J. Synofzik et al.

Letter

Dialkyl Diazomalonates in Transition-Metal-Free, Thermally Promoted, Diastereoselective Wolff β-Lactam Synthesis

Α

Judith Synofzik Olga Bakulina⁽¹⁾ Dmitry Dar'in⁽¹⁾ Grigory Kantin Mikhail Krasavin^{* (1)}

Saint Petersburg State University, Saint Petersburg 199034, Russian Federation m.krasavin@spbu.ru

Alk = Me, Et, i Pr, i Bu, Bn R¹, R² = alkyl or aryl (no bulky groups!)

Received: 03.04.2020 Accepted after revision: 04.05.2020 Published online: 19.05.2020 DOI: 10.1055/s-0040-1707811; Art ID: st-2020-b0190-l

Abstract Metal-free, thermally promoted synthesis of 3-alkoxy-3alkoxycarbonyl-2-azetidinones *via* the Wolff-Staudinger β -lactam synthesis using dialkyl diazomalonates is described. The reaction appears fairly general and delivers only one diastereomer.

Key words β -lactam, diazomalonates, Wolff rearrangement, metal-free, thermal

β-Lactams (2-azetidinones) can be confidently regarded as privileged motifs in drug design.¹ Recently, we described a one-pot, three component, generally diastereoselective synthesis of polysubstituted β -lactams **1** from in situ formed imines and readily available α -acyl- α -diazoacetate esters 2.² The reaction essentially represented the first example of metal-free generation of specifically substituted ketenes 3 bearing an alkoxy carbonyl function via the thermally initiated³ Wolff rearrangement (Scheme 1, a). Considering the obvious attractiveness of this metal-free approach to the earlier reported alternatives involving Rh(II) carbenes⁴ and the general prominence of β-lactams in antibacterial drug design⁵ (as well as other therapeutic areas⁶) we considered an opportunity to expand this methodology to include other types of readily available diazo compounds. In particular, dialkyl diazomalonates 4, if found workable in the same atom-economic transformation (presumably, via the intermediacy of alkoxy-substituted ketenes 5), would deliver 3-alkoxy-3-alkoxycabonyl-2-azetidinones 6 (Scheme 1, b).

The latter represent exceedingly rare type of substituted β -lactams. Several related representatives have been prepared from diazo Meldrum's acid *via* photolytically generated carbene⁷ or Rh(II) carbene species⁸ but have not been prepared in library fashion. Considering the high variability of the imine component, the ready commercial⁹ and syn-

Scheme 1 The thermally promoted Wolff-Staudinger β -lactam synthesis (a) reported earlier² and (b) investigated in this work

thetic availability (*vide infra*) of dialkyl diazomalonates **4**, we set off to investigate their three-component, catalyst-free¹⁰ reaction which would make the method particularly suitable for generating arrays of these compounds in diversity-controlled manner for subsequent biotarget interrogation.⁶

There are a few isolated examples in the literature describing generation of ketenes **5** from diazomalonate derivatives **4** under photolytic¹¹ or gas-phase pyrolysis¹² conditions; however, these reports did not convey the synthetic utility of this transformation. In order to identify workable conditions that would lead to the envisioned transformation $\mathbf{4} \rightarrow \mathbf{6}$, dimethyl diazomalonate (**4a**) was introduced into the solution of (*E*)-*N*-ethyl-1-(*p*-tolyl)methanimine (prepared in a separate step from *p*-tolualdehyde and ethylamine) in various highly boiling solvents at various ratios, temperatures, and time regimens (Table 1). Not unexpect-

V.

J. Synofzik et al.

edly, dialkyl malonates **4** are more stable toward thermal decomposition compared to α -acyl- α -diazoacetate esters **2** and, thus, prolonged (20 h) reflux in toluene (Table 1, entry 1) only led to incomplete conversion. Switching to xylene (Table 1, entry 2) and to chlorobenzene (Table 1, entry 3) using only 1.1 equiv of **4a** led to some improvement of the yield of the target product **6a**. However, the optimal isolated yield of **6a** (65% of a single diastereomer) was achieved with 2 equiv of **4a** (Table 1, entry 5), and these conditions were adopted to study the reaction scope using dialkyl diazomalonates **4a**–**e** conveniently prepared on multigram scale from respective dialkyl malonates using the previously described SAFE diazo transfer procedure,¹³ except for the sterically hindered **4d** which required using a different diazo transfer reagent (Figure 1).¹⁴

In the majority of cases, the amine and the aldehyde were combined in equimolar amounts in chlorobenzene, refluxed with $CaCl_2$ tube serving as a condenser for 2 h to ensure the complete formation of the intermediate imine, whereupon dialkyl diazomalonate was introduced and the refluxing continued for 20 h.¹⁵ In some cases, however, imine was either preformed due to volatility of one of the reaction components or because it was available off-the-shelf at the time. The structures and yields of the β -lactam products (obtained as the single diastereomer shown in all

Downloaded by: Collections and Technical Services Department. Copyrighted material.

cases, with no signals from the opposite diastereomer detectable in the crude ¹H NMR spectrum) are provided in Scheme 2.¹⁶ The origin¹⁷ of the observed excellent diastereoselectivity is likely similar to the one previously rationalized for the generally diastereoselective formation of lactams **1**.² The relative stereochemistry, corresponding to the *trans* relationship between the R group and the alkoxy substituent was confirmed by the single-crystal X-ray analysis of the representative compound **6i** (Figure 2).

Figure 2 Single-crystal X-ray structure of compound **6i** (CCDC1975681, thermal ellipsoids are shown at 50% probability; see Supporting Information for details)

As to the reactivity pattern illustrated by examples in Scheme 2, migration of the *tert*-butoxy substituent preceding the formation of the ketene intermediate appears to be least efficient (cf. compound **60**), likely for steric reasons. Steric bulk is the likely reason for no product **6k** obtained with *tert*-butylamine (same result was observed for lactams 1²). Electron-withdrawing groups in the aldehyde portion appear to be disfavored (compare **6p** with **6q** as well as **6g**).

In conclusion, we have described the first metal-free, thermally promoted synthesis of 3-alkoxy-3-alkoxycarbonyl-2-azetidinones *via* the Wolff β -lactam synthesis using dialkyl diazomalonates. The reaction appears fairly general and displays remarkable diastereoselectivity. The compounds obtained are exceedingly rare in the public domain while belonging to the privileged β -lactam class. Being able to prepare them in diversity-controlled, library format will undoubtedly promote and facilitate their biological annotation.

Funding Information

This research was supported by the Russian Foundation for Basic Research (Grant No. 20-03-00922).

Acknowledgment

We thank the Research Centre for Magnetic Resonance, the Center for Chemical Analysis and Materials Research, and the Centre for X-ray Diffraction Methods of Saint Petersburg State University Research Park for obtaining the analytical data.

Synlett

J. Synofzik et al.

۸

С

Scheme 2 Synthesis of racemic β -lactams **6a–q**.^{15,16 a} Reaction was conducted with a preformed imine.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707811.

References and Notes

- (a) Fernandes, R.; Amador, P.; Prudencio, C. *Rev. Med. Microbiol.* **2013**, 24, 7. (b) McGeary, R. P.; Tan, D. T. C.; Schenk, G. *Future Med. Chem.* **2017**, 9, 673.
- (2) Synofzik, J.; Dar'in, D.; Novikov, M. S.; Kantin, G.; Bakulina, O.; Krasavin, M. J. Org. Chem. 2019, 84, 12101.
- (3) Ohno, M.; Itoh, M.; Ohashi, T.; Eguchi, S. Synthesis 1993, 793.
- (4) (a) Subba Reddy, B. V.; Karthik, G.; Rajasekaran, T.; Antony, A.; Sridhar, B. *Tetrahedron Lett.* **2012**, *53*, 2396. (b) Mandler, M. D.; Truong, P. M.; Zavalij, P. Y.; Doyle, M. P. Org. Lett. **2014**, *16*, 740. (c) Chen, L.; Wang, K.; Shao, Y.; Sun, J. Org. Lett. **2019**, *21*, 3804. (d) Chen, L.; Zhang, L.; Shao, Y.; Xu, G.; Zhang, X.; Tang, S.; Sun, J. Org. Lett. **2019**, *21*, 4124.
- (5) (a) Fernandes, R.; Amador, P.; Prudencio, C. C. *Rev. Med. Microbiol.* **2013**, *24*, 7. (b) McGeary, R. P.; Tan, D. T. C.; Schenk, G. *Future Med. Chem.* **2017**, *9*, 673.
- (6) Veinberg, G.; Potorocina, I.; Vorona, M. Curr. Med. Chem. 2013, 21, 393.

(7) Tsuno, T.; Kondo, K.; Sugiyama, K. J. Heterocycl. Chem. 2006, 43, 21.

Letter

Downloaded by: Collections and Technical Services Department. Copyrighted material.

- (8) Golubev, A. A.; Smetanin, I. A.; Agafonova, A. V.; Rostovskii, N. V.; Khlebnikov, A. F.; Starova, G. L.; Novikov, M. S. Org. Biomol. Chem. 2019, 17, 6821.
- (9) 70 various dialkyl diazomalonates are listed as commercially available in SciFinder[®] according to the search performed on February 16, 2020.
- (10) Egorova, K. S.; Ananikov, V. P. Organometallics **2017**, 36, 4071.
- (11) Zeller, K.-P. Chem.-Ztg. 1973, 97, 37.
- (12) Richardson, D. C.; Hendrick, M. E.; Jones, M. J. Am. Chem. Soc. **1971**, 93, 3790.
- (13) Dar'in, D.; Kantin, G.; Krasavin, M. Chem. Commun. **2019**, 55, 5239.
- (14) Chany, A.-C.; Marx, L. B.; Burton, J. W. Org. Biomol. Chem. 2015, 13, 9190.
- (15) General Procedure for the Preparation of Lactams 6a-p In a 25 mL round-bottom flask, amine (0.8 mmol, 1.0 equiv) and aldehyde (0.9 mmol, 1.1 equiv) were dissolved in 10 mL of chlorobenzene and refluxed with azeotropic removal of water. After 1 h, half of the solvent was distilled off and 2-diazomalonates 4a-e (1.6 mmol, 2.0 equiv) was added. The mixture was then refluxed overnight, and the reaction progress was followed *via* TLC. When no more diazo compound was detectable (20–24 h), the solvent was evaporated *in vacuo*, and the resulting mixture was purified by column chromatography on silica gel with a

© 2020. Thieme. All rights reserved. Synlett 2020, 31, A-D

I. Synofzik et al.

linear gradient (0–20%) of acetone in *n*-hexane (total volume of eluent, 450 mL) to provide pure compounds **6a–p**. In case of volatile aldehyde or amine, they were reacted in chlorobenzene at room temperature overnight in the presence of 4 Å MS. The latter was filtered off before proceeding with the addition of **4** and heating. Compounds **6a,d,g,l,n,p** were prepared with the use of presynthesized imines.

(16) **Characterization Data of Representative Compounds** Compound **6i**: white powder (231 mg, 72%); mp 113–115 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.9 Hz, 2 H), 6.95 (d, *J* = 8.5 Hz, 1 H), 6.87–6.82 (m, 2 H), 6.49 (d, *J* = 2.4 Hz, 1 H), 6.35 (d, *J* = 8.5 Hz, 1 H), 5.50 (s, 1 H), 3.89 (s, 3 H), 3.78 (d, *J* = 2.0 Hz, 6 H), 3.75 (s, 3 H), 3.39 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 166.3, 161.2, 161.1, 158.6, 156.5, 130.5, 128.6, 119.0, 114.4, 112.4, 104.0, 98.5, 94.5, 60.1, 55.9, 55.8, 55.5, 55.3, 51.9 ppm. HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd for C₂₁H₂₃NaNO₇: 424.1367; found: 424.1378.

Compound 61: yellow powder (202 mg, 66%); mp 97-99 °C. 1H

NMR (400 MHz, CDCl₃): δ = 7.21 (d, *J* = 8.7 Hz, 2 H), 7.01–6.68 (m, 2 H), 4.63 (s, 1 H), 4.08 (dq, *J* = 8.9, 7.0 Hz, 1 H), 3.92 (dq, *J* = 10.8, 7.1 Hz, 1 H), 3.81 (s, 3 H), 3.78–3.63 (m, 1 H), 2.93 (s, 3 H), 1.30 (t, *J* = 7.0 Hz, 3 H), 0.99 (t, *J* = 7.2 Hz, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 166.3, 165.0, 160.1, 128.6, 124.4, 113.9, 95.2, 67.8, 64.1, 61.4, 55.3, 27.4, 15.4, 13.8 ppm. HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd for C₂₃H₂₇NNaO₇: 452.1680; found: 452.1683.

Compound **6n**: yellow oil (206 mg, 42%). ¹H NMR (400 MHz, CDCl₃): δ = 7.51–7.46 (m, 2 H), 7.42–7.26 (m, 8 H), 7.24–7.01 (m, 2 H), 6.80 (d, *J* = 8.0 Hz, 2 H), 5.35–5.09 (m, 2 H), 4.94 (d, *J* = 12.2 Hz, 1 H), 4.86–4.77 (m, 2 H), 4.54 (d, *J* = 18.0 Hz, 1 H), 3.81 (s, 3 H), 3.74 (s, 3 H), 3.65 (d, *J* = 18.0 Hz, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 167.9, 165.9, 164.8, 160.2, 137.0, 134.7, 128.6, 128.4, 128.4, 128.3, 128.2, 128.0, 123.6, 114.1, 95.7, 70.3, 67.1, 66.4, 55.2, 52.5, 41.3 ppm. HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd for C₂₈H₂₇NNaO₇: 512.1680; found: 512.1700.

(17) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128, 6060.