. 112 °C; silica gel TLC Rf  0.50 (ethyl 

acetate/n-hexane 50% v/v); δH (400 MHz, DMSO-d6) 1.96 (2H, pent, J 6.4), 2.38 (2H, m), 2.89 (1H, 

t, J 2.8, ≡CH), 4.18 (2H, t, J 6.4), 6.32 (1H, d, J 9.6, Ar-H), 6.98 (1H, d, J 9.6, Ar-H), 7.03 (1H, d, J 

2.4, 8-H), 7.66 (1H, d, J 9.6, Ar-H), 8.01 (1H, d, J 9.6, Ar-H); δC (100 MHz, DMSO-d6) 15.3, 28.4, 

67.7, 72.6, 84.4, 102.1, 113.3, 113.4, 113.6, 130.4, 145.2, 156.3, 161.2, 162.6. 

 

Synthesis of 7-pent-4-ynyloxy-chromene-2-thione 18 

 

Lawesson's reagent
Toluene, reflux

17

O SO

18

O OO

 

 

7-Pent-4-ynyloxy-chromen-2-one 17 (0.2 g, 1.0 eq) and Lawesson’s Reagent (1.5 eq) were 

dissolved in dry toluene (10 ml) and the yellow solution was refluxed until starting material was 

consumed (TLC monitoring). Then the solvent was removed under vacuo and the orange residue 

was partitioned between H2O and ethyl acetate. The organic phase was washed with H2O (2 x 20 

ml), brine (3 x 20 ml), dried over Na2SO4, filtered-off and concentrated under vacuo to give a red 

sticky oil that was purified by silica gel column chromatography eluting with 10% v/v ethyl 

acetate/n-hexane to afford the title compound 18 as a yellow solid. 

7-Pent-4-ynyloxy-chromene-2-thione 18: 35% yield; silica gel TLC Rf  0.54 (ethyl acetate/n-hexane 

50% v/v); δH (400 MHz, DMSO-d6) 1.94 (2H, pent, J 6.4), 2.40 (2H, m), 2.76 (1H, t, J 2.8, ≡CH), 

4.19 (2H, t, J 6.4), 6.99 (1H, s, Ar-H), 7.04 (1H, dd, J 8.8, 2.4, Ar-H), 7.19 (1H, d, J 9.2, Ar-H), 

7.35 (1H, d, J 2.4, Ar-H), 7.80 (1H, d, J 8.8, Ar-H), 7.92 (1H, d, J 9.2, Ar-H); δC (100 MHz, 

DMSO-d6) 15.3, 28.4, 67.7, 72.6, 84.4, 102.1, 113.3, 113.4, 113.6, 130.4, 145.2, 156.3, 161.2, 198 

(C=S). 

 

Synthesis of 7-(pent-4-ynyloxy)-2H-chromen-2-one hexacarbonyldicobalt 19 
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Co2(CO)8
THF dry

17

O OO

19

O OO
(OC)6Co2

 

 

7-(Pent-4-ynyloxy)-2H-chromen-2-one 17 (0.05 g, 1.0 eq) was dissolved in THF (10 ml) and then 

cobalt carbonyl (1.05 eq) was added. The black solution was stirred at r.t. for 40 min. Then SiO2 

(0.3 g) was added and solvent removed under vacuo to give a black solid that was purified by silica 

gel column chromatography eluting with 20% v/v ethyl acetate/n-hexane to give 19 as a red solid. 

7-(Pent-4-ynyloxy)-2H-chromen-2-one hexacarbonyldicobalt 19: 92 % yield; silica gel TLC Rf 0.20 

(ethyl acetate/n-hexane 20% v/v); νmax (KBr) cm-1 1762 (C=O), 1530 (aromatic); δH (400 MHz, 

DMSO-d6) 2.10 (2H, quint, J 6.8, 2’-H2), 3.09 (2H, t, J 6.8, 3’-H2), 4.28 (2H, t, J 6.8, 1’-H2), 6.33 

(1H, d, J 9.6, 3-H), 6.84 (1H, s, 5’-H), 7.01 (1H, dd, J 8.8, 2.0, 6-H), 7.06 (1H, d, J 2.0, 8-H), 7.66 

(1H, d, J 8.8, 5-H), 8.03 (1H, d, J 9.6, 4-H); δc (100 MHz, DMSO-d6), 200.9 (C≡O), 162.7 (C=O), 

161.3, 156.5, 145.4, 130.6, 113.8, 113.5, 102.3, 98.5, 75.5, 72.5, 68.4, 31.8, 31.0; ; Anal. Calc. C, 

47.66; H, 2.86; Anal. Found. C, 46.74; H, 2.27. 

 

Co-crystallization and X-ray data collection. Crystals of native hCA II were obtained using the 

hanging drop vapor diffusion method. 2 µl of the protein solution were mixed with 2 µl of a 

solution of 1.6 M sodium citrate, 50 mM Tris pH 8.0 and were equilibrated against the same 

solution at 296 K. Protein concentration was 0.4 mM in 50 mM Tris pH=8.0. Crystals of the 

complex with 8a were obtained by soaking the hCAII crystals in a saturated solution of the 

compound dissolved in 1.2 M sodium citrate, 50 mM Tris pH 8.0 and 15% glycerol.  

A crystal of the complex was harvested from this solution and flash-frozen at 100K. A data set on a 

crystal of the complex hCAII-inhibitor 8a was collected to a maximum resolution of 1.10 Å, using 

synchrotron radiation at the ID23-1 beamline at ESRF (Grenoble, France) with a wavelength of 

1.000 Å and a DECTRIS Pilatus 6M detector. Data were integrated and scaled using the program 

XDS.36 Data processing statistics are showed in Table 1. 

 

Structure determination. The crystal structure of hCA II (PDB accession code: 3P58) without 

solvent molecules and other heteroatoms was used to obtain initial phases of the structures using 

Refmac537 5% of the unique reflections were selected randomly and excluded from the refinement 

data set for the purpose of Rfree calculations. Inspection of the difference electron-density maps 

indicated the presence of an inhibitor molecule bound to the water that coordinate the catalytic zinc 

ion. Atomic models for the inhibitor were calculated and energy minimized using the program 

JLigand 1.0.39. A fractional occupancy factor of 0.5 was attributed to all the inhibitor atoms. After 
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the introduction of the inhibitor positive residual densities were present in the difference electron-

density maps close to the inhibitor and were attributed to disordered water molecules (occupancy 

factors 0.5). 

During the refinement anisotropic temperature factors were introduced and hydrogen atoms were 

added to the model. Manual building of the atomic model were carried out using COOT38 Solvent 

molecules were introduced automatically using the program ARP39 working in the default solvent 

building mode. The quality of the final models were assessed with PROCHECK.40 Crystal and 

refinement data are summarized in Table 2. Graphical representations were generated with 

Chimera.41 

Table 2. Summary of Data Collection and Atomic Model Refinement Statistics.* 

 

 hCA II+ 8a 

PDB ID 4WL4 

Wavelength (Å) 1.000 

Space Group P21 

Unit cell (a,b,c,) (Å, °) 42.26, 41.37, 72.28, 104.21 

Limiting resolution (Å) 29.11-1.10 (1.17-1.10) 

Unique reflections 78925 (3784) 

Rsym (%) 4.8 (42.1) 

Redundancy 3.5 (2.1) 

Completeness overall (%) 80.7 (27.2) 

<I/(I)> 12.90 (1.73) 

Refinement statistics  

Resolution range (Å) 29.11-1.10 

Unique reflections, working/free 75094 (3784) 

Rfactor (%) 10.90 

Rfree(%) 12.99 

No. of protein atoms 4682 

No. of water molecules 395 
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No. of compound atoms 18 

r.m.s.d. bonds(Å) 0.0066 

r.m.s.d. angles (°) 1.311 

Ramachandran statistics (%)  

Most favored 96.5 

additionally allowed 3.5 

generously allowed regions 0 

Average B factor (Å2)  

main-chain protein atoms 12.72 

side chain protein atoms 14.88 

compound 15.80 

solvent 33.69 

*Values in parentheses are for the highest resolution shell. 

 

Table 3. Occupancy and B factors of the zinc ion, the inhibitor 8a atoms and water molecules in the 

active site of the hCA II complex. 

atom occupancy B isotropic 

Zn      1.0  7.36 

S1          0.50 16.09 

CAF  0.50 13.79 

CAI   0.50 15.56 

HAI    0.50 14.05 

CAH    0.50 13.93 

HAH  0.50 13.97 

CAN   0.50  15.08 

CAM   0.50  15.99 

HAM  0.50 16.21 
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OAK   0.50 15.45 

CAO   0.50 14.83 

CAL      0.50 15.48 

HAL    0.50 15.39 

CAG       0.50 16.35 

Wat343 0.50 35.87 

Wat344 0.50 18.95 

Wat349 0.50 38.00 

Wat350 0.50 33.12 

Wat351 0.50 12.46 

Wat352 0.50 22.01 

Wat353 0.50 20.66 

Wat354 0.50 22.75 

Wat344 0.50 18.95 

Wat394 0.50 12.08 

 

 

Accession Codes. Coordinates and structure factors for CA II complexes with 8a have been 

deposited in the Protein Data Bank (PDB) accession code: 4WL4.  
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Nonstandard abbreviations. CA, carbonic anhydrase; CAI, CA inhibitor; KI, inhibition constant; 

TBDMS, tert-butyldimethylsylil. 
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