Selective Synthesis of New Tetracyclic Coumarin-fused Pyrazolo [3,4-*b*]pyridines and Pyrazolo[3,4-*b*]pyridin-6(7*H*)-ones Meilin Liu, Guodong Yin,* Can Zhu, and Chaochao Yao

Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse

Technology, Hubei Normal University, Huangshi 435002, China

*E-mail: gdyin_hbnu@163.com

Additional Supporting Information may be found in the online version of this article.

Received February 3, 2015

DOI 10.1002/jhet.2473

Published online 00 Month 2015 in Wiley Online Library (wileyonlinelibrary.com).

A three-component reaction for the synthesis of new coumarin-fused tetracyclic system from 4-hydroxycoumarin, aldehydes, and 5-aminopyrazoles/5-aminoisoxazole is described. In the presence of acetic acid, 4,7-dihydro-1H-pyrazolo[3,4-*b*]pyridines (**4**) and pyrazolo[3,4-*b*]pyridines (**5**) were obtained in acetonitrile and dimethylsulfoxide medium, respectively. The reaction gave rise to 4,5-dihydro-1H-pyrazolo[3,4-*b*]pyridin-6(7H)-ones (**6**) in acetic acid–ethanol combination system, which involved the C–O bond cleavage. 4-Hydroxy-6-methyl-2H-pyran-2-one and acenaphthylene-1,2-dione were also examined, affording the corresponding C–O bond cleavage products. Mechanism indicates that the reaction is reversible in acetic acid–ethanol combination system.

J. Heterocyclic Chem., 00, 00 (2015).

INTRODUCTION

Ever-increasing attention has been paid in recent years to the functionalized pyrazolo[3,4-*b*]pyridines [1], which are widely present in numerous natural products and biologically active molecules [2]. For example, anxiolytic drugs cartazolate, etazolate, and tracazolate are pyrazolo[3,4-*b*]pyridine derivatives [3]. In addition, coumarin chemistry has captured the continuous attention of chemists and pharmacists for their biological activities [4]. Many synthetic drugs, warfarin, phenprocoumon, and brodifacoum, contain coumarin fragment [5].

The development of new multicomponent reactions has become an active and challenging topic in modern synthetic chemistry because it is a preferred approach to design and discover biologically active compounds [6,7]. Literature survey a variety of functionalized polycyclic pyrazolo[3,4-*b*]pyridine derivatives that have been reported [8–12]. However, several routes have thus far been reported for the construction of coumarin-fused pyrazolo[3,4-*b*]pyridines [13]. Boruah and coworkers reported the synthesis of coumarin-fused pyrazolo[3,4-*b*] pyridines via a palladium-catalyzed reaction of 3-bromo-2oxo-2H-chromene-4-carbaldehyde and 5-aminopyrazoles under microwave irradiation [14]. Wang described the reaction to prepare tetracyclic pyrazolo[3,4-b]pyridine-based coumarin chromophores from 3-acetyl coumarin derivatives and 5-aminopyrazoles. They also found that these polycyclic compounds exhibited high fluorescence quantum yields and good electrochemical, thermal, and photochemical stabilities [15]. Ji and coworkers illustrated an example for the synthesis of 8-carboxylnaphthylfunctionalized pyrazolo[3,4-b]pyridine involving the C-C bond cleavage reaction [16]. Recently, it was found that iodine and *n*-tetrabutylammonium tribromide could catalyze synthesis of dihydrochromeno[4,3-b]pyrazolo[4,3-e] pyridin-6(7H)-ones involving three-component reaction of aromatic aldehydes, 4-hydroxycoumarin, and 3-aminopyrazoles, respectively [17,18]. However, the aliphatic aldehydes show the poor yields of the expected products. In continuation with our previous work [19] in minimizing the efforts in construction of coumarin-fused heterocyclic frameworks, we herein report a solvent-tunable selective synthesis of new tetracyclic system by the three-component reactions of 4-hydroxycoumarin (1), aldehydes (2), and 5-aminopyrazoles (3). Coumarin-fused 4,7-dihydro-1Hpyrazolo[3,4-b]pyridines were obtained in refluxing acetonitrile in the presence of acetic acid. When acetonitrile was replaced by dimethylsulfoxide, the reactions gave the corresponding aromatization products tetracyclic pyrazolo [3,4-*b*]pyridines. Moreover, C–O bond cleavage products 4,5-dihydro-1H-pyrazolo[3,4-*b*]pyridin-6(7*H*)-ones were obtained when the reactions were carried out in acetic acid–ethanol combination system.

RESULTS AND DISCUSSION

Our studies commenced with the reaction of 1, 2a, and **3a** in refluxing acetonitrile without any catalyst, and the desired 4a was isolated in 32% yield with the formation of a small amount of aromatization product 5a. The structures of 4a and 5a were confirmed by means of ¹H NMR, ¹³C NMR, HRMS, and IR spectra. The former was further clarified by X-ray single-crystal diffraction analysis (Fig. 1) [20]. When the reaction was carried out in the presence of ZrCl₄, InCl₃, FeCl₃, L-proline, trifluoroacetic acid, iodine, and acetic acid within different solvents, it was found that 4a was obtained in 95% yield in acetic acid and acetonitrile combination system (1:5). Next, we were expecting to obtain aromatization product 5a as the major product. In consideration of the oxidization and high boiling point of dimethylsulfoxide, the reaction was heated in dimethylsulfoxide at 140°C in the presence of acetic acid. We were pleased to find that 5a was isolated in 82% yield only with a trace amount of 4a (Table 1).

With these results in hand, a variety of substituted aldehydes were subsequently investigated under the aforementioned optimal conditions, and the results are summarized in Scheme 1. It was observed that **2a** substrates bearing 4-substituted or 2-substituted electron-donating groups (-Me, -OMe, -t-Bu, and $-NMe_2$) gave the corresponding products **4b**–**4f** in 65–86% yields. Hydroxyl group substrate was well tolerated in the reaction, leading to the final product **4g** in 89% yield. Substrates bearing withdrawing groups (-Br and $-NO_2$) also delivered **4h** and **4i** in good to excellent yield. To our delight, heteroaromatic substrates (furan, thiophene,

and pyridine) also furnished 4j-4l in 78–82% yields. Aliphatic aldehyde (R¹=Me) gave a slightly low yield with isolation of 4m in 55% yield. Note that 3-methylisoxazol-5-amine (**3b**) was also suitable for this transformation to afford 4n in 76% yield.

Then, the acetic acid–dimethylsulfoxide combination was employed for the synthesis of **5**. As shown in Scheme 2, it was found that the representative aldehydes in which \mathbb{R}^1 is a phenyl ring bearing methyl, methoxy, and nitro substituents could smoothly react with **1** and **3a** to give the corresponding products **5b–5e** in 80–87% yields. 2-Thienylaldehyde and acetal-dehyde also furnished **5f** and **5g** in 90% and 78% yields, respectively.

When the mixture of 1, 2a, and 3a was heated in acetic acid–ethanol (1:20) for 30 min, an unexpected insoluble white solid was obtained in 74% yield, which was identified as the C–O bond cleavage product **6a** and further clarified by X-ray single-crystal diffraction analysis (Fig. 1) [21]. We then extended the substrates to other substituted aldehydes for the preparation of the structurally diverse pyrazolo[3,4-*b*]pyridin-6(7*H*)-ones, and the corresponding products **6b–6f** were also isolated in 63–75% yields (Scheme 3).

Moreover, 4-hydroxy-6-methyl-2H-pyran-2-one (7) was employed to react with **2a** and **3a** in acetic acid– acetonitrile at reflux for 4 h, and product **8** was isolated in 55% yield. It should be noted that **8** was also obtained in 64% yield in acetic acid–ethanol system (Scheme 4). Acenaphthylene-1,2-dione (9) was reacted with **1** and **3a** in acetic acid–acetonitrile or acetic acid–ethanol medium, resulting in **10** [22] in 56% and 85% yields (Scheme 5).

To our surprise, heating the ethanol solution of **6a** at reflux for 4 h, the unexpected C–C bond cleavage product **11** was obtained in 98% yield. However, in the presence of acetic acid, **11** was only obtained in 35% yield with the formation of coumarin-fused products **4a** (25%) and **5a** (38%) (Scheme 6).

A plausible reaction mechanism is postulated in Scheme 7. First, the Knoevenagel reaction of 1 and 2ain the presence of acetic acid gives the intermediate **A**, which is reacted with 3a through the Michael-type

Figure 1. X-ray structures of 4a and 6a.

Selective Synthesis of Pyrazolo[3,4-*b*]pyridines and Pyrazolo[3,4-*b*]pyridin-6(7*H*)-ones

	Table 1				
Optimization of the reaction	conditions	for the	synthesis	of 4	la/5a ª

$ \begin{array}{c} & \downarrow \\ & 1 \\ & 3a \\ \end{array} \begin{array}{c} & Me \\ & \downarrow \\ & Iemp., Time \\ & \downarrow \\ & Iemp., Time \\ & \downarrow \\ $								
				Yield (%) ^c				
Entry	Catalyst/solvent ^b	Temperature (°C)	Time (h)	4a	5a			
1	None/MeCN	Reflux	10	32	4			
2	ZrCl ₄ /MeCN	Reflux	10	75				
3	InCl ₃ /MeCN	Reflux	10	80				
4	FeCl ₃ /MeCN	Reflux	10	46	15			
5	L-proline/MeCN	Reflux	10	47	8			
6	TFA/MeCN (1:10)	Reflux	6	85				
7	I ₂ /MeCN	Reflux	6	40	d			
8	AcOH	120	10	89	5			
9	AcOH/MeCN (1:10)	Reflux	6	82	d			
10	AcOH/MeCN (1:20)	Reflux	6	71	d			
11 ^e	AcOH/MeCN (1:5)	Reflux	6	95	—			
$12^{\rm e}$	AcOH/MeCN (1:5)	50	12	54	—			
13	AcOH/MeCN (1:5)	25	12	32	—			
14	AcOH/DCM (1:5)	Reflux	10	75	12			
15	AcOH/toluene (1:5)	Reflux	10	49	21			
16	AcOH/DMSO (1:5)	Reflux	10	d	82			
17	AcOH/DMSO (1:5)	Reflux	10	d	75			
18	AcOH/DMSO (1:2)	Reflux	10	20	55			
19	AcOH/DMSO (1:1)	Reflux	10	15	48			

^aAll reactions were performed with 1 (0.5 mmole), **2a** (0.5 mmole), and **3a** (0.5 mmole) in an appropriate solvent (6 mL). ^b20 mol% of catalyst was employed in these reactions unless mentioned; values in parentheses were the volume ratio of catalyst/solvent. ^cIsolated yield.

^dTrace amount of product.

^eUnexpected insoluble white solid was formed.

Scheme 1. Synthesis of coumarin-fused 4,7-dihydro-1H-pyrazolo-[3,4-*b*] pyridines (**4**).

 $\begin{array}{l} \textbf{4h} \ (R^1 = 4 - BrC_6H_4, X = NPh, 78\%) \\ \textbf{4i} \ (R^1 = 4 - O_2NC_6H_4, X = NPh, 92\% \\ \textbf{4j} \ (R^1 = 2 - furyl, X = NPh, 82\%) \\ \textbf{4k} \ (R^1 = 2 - thienyl, X = NPh, 80\%) \\ \textbf{4l} \ (R^1 = 2 - pyridyl, X = NPh, 78\%) \\ \textbf{4m} \ (R^1 = Me, X = NPh, 55\%) \\ \textbf{4n} \ (R^1 = C_6H_5, X = O, 76\%) \end{array}$

addition reaction to deliver the intermediate \mathbf{B} [23]. One pathway is that the amino group attacks the ketone carbonyl group, furnishing the intramolecular cyclization

Scheme 2. Synthesis of coumarin-fused pyrazolo[3,4-b]pyridines (5).

intermediate C after loss of water, followed by proton transfer to give 4a [11]. Aromatization product 5a was obtained from 4a at high temperature in the presence of dimethylsulfoxide and air. The other pathway is that the amino group attacks the ester carbonyl group in

acetic acid-ethanol medium to give 6a [24], which could be converted to the C-C bond cleavage product 11 in refluxing ethanol [25]. The experimental results in Scheme 7 indicate that the formation of 6a from intermediate **B** is reversible in acetic acid-ethanol combination system.

CONCLUSION

In summary, we have described a solvent-tunable threecomponent reaction for the selective synthesis of new coumarin-fused tetracyclic system from 4-hydroxycoumarin, aldehydes, and 5-aminopyrazoles/5-aminoisoxazole. The possible reaction mechanism was postulated. All these reported compounds were characterized by means of ¹H NMR, ¹³C NMR, HRMS, and IR spectra. The structures of **4a** and **6a** were further clarified by X-ray single-crystal diffraction analysis. The prominent advantages of this approach are easily available starting materials, wide scope of substrates, and excellent yields.

EXPERIMENTAL

All the chemicals were commercially available and used without further purification. All the organic solvents were dried and freshly distilled before use. ¹H and ¹³C NMR were recorded in CDCl₃ or DMSO-d₆ using Bruker AV 300-MHz spectrometers at 300 and 75 MHz (Bruker, Germany), respectively. Chemical shifts are reported relative to tetramethylsilane (TMS) (internal standard). High-resolution mass spectra were recorded using a Bruker ultrafleXtreme MALDI-TOF/TOF (HCCA matrix) (Bruker). IR spectra were obtained as KBr pellet samples using a Nicolet 5700 FTIR spectrometer (Thermo, USA). Flash column chromatography was performed on silica gel (200-300 meshes). Melting points were determined using an uncorrected X-4 apparatus (Shanghai Precision & Scientific Instrument Co., Ltd., China). The X-ray crystal structure determination was performed using a Bruker SMART APEX CCD system (Bruker).

General one-pot procedure for the synthesis of 4. A mixture of 1 (0.5 mmole), 2 (0.5 mmole), and 3 (0.5 mmole) was heated in AcOH/MeCN (1:5, 6 mL) under reflux. After the reaction was completed (6 h, monitored by thin layer chromatography (TLC)), the mixture was slowly cooled at room temperature and purified by column chromatography using petroleum ether–ethyl acetate as the eluent to deliver the desired products 4.

8-Methyl-7,10-diphenyl-10,11-dihydrochromeno[4,3-b]pyrazolo [4,3-e]pyridin-6(7H)-one (4a). White solid, mp 223–224°C; IR (KBr) 750, 1028, 1204, 1447, 1537, 1699, 3406 cm⁻¹; ¹H NMR (CDCl₃): δ 2.06 (s, 3H), 5.32 (s, 1H), 7.14–7.61 (m, 14H); ¹³C NMR (CDCl₃): δ 12.3, 37.9, 102.8, 103.4, 113.3, 117.8, 119.8, 122.7, 123.9, 126.7, 127.7, 128.26, 128.29, 130.2, 131.7, 135.1, 138.0, 141.6, 144.9, 147.5, 152.7, 161.2; HRMS: *m/z* calcd for C₂₆H₂₀N₃O₂: 406.1550, found: 406.1562 [M+H]⁺.

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

Selective Synthesis of Pyrazolo[3,4-*b*]pyridines and Pyrazolo[3,4-*b*]pyridin-6(7*H*)-ones

Scheme 7. The proposed reaction mechanism.

8-Methyl-10-phenyl-7-(p-tolyl)-10,11-dihydro-chro-meno[4,3-b] pyrazolo[4,3-e]pyri-din-6(7H)-one (4b). White solid, mp 227–228°C; IR (KBr) 844, 1033, 1211, 1453, 1539, 1711, 3431 cm⁻¹; ¹H NMR (CDCl₃): δ 2.07 (s, 3H), 2.28 (s, 3H), 5.26 (s, 1H), 7.06 (d, J=7.9 Hz, 2H), 7.20– 7.23 (m, 2H), 7.29–7.60 (m, 9H); ¹³C NMR (CDCl₃): δ 12.3, 21.0, 37.4, 102.9, 103.5, 113.3, 117.7, 119.9, 122.6, 123.8, 127.6, 128.1, 128.9, 130.2, 131.6, 135.1, 136.2, 138.0, 141.5, 142.0, 147.4, 152.6, 161.2; HRMS: m/z calcd for C₂₇H₂₂N₃O₂: 420.1707, found: 420.1707 [M+H]⁺.

7-(4-Methoxyphenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-one (4c). White solid, mp 217–219°C; IR (KBr) 758, 1032, 1250, 1454, 1539, 1710, 3430 cm⁻¹; ¹H NMR (CDCl₃): δ 2.04 (s, 3H), 3.74 (s, 3H), 5.20 (s, 1H), 6.78 (d, J=8.5 Hz, 2H), 7.24–7.60 (m, 11H); ¹³C NMR (CDCl₃): δ 12.2, 36.9, 55.2, 102.9, 103.5, 113.4, 113.6, 117.6, 120.1, 122.7, 123.8, 127.6, 129.3, 130.1, 131.6, 135.1, 137.3, 138.0, 141.4, 147.4, 152.5, 158.2, 161.3; HRMS: m/z calcd for C₂₅H₂₀N₃O: 436.1656, found: 436.1656 [M+H]⁺.

7-(2-Methoxyphenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-one (4d). White solid, mp 171–174°C; IR (KBr) 757, 1023, 1246, 1542, 1696, 3448 cm⁻¹; ¹H NMR (CDCl₃): δ 2.07 (s, 3H), 3.84 (s, 3H), 5.67 (s, 1H), 6.83–6.89 (m, 2H), 7.12–7.22 (m, 3H), 7.30–7.33(m, 1H), 7.39–7.44 (m, 2H), 7.50–7.58 (m, 5H); ¹³C NMR (CDCl₃): δ 12.1, 32.1, 55.9, 102.5, 103.4, 111.3, 113.3, 117.7, 119.7, 120.8, 122.6, 123.8, 127.5, 127.8, 129.8, 130.2, 131.5, 133.5, 135.2, 138.1, 142.4, 147.5, 152.7, 156.7, 161.0; HRMS: m/z calcd for $C_{27}H_{22}N_3O_3$: 436.1656, found: 436.1647 $[M + H]^+$.

7-(4-(tert-Butyl)phenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-one (4e). Yellow solid, mp 247–248°C; IR (KBr) 758, 1034, 1211, 1534, 1626, 1712, 3441 cm⁻¹; ¹H NMR (CDCl₃): δ 1.24 (s, 9H), 2.04 (s, 3H), 5.14 (s, 1H), 7.23–7.60 (m, 13H). ¹³C NMR (CDCl₃): δ 12.2, 31.2, 34.2, 37.1, 102.6, 103.5, 113.4, 117.3, 120.4, 122.7, 123.7, 125.0, 127.4, 127.6, 129.9, 131.4, 135.3, 137.9, 141.9, 147.2, 149.1, 152.4, 161.4. HRMS: *m*/*z* calcd for C₃₀H₂₈N₃O₂: 462.2176, found: 462.2178 [M+H]⁺.

7-(4-(Dimethylamino)phenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3-e] pyridin-6(7H)-one (4f). Yellow solid, mp 260–261°C; IR (KBr) 765, 1033, 1214, 1533, 1709, 3444 cm⁻¹; ¹H NMR (CDCl₃): δ 2.09 (s, 3H), 2.89 (s, 6H), 5.25 (s, 1H), 6.65–6.67 (m, 2H), 7.07 (s, 1H), 7.18–7.22 (m, 1H), 7.30–7.61 (m, 9H); ¹³C NMR (CDCl₃): δ 12.3, 36.7, 40.9, 103.4, 103.7, 112.7, 113.5, 117.7, 119.7, 122.6, 123.8, 127.6, 129.0, 130.2, 131.5, 135.1, 138.1, 141.0, 147.6, 152.6, 161.3; HRMS: m/z calcd for C₂₈H₂₅N₄O₂: 449.1972, found: 449.1972 [M+H]⁺.

7-(3-Hydroxyphenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-one (4g). Yellow solid, mp 159–160°C; IR (KBr) 765, 1043, 1211, 1450, 1537, 1671, 3291 cm⁻¹; ¹H NMR (DMSO- d_6): δ 1.97 (s, 3H), 5.09 (s, 1H), 6.54–6.57 (m, 1H), 6.66–6.74 (m, 2H), 7.05 (t, J=7.8Hz, 1H), 7.35–7.44 (m, 3H), 7.55–7.69 (m, 5H), 8.04–8.07 (m, 1H), 9.27 (s, 1H), 10.02 (s, 1H); ¹³C NMR (DMSO- d_6): δ 12.1, 101.4, 104.1, 113.4, 114.0, 114.8, 116.5, 118.7, 122.6, 123.7, 126.7, 129.0, 129.4, 131.8, 136.0, 138.8, 143.8, 145.9, 147.6, 152.0, 157.2, 160.6; HRMS: m/z calcd for $C_{26}H_{20}N_3O_3$: 422.1499, found: 422.1499 $[M+H]^+$.

7-(4-Bromophenyl)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3b]pyrazolo[4,3-e]pyridin-6(7H)-one (4h). White solid, mp 239–240°C; IR (KBr) 753, 1050, 1393, 1538, 1696, 3428 cm⁻¹; ¹H NMR (CDCl₃): δ 2.05 (s, 3H), 5.29 (s, 1H), 7.18–7.25 (m, 2H), 7.27–7.61 (m, 11H); ¹³C NMR (CDCl₃): δ 12.3, 37.5, 102.3, 102.8, 113.1, 117.8, 119.8, 120.6, 122.7, 124.0, 127.8, 130.1, 130.3, 131.4, 131.9, 135.0, 137.9, 141.6, 143.9, 147.4, 152.7, 161.1; HRMS: m/z calcd for C₂₆H₁₉BrN₃O₂: 484.0655, found: 484.0655 [M+H]⁺.

8-Methyl-7-(4-nitrophenyl)-10-phenyl-10,11-dihydrochromeno[4,3b]pyrazolo[4,3-e]pyridin-6(7H)-one (4i). Yellow solid, mp 207–209°C; IR (KBr) 755, 1039, 1349, 1533, 1674, 3426 cm⁻¹; ¹H NMR (CDCl₃): δ 1.96 (s, 3H), 5.37 (s, 1H), 7.17–7.55 (m, 11H), 8.07 (d, J = 8.6 Hz, 2H); ¹³C NMR (CDCl₃): δ 12.3, 38.1, 101.4, 102.0, 112.9, 117.9, 120.0, 122.7, 123.7, 124.2, 128.0, 129.3, 130.4, 132.3, 135.1, 137.7, 142.1, 146.7, 147.2, 151.9, 152.7, 161.1; HRMS: *m*/*z* calcd for C₂₆H₁₉N₄O₄: 451.1401, found: 451.1404 [M+H]⁺.

7-(*Furan-2-yl*)-8-methyl-10-phenyl-10,11-dihydrochromeno[4,3b]pyrazolo[4,3-e]pyridin-6(7H)-one (4j). Yellow solid, mp 225–227°C; IR (KBr) 760, 1213, 1258, 1531, 1673, 3437 cm⁻¹; ¹H NMR (CDCl₃): δ 2.22 (s, 3H), 5.50 (s, 1H), 6.20 (d, J=3.2 Hz, 1H), 6.27–6.29 (m, 1H), 7.20– 7.59 (m, 10H); ¹³C NMR (CDCl₃): δ 12.1, 31.5, 99.3, 100.6, 105.8, 110.3, 113.2, 117.8, 119.8, 122.7, 124.0, 127.8, 130.2, 132.0, 135.2, 137.9, 141.5, 142.4, 147.5, 152.7, 155.9, 161.2; HRMS: *m*/*z* calcd for C₂₄H₁₈N₃O₃: 396.1343, found: 396.1346 [M+H]⁺.

8-Methyl-10-phenyl-7-(thiophen-2-yl)-10,11-dihydro-chromeno[4,3b]pyrazolo[4,3-e]pyridin-6(7H)-one (4k). White solid, mp 206–208°C; IR (KBr) 758, 1032, 1255, 1537, 1692, 3429 cm⁻¹; ¹H NMR (CDCl₃): δ 2.19 (s, 3H), 5.71 (s, 1H), 6.88–6.91 (m, 1H), 7.06 (d, J=3.0 Hz, 1H), 7.11–7.13 (m, 1H), 7.22 (s, 1H), 7.30–7.37 (m, 3H), 7.43–7.51 (m, 1H), 7.52–7.54 (m, 1H), 7.57–7.61 (m, 3H); ¹³C NMR (CDCl₃): δ 12.2, 32.4, 102.2, 102.8, 113.2, 117.9, 119.8, 122.7, 124.0, 124.3, 124.8, 126.7, 127.8, 130.3, 131.9, 135.1, 137.9, 141.2, 147.5, 149.2, 152.6, 161.4; HRMS: m/z calcd for C₂₄H₁₈N₃O₂S: 412.1114, found: 412.1109 [M+H]⁺.

8-Methyl-10-phenyl-7-(pyridin-2-yl)-10,11-dihydrochromeno[4,3b]pyrazolo[4,3-e]pyridin-6(7H)-one (4l). White solid, mp 252–254°C; IR (KBr) 760, 1044, 1260, 1535, 1696, 3434 cm⁻¹; ¹H NMR (CDCl₃): δ 2.05 (s, 3H), 5.43 (s, 1H), 7.04–7.11 (m, 3H), 7.28–7.41 (m, 5H), 7.53 (d, J=8.1Hz, 2H), 7.63–7.68 (m, 1H), 8.27–8.28 (m, 2H); ¹³C NMR (CDCl₃): δ 12.5, 40.9, 101.1, 102.0, 113.4, 117.3, 120.8, 121.8, 123.5, 123.6, 124.1, 128.0, 129.7, 131.5, 136.1, 136.3, 138.1, 143.6, 147.0, 149.2, 152.3, 161.5, 162.4.; HRMS: m/z calcd for C₂₅H₁₉N₄O₂: 407.1503, found: 407.1503 [M+H]⁺.

7,8-Dimethyl-10-phenyl-10,11-dihydrochromeno[4,3-b]pyrazolo[4,3e]pyridin-6(7H)-one (4m). Yellow solid, mp 207–209°C; IR (KBr) 754, 1014, 1215, 1527, 1662, 3448 cm⁻¹; ¹H NMR (CDCl₃): δ 1.45 (d, J=6.6 Hz, 3H), 2.32 (s, 3H), 4.27 (q, J=6.6 Hz, 1H), 6.98 (s, 1H), 7.30–7.45 (m, 4H), 7.52–7.61 (m, 5H). ¹³C NMR (CDCl₃): δ 12.3, 23.1, 26.8, 103.9, 104.3, 113.3, 117.7, 119.6, 122.6, 123.9, 127.6, 130.2, 131.6, 134.8, 138.0, 142.1, 147.0, 152.5, 161.7; HRMS: *m*/*z* calcd for C₂₁H₁₈N₃O₂: 344.1394, found: 344.1384 [M+H]⁺.

8-Methyl-7-phenyl-7,11-dihydro-6H-chromeno[4,3-b]isoxazolo[4,5e]pyridin-6-one (4n). White solid, mp 254–256°C; IR (KBr) 757, 1063, 1264, 1514, 1666, 3447 cm⁻¹; ¹H NMR (DMSO-d₆): δ 1.91 (s, 3H), 5.17 (s, 1H), 7.15–7.22 (m, 1H), 7.27 (d, J=4.2 Hz, 4H), 7.38–7.47 (m, 2H), 7.63–7.69 (m, 1H), 8.21 (d, J=7.2 Hz, 1H), 11.5 (s, 1H); ¹³C NMR (DMSO-d₆): δ 9.8, 37.3, 95.2, 100.5, 113.3, 116.8, 123.1, 124.2, 126.6, 127.8, 128.3, 132.2, 143.1, 145.4, 152.2, 158.4, 159.1, 160.2; HRMS: *m/z* calcd for C₂₀H₁₅N₂O₃: 331.1077, found: 331.1078 [M+H]⁺.

General one-pot procedure for the synthesis of 5. A mixture of 1 (0.5 mmole), 2 (0.5 mmole) and 3a (0.5 mmole) was heated in AcOH/DMSO (1:5, 6 mL) at 140°C. After the reaction was completed (10 h, monitored by TLC), the mixture was slowly cooled at room temperature and purified by column chromatography using petroleum ether–ethyl acetate as the eluent to deliver the desired product 5.

8-Methyl-7,10-diphenylchromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(10H)-one (5a). Yellow solid, mp 253–255°C; IR (KBr) 754, 1082, 1193, 1497, 1644, 1733 cm⁻¹; ¹H NMR (CDCl₃): δ 1.92 (s, 3H), 7.30–7.41 (m, 5H), 7.53–7.61 (m, 6H), 8.37 (d, J=7.7 Hz, 2H), 8.68 (d, J=7.9 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.3, 109.8, 116.9, 117.4, 119.7, 121.0, 124.4, 125.7, 126.2, 127.1, 128.1, 128.4, 129.1, 132.4, 136.4, 138.9, 145.8, 150.9, 152.1, 152.5, 152.9, 159.5; HRMS: *m*/*z* calcd for C₂₆H₁₈N₃O₂: 404.1394, found: 404.1380 [M+H]⁺.

8-Methyl-10-phenyl-7-(p-tolyl)chromeno[4,3-b]pyrazolo[4,3e]pyridin-6(10H)-one (5b). White solid, mp 250–251°C; IR (KBr) 758, 1079, 1194, 1499, 1561, 1599, 1734 cm⁻¹; ¹H NMR (CDCl₃): δ 1.97 (s, 3H), 2.49 (s, 3H), 7.22 (d, J=8.0Hz, 2H), 7.32–7.43 (m, 5H), 7.54–7.62 (m, 3H), 8.36–8.39 (m, 2H), 8.68–8.71 (m, 1H); ¹³C NMR (CDCl₃): δ 14.4, 21.5, 110.0, 116.9, 117.6, 119.7, 121.0, 124.4, 125.7, 126.1, 127.0, 128.8, 129.1, 132.4, 133.3, 138.1, 138.9, 145.9, 150.9, 152.1, 152.9, 153.0, 159.5; HRMS: *m*/z calcd for C₂₇H₂₀N₃O₂: 418.1550, found: 418.1548 [M+H]⁺.

7-(4-Methoxyphenyl)-8-methyl-10-phenylchromeno[4,3b]pyrazolo[4,3-e]pyridin-6(10H)-one (5c). White solid, mp 225–227°C; IR (KBr) 751, 1183, 1249, 1503, 1602, 1736 cm⁻¹; ¹H NMR (CDCl₃): δ 2.02 (s, 3H), 3.93 (s,3H), 7.07 (d, J = 8.7 Hz, 2H), 7.25 (s, 1H), 7.27–7.28 (m, 1H), 7.33–7.44 (m, 3H), 7.56–7.63 (m, 3H), 8.38 (d, J = 7.8 Hz, 2H), 8.70–8.73 (m, 1H); ¹³C NMR (CDCl₃): δ 14.6, 55.3, 110.1, 113.6, 116.9, 117.8, 119.8, 121.1, 124.4, 125.7, 126.2, 128.4, 128.6, 129.1, 132.4, 138.9, 145.9, 151.0, 152.2, 152.7, 152.9, 159.6, 159.7; HRMS: m/z calcd for C₂₇H₂₀N₃O₃: 434.1499, found: 434.1489 [M+H]⁺.

7-(2-Methoxyphenyl)-8-methyl-10-phenylchromeno[4,3b]pyrazolo[4,3-e]pyridin-6(10H)-one (5d). Yellow solid, mp 254–256°C; IR (KBr) 754, 1080, 1245, 1499, 1640, 1736 cm⁻¹; ¹H NMR (CDCl₃): δ 2.02 (s, 3H), 3.75 (s, 3H), 7.07–7.15 (m, 3H), 7.33–7.44 (m, 3H), 7.49– 7.63 (m, 4H), 8.40 (d, J=8.0Hz, 2H), 8.73 (d, J=8.1Hz, 1H); ¹³C NMR (CDCl₃): δ 14.0, 55.7, 110.7, 110.8, 116.9, 117.6, 119.9, 120.5, 121.1, 124.3, 125.4, 125.7, 126.1, 128.4, 129.1, 130.1, 132.3, 139.0, 145.8, 149.8, 151.3, 152.1, 152.9, 156.0, 159.4; HRMS: m/z calcd for C₂₇H₂₀N₃O₃: 434.1499, found: 434.1499 [M+H]⁺.

8-Methyl-7-(4-nitrophenyl)-10-phenylchromeno[4,3-b]pyrazolo[4,3e]pyridin-6(10H)-one (5e). Yellow solid, mp 270–272°C; IR (KBr) 760, 1085, 1202, 1346, 1506, 1564, 1601, 1733 cm⁻¹; ¹H NMR (CDCl₃): δ 1.95 (s, 3H), 7.33–7.46 (m, 3H), 7.53–7.63 (m, 5H), 8.36 (d, J=7.7 Hz, 2H), 8.42 (d, J=8.7 Hz, 2H), 8.68–8.71 (m, 1H). ¹³C NMR (CDCl₃): δ 14.5, 109.4, 116.6, 117.0, 119.3, 121.1, 123.5, 124.7, 125.7, 126.6, 128.4, 129.2, 132.9, 138.6, 143.4, 144.8, 147.9, 149.4, 150.9, 152.2, 152.7, 159.6. HRMS: m/z calcd for C₂₆H₁₇N₄O₄: 449.1244, found: 449.1448 [M+H]⁺.

8-Methyl-10-phenyl-7-(thiophen-2-yl)chromeno[4,3-b]pyrazolo[4,3e]pyridin-6(10H)-one (5f). Yellow solid, mp 260–262°C; IR (KBr) 760, 1074, 1190, 1251, 1496, 1563, 1737 cm⁻¹; ¹H NMR (CDCl₃): δ 2.14 (s, 3H), 7.09–7.11 (m, 1H), 7.22–7.24 (m, 1H), 7.34–7.44 (m, 3H), 7.56– 7.63 (m, 4H), 8.37 (d, J=7.7 Hz, 2H), 8.68–8.71 (m, 1H); ¹³C NMR (CDCl₃): δ 13.7, 111.3, 116.9, 121.1, 124.5, 125.7, 126.3, 126.86, 126.93, 127.1, 129.1, 132.6, 135.4, 138.8, 145.5, 145.8, 150.8, 152.1, 152.8, 159.0; HRMS: m/z calcd for C₂₄H₁₆N₃O₂S: 410.0958, found: 410.0959 [M+H]⁺.

7,8-Dimethyl-10-phenylchromeno[4,3-b]pyrazolo [4,3-e]pyridin-6(10H)-one (5g). Yellow solid, mp 236–237°C; IR (KBr) 759, 1088, 1249, 1497, 1574, 1723 cm⁻¹; ¹H NMR (CDCl₃): δ 2.87 (s, 3H), 3.27 (s, 3H), 7.33–7.40 (m, 3H), 7.56–7.61 (m, 3H), 8.34–8.37 (m, 2H), 8.60–8.63 (m, 1H); ¹³C NMR (CDCl₃): δ 16.6, 18.5, 110.6, 116.6, 117.9, 119.7, 120.9, 124.4, 125.6, 126.1, 129.0, 132.3, 138.9, 145.1, 150.9, 152.2, 152.5, 152.8, 160.9; HRMS: *m*/*z* calcd for C₂₁H₁₆N₃O₂: 342.1237, found: 342.1232 [M+H]⁺.

General one-pot procedure for the synthesis of 6. A mixture of 1 (0.5 mmole), 2 (0.5 mmole) and 3a (0.5 mmole) was heated in AcOH/EtOH (1:20, 6 mL) under

reflux. After the reaction was completed ($30 \min$, monitored by TLC), insoluble solid was formed, which was filtrated and washed with a small amount of anhydrous ethanol to give the product **6**.

5-(2-Hydroxybenzoyl)-3-methyl-1,4-diphenyl-4,5-dihydro-1Hpyrazolo[3,4-b]pyridin-6(7H)-one (6a). White solid, mp 222–223°C; IR (KBr) 756, 918, 1252, 1494, 1680, 3170, 3454 cm⁻¹; ¹H NMR (CDCl₃): δ 1.81 (s, 3H), 4.59 (d, J=6.9Hz, 1H), 4.81 (d, J=6.9Hz, 1H), 6.87– 6.92 (m, 1H), 6.99–7.02 (m, 1H), 7.23–7.25 (m, 2H), 7.27–7.40 (m, 6H), 7.44–7.50 (m, 3H), 7.62–7.65 (m, 1H), 8.78 (br, 1H), 11.9 (s, 1H); ¹³C NMR (CDCl₃): δ 12.5, 40.4, 57.2, 101.2, 118.8, 118.9, 119.2, 123.2, 127.4, 127.8, 127.9, 129.2, 129.8, 130.4, 136.3, 137.1, 140.6, 147.0, 163.2, 167.1, 200.7; HRMS: m/z calcd for C₂₆H₂₂N₃O₃: 424.1656, found: 424.1659 [M+H]⁺.

5-(2-Hydroxybenzoyl)-3-methyl-1-phenyl-4-(p-tolyl)-4,5-dihydro-*IH-pyrazolo*[3,4-*b*]*pyridin-6(7H)-one* (6*b*). White solid, mp 217–218°C; IR (KBr) 745, 918, 1156, 1246, 1498, 1676, 3230, 3442 cm⁻¹; ¹H NMR (CDCl₃): δ 1.81 (s, 3H), 2.30 (s, 3H), 4.55 (d, *J*=6.8 Hz, 1H), 4.78 (d, *J*=6.8 Hz, 1H), 6.89 (t, *J*=7.5 Hz, 1H), 7.00 (d, *J*=8.3 Hz, 1H), 7.12–7.25 (m, 5H), 7.31–7.52 (m, 5H), 7.64 (d, *J*=7.9 Hz, 1H), 8.94 (s, 1H), 11.91 (s, 1H); ¹³C NMR (CDCl₃): δ 12.5, 21.0, 39.9, 57.3, 101.4, 118.8, 119.2, 123.1, 127.3, 127.8, 129.6, 129.8, 130.4, 136.3, 137.0, 137.1, 137.4, 137.5, 147.0, 163.1, 167.5, 200.9; HRMS: *m/z* calcd for C₂₇H₂₄N₃O₃: 438.1812, found: 438.1818 [M+H]⁺.

5-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-b] pyridin-6(7H)-one (6c). White solid, mp 193–194°C; IR (KBr) 758, 1251, 1504, 1674, 3417, 3595 cm⁻¹; ¹H NMR (CDCl₃): δ 1.84 (s, 3H), 3.78 (s, 3H), 4.58 (d, J=6.9 Hz, 1H), 4.81 (d, J=6.9 Hz, 1H), 6.83–6.93 (m, 3H), 7.00 (d, J=8.3 Hz, 1H), 7.18 (d, J=8.6 Hz, 2H), 7.32–7.36 (m, 1H), 7.43–7.52 (m, 5H), 7.66 (d, J=8.1 Hz, 1H), 8.24 (s, 1H), 11.90 (s, 1H); ¹³C NMR (CDCl₃): δ 12.5, 39.6, 55.3, 57.5, 101.6, 114.5, 118.87, 118.91, 119.2, 123.1, 128.0, 128.5, 129.9, 130.4, 132.5, 136.1, 137.1, 137.2, 147.1, 159.0, 163.2, 167.0, 200.8; HRMS: m/z calcd for C₂₇H₂₄N₃O₄: 454.1761, found: 454.1761 [M+H]⁺.

4-(4-(tert-Butyl)phenyl)-5-(2-hydroxybenzoyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-b] pyridin-6(7H)-one (6d). White solid, mp 242–243°C; IR (KBr) 751, 1249, 1499, 1675, 3227, 3444 cm⁻¹; ¹H NMR (CDCl₃): δ 1.31 (s, 9H), 1.93 (s, 3H), 4.54 (d, J=5.0 Hz, 1H), 4.85 (d, J=5.0 Hz, 1H), 6.94 (t, J=7.2 Hz, 1H), 7.03 (d, J=8.5 Hz, 1H), 7.19 (d, J=8.3 Hz, 2H), 7.34–7.43 (m, 3H), 7.50–7.55 (m, 5H), 7.74 (d, J=7.3 Hz, 1H), 8.02 (s, 1H), 11.89 (s, 1H); ¹³C NMR (CDCl₃): δ 12.4, 31.3, 34.5, 39.9, 57.6, 101.4, 118.4, 119.0, 119.2, 123.1, 126.1, 126.8, 128.0, 129.9, 130.4, 136.3, 137.1, 137.2, 137.7, 147.1, 150.8, 163.3, 166.9, 200.7; HRMS: m/z calcd for $C_{30}H_{30}N_3O_3$: 480.2282, found: 480.2313 $[M+H]^+$.

4-(4-Bromophenyl)-5-(2-hydroxybenzoyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyr-azolo[3,4-b]pyridin-6(7H)-one (6e). White solid, mp 220–221°C; IR (KBr) 753, 1074, 1247, 1317, 1493, 1678, 3238, 3447 cm⁻¹; ¹H NMR (CDCl₃): δ 1.81 (s, 3H), 4.61 (d, J=7.6Hz, 1H), 4.77 (d, J=7.6Hz, 1H), 6.87–6.93 (m, 1H), 6.99–7.02 (m, 1H), 7.14–7.17 (m, 2H), 7.31–7.32 (m, 1H), 7.37–7.54 (m, 7H),7.59–7.62 (m, 1H), 8.64 (s, 1H), 11.86 (s, 1H);¹³C NMR (CDCl₃): δ 12.6, 39.7, 56.8, 100.8, 118.9, 119.0, 119.3, 121.7, 123.1, 128.0, 129.3, 129.7, 130.2, 132.3, 136.3, 137.0, 137.3, 139.5, 146.8, 163.1, 167.0, 200.3; HRMS: *m/z* calcd for C₂₆H₂₁BrN₃O₃: 502.0761, found: 502.0767 [M+H]⁺.

5-(2-Hydroxybenzoyl)-3-methyl-1-phenyl-4-(thiophen-2-yl)-4,5*dihydro-IH-pyrazolo*[3,4-*b*] *pyridin-6*(7*H*)-*one* (6*f*). Yellow solid, mp 226–227°C; IR (KBr) 757, 1075, 1251, 1338, 1495, 1681, 3233, 3439 cm⁻¹; ¹H NMR (CDCl₃): δ 1.99 (s, 3H), 4.92 (s, 2H), 6.90–6.98 (m, 3H), 7.00–7.03 (m, 1H), 7.20–7.22 (m, 1H), 7.29–7.35 (m, 1H), 7.40–7.55 (m, 5H), 7.75–7.79 (m, 1H), 8.43 (s, 1H), 11.84 (s, 1H); ¹³C NMR (CDCl₃): δ 12.3, 35.5, 58.1, 101.2, 118.6, 119.0, 119.4, 123.2, 125.1, 125.3, 127.1, 128.0, 129.8, 130.3, 136.1, 137.0, 137.3, 144.2, 146.9, 163.2, 166.5, 200.1; HRMS: *m/z* calcd for C₂₄H₂₀N₃O₃S: 430.1220, found: 430.1221 [M+H]⁺.

One-pot procedure for the synthesis of 8 and 10. Products 8 and 10 were synthesized as analogous procedure for 4 and 6.

(Z)-5-(3-Hydroxybut-2-en-1-yl)-3-methyl-1,4-diphenyl-4,5dihydro-1H-pyrazolo[3,4-*b*]pyridi*n*-6(7*H*)-one (8). White solid; mp 229–230°C; IR (KBr) 757, 1076, 1324, 1603, 1674, 3226, 3436 cm⁻¹; ¹H NMR (CDCl₃): δ 1.93 (s, 3H), 2.02 (s, 3H), 3.70 (d, *J*=5.8 Hz, 1H), 4.64 (d, *J*=5.8 Hz, 1H), 5.58 (s, 1H), 7.20–7.24 (m, 2H), 7.28–7.39 (m, 4H), 7.45–7.49 (m, 4H), 8.16 (s, 1H), 15.07 (s, 1H); ¹³C NMR (CDCl₃): δ 12.4, 23.8, 38.6, 60.3, 100.0, 101.7, 122.9, 127.4, 127.5, 127.9, 129.0, 129.9, 136.2, 137.2, 140.9, 147.2, 167.2, 188.5, 190.4; HRMS: *m/z* calcd for C₂₃H₂₂N₃O₃: 388.1656, found: 388.1662 [M+H]⁺.

5'-(2-hydroxybenzoyl)-3'-methyl-1'-phenyl-5',7'-dihydro-2Hspiro [acenaphthylene-1,4'-pyrazolo[3,4-*b*]pyridine]-2,6'(1'H)dione (10). Yellow solid; mp 269–270°C; IR (KBr) 759, 1304, 1490, 1562, 1633, 1715, 3257, 3440 cm⁻¹; ¹H NMR (DMSO-d₆): δ 0.86 (s, 3H), 6.41 (s, 1H), 6.88 (d, J=7.7 Hz, 2H), 7.36–7.69 (m, 8H), 7.88–8.05 (m, 4H), 8.31 (d, J=8.1 Hz, 1H), 10.99 (s, 1H), 11.20 (s, 1H); ¹³C NMR (DMSO-d₆): δ 11.3, 52.2, 58.1, 102.8, 117.6, 119.3, 120.4, 121.8, 122.1, 122.7, 125.2, 127.1, 128.7, 128.9, 129.3, 130.2, 131.4, 131.5, 132.4, 136.3, 137.8, 138.1, 139.3, 141.2, 144.1, 160.0, 168.1, 197.9,201.6; HRMS: m/z calcd for C₃₁H₂₂N₃O₄: 500.1605, found: 500.1616 [M+H]⁺. Synthesis of 3-methyl-1,4-diphenyl-4,5-dihydro-1H-pyrazolo [3,4-*b*]pyridin-6(7*H*)-one (11). A solution of 3a (0.5 mmole) was heated in EtOH (4 mL) under reflux. After the reaction was completed (4 h, monitored by TLC), the mixture was slowly cooled at room temperature and purified by column chromatography using petroleum ether–ethyl acetate as eluent to deliver 11 as the white solid; mp 148–149°C; IR (KBr) 766, 1074, 1330, 1680, 3449 cm⁻¹; ¹H NMR (CDCl₃): δ 1.96 (s, 3H), 2.87 (dd, J_1 =16.3 Hz, J_2 =6.5 Hz, 1H), 3.08 (dd, J_1 =16.3 Hz, J_2 =7.3 Hz, 1H), 4.24 (t, J=6.8 Hz, 1H), 7.22–7.25 (m, 2H), 7.28–7.41 (m, 3H), 7.46–7.53 (m, 4H), 7.76 (s, 1H); ¹³C NMR (CDCl₃): δ 12.5, 35.5, 40.6, 102.7, 122.9, 127.1, 127.2, 127.8, 128.9, 129.9, 137.3, 137.4, 142.2, 146.9, 169.6; HRMS: *m/z* calcd for C₁₉H₁₈N₃O: 304.1444, found: 304.1447 [M+H]⁺.

Acknowledgments. We gratefully acknowledge support from the Educational Commission of Hubei Province (D20142501).

REFERENCES AND NOTES

[1] Allais, C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Chem Rev 2014, 114, 10829.

[2] Barreiro, E. J.; Camara, C. A.; Verli, H.; Brazil-Más, L.; Castro, N. G.; Cintra, W. M.; Aracava, Y.; Rodrigues, C. R.; Fraga, C. A. M. J Med Chem 2003, 46, 1144.

[3] (a) Williams, M. J Med Chem 1983, 26, 619; (b) Placheta, P.; Karobath, M. Eur J Pharmacol 1980, 62, 225; (c) Patel, J. B.; Malick, J. B. Eur J Pharmacol 1982, 78, 323.

[4] Patil, P. O.; Bari, S. B.; Firke, S. D.; Deshmukh, P. K.; Donda, S. T.; Patil, D. A. Bioorg Med Chem 2013, 21, 2434.

[5] Ahmad, V. U.; Ullah, F.; Hussain, J.; Farooq, U.; Zubair, M.; Khan, M. T. H.; Choudhary, M. I. Chem Pharm Bull 2004, 52, 1458.

[6] Dömling, A.; Wang, W.; Wang, K. Chem Rev 2012, 112, 3083.

[7] Jiang, B.; Rajale, T.; Wever, W.; Tu, S. J.; Li, G. G. Chem Asian J 2010, 5, 2318.

[8] Jiang, B.; Liu, Y. P.; Tu, S. J. Eur J Org Chem 2011, 3026.

[9] Hao, W. J.; Xu, X. P.; Bai, H. W.; Wang, S. Y.; Ji, S. J. Org Lett 2012, 14, 4894.

[10] Gunasekaran, P.; Indumathi, S.; Perumal, S. RSC Adv 2013, 3, 8318.

[11] (a) Manpadi, M.; Uglinskii, P. Y.; Rastogi, S. K.; Cotter, K. M.; Wong, Y. S. C.; Anderson, L. A.; Ortega, A. J.; Van-slambrouck, S.; Steelant, W. F. A.; Rogelj, S.; Tongwa, P.; Antipin, M. Y.; Magedov, I. V.; Kornienko, A. Org Biomol Chem 2007, 5, 3865; (b) Bazgir, A.; Ahadi, S.; Ghahremanzadeh, R.; Khavasi, H. R.; Mirzaei, P. Ultrasonics Chem 2010, 17, 447; (c) Tu, X. J.; Hao, W. J.; Ye, Q.; Wang, S. S.; Jiang, B.; Li, G.; Tu, S. J. J Org Chem 2014, 79, 11110.

[12] (a) Beutner, G. L.; Kuethe, J. T.; Kim, M. M.; Yasuda, N. J Org Chem 2009, 74, 789; (b) Lee, S.; Park, S. B. Org Lett 2009, 11, 5214.

[13] Iaroshenko, V. O.; Erben, F.; Mkrtchyan, S.; Hakobyan, A.; Vilches-Herrera, M.; Dudkin, S.; Bunescu, A.; Villinger, A.; Sosnovskikh, V. Y.; Langer, P. Tetrahedron 2011, 67, 7946.

[14] Shekarrao, K.; Kaishap, P. P.; Saddanapu, V.; Addlagatta, A.;Gogoi, S.; Boruah, R. C. RSC Adv 2014, 4, 24001.

[15] Chen, J. H.; Liu, W. M.; Ma, J. J.; Xu, H. T.; Wu, J. S.; Tang, X. L.; Fan, Z. Y.; Wang, P. F. J Org Chem 2012, 77, 3475.

[16] Hao, Y.; Xu, X. P.; Chen, T.; Zhao, L. L.; Ji, S. J. Org Biomol Chem 2012, 10, 724.

[17] Pal, S.; Khan, M. N.; Karamthulla, S.; Choudhury, L. H. RSC Adv 2013, 3, 15705.

[18] Ghosh, A.; Khan, A. T. Tetrahedron Lett 2014, 55, 2006.

[19] Yin, G. D.; Ren, T. B.; Rao, Y.; Zhou, Y. F.; Li, Z.; Shu, W. M.; Wu, A. X. J Org Chem 2013, 78, 3132.

[20] Crystal data of **4a** (CCDC 1037057). $C_{24}H_{19}N_3O_2 \cdot 2C_2H_6O$, M=497.58, triclinic, a=11.270(4), b=12.125(4), c=12.411(5) Å, α =111.185(8)°, β =103.908(9)°, γ =109.487(9)°, U=1359.3(8)Å³, T=296(2) K, space group P-1, Z 2, 6921 reflections measured, 3115 unique (R_{int}=0.0605) which were used in all calculations. The final wR (*F*₂) was 0.2101 (all data).

 space group P2(1)/n, Z=4, 4468 reflections measured, 3399 unique ($R_{int} = 0.0418$) which were used in all calculations. The final wR(F_2) was 0.1185 (all data).

[22] Ahadi, S.; Ghahremanzadeh, R.; Mirzaei, P. Bazgir, A. Tetrahedron 2009, 65, 9316.

[23] Jiang, B.; Zhang, G.; Ma, N.; Shi, F.; Tu, S. J.; Kaur, P.; Li, G. G. Org Biomol Chem 2011, 9, 3834.

[24] Shi, F.; Zhang, J. Y.; Tu, S. J.; Jia, R. H.; Zhang, Y.; Jiang, B.; Jiang, H. J Heterocyclic Chem 2007, 44, 1013.

[25] Ma, N.; Jiang, B.; Zhang, G. Tu, S. J.; Wever, W.; Li, G. G. Green Chem 2010, 12, 1357.