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Strigolactones have been the latest identified phytohormones. Among the strigolactones analogues
described recently, GR-24 remains the most studied derivative which is used as standard in this field.
In order to improve several properties of GR-24 for potential agronomical applications, we investigated
the effect of substituents on the B and C-rings on the activity for seed germination induction. We report
here the synthesis of 9 GR-24 analogues via a [2+2] intramolecular cycloaddition of ketene-iminium salts
and a summary of their activity for the germination of Orobanche cumana (broomrape) seeds.

� 2014 Elsevier Ltd. All rights reserved.
Strigolactones have been the latest identified phytohormones.1

Very recently, major advances in the elucidation of the key roles
played by strigolactones in seeds and in plants have been accom-
plished, including the identification of the molecular receptors
involved in the signal transduction mechanism.2 Strigolactones
analogues are very attractive targets for potential agronomical
applications, for example as seed germination stimulators, plant
growth regulators, in particular under abiotic stress conditions.2,3

Among the strigolactones analogues described recently, GR-24
remains the most studied derivative which is used as standard in
this field.4 In order to improve several properties of GR-24 for
potential agronomical applications, we investigated the effect of
substituents on the B, C-rings on the activity. Substitution of GR-
24 has been shown to improve the activity on the germination of
Striga hermontica and Orobanche ramosa seeds or on pea
branching.5 We report here the synthesis of 9 GR-24 analogues
and for the first time their activity for the germination of Oroban-
che cumana (broomrape) seeds, a commercially very relevant
parasitic weed species.

We have recently developed an efficient asymmetric synthesis
of GR-24 using an intramolecular [2+2] cycloaddition of ketene
and ketene-iminium salts to olefins.6 We have now successfully
extended this approach to synthesize GR-24 analogues carrying
additional substituents at defined positions on the B and C-rings.
The cyclobutanones are converted into the corresponding lactones
by regioselective Baeyer–Villiger oxidation (Fig. 1).

From previous studies, we have shown that ketene-iminium
salts are superior to the corresponding ketenes for the intramolec-
ular [2+2] cycloaddition.6 Therefore, we used in this present work
exclusively ketene-iminium derivatives which give higher yield,
especially under more concentrated conditions, compared to the
corresponding ketenes. Amide 1, the common starting material,
was prepared from 2-iodophenyl acid and was coupled via Stille
reaction with commercially available stannane 2 to afford allyl
derivative 3a in good yield (Scheme 1). When treated with trifluo-
romethylsulfonic anhydride in the presence of sym-collidine, the
ketene-iminium salt was formed and subsequent intramolecular
[2+2] cycloaddition gives the cyclobutanone 4a with complete
regioselectivity, as expected for a terminal olefin for steric and
electronic reasons. This result contrasts with the mixture of regioi-
somers obtained with the corresponding unsubstituted allylic
derivative.6 Baeyer–Villiger oxidation was highly regioselective
and the tricyclic lactone 5a was isolated as single product.

We applied then the same approach to introduce a methyl sub-
stituent at C-8b (Scheme 2). Aryl iodide 1 was coupled to n-tributyl
allylstannane and alkylated with methyl iodide to give compound
3b. Surprisingly, under the standard conditions, the ketene-imini-
um formation and cycloaddition sequence was low yielding with
only 10% of the desired cyclobutanone 4b obtained, the starting
compound being mostly recovered. Temperature had little effect
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Figure 1. Synthesis of analogues of GR-24 substituted at C-3a, C-4 and C-8b.

H2O2

AcOH

99%
1

1) (COCl)2, 
CH2Cl2, DMF 

PdP(PH3)4, toluene 
reflux

2) HNMe2, 0 °C, 
CH2Cl2

3a 4a 5a
74% 40% 68%

1)Tf2O, collidine
CH2Cl2, rt

2) H2O, rt

2

I

O HO

O O

Me

O

Me

O N
Me

Me

Me

O N

I

Me

Me
Snn-Bu

n-Bun-BuMe

Scheme 1. Synthesis substituted 4-methyl tricyclic ABC skeleton.

1

H2O2

AcOH

4b

1) tributyl allyl stannane
PdP(Ph3)4, toluene, reflux

2) LiHMDS, MeI,
 THF, - 78 °C

3b

5b

79%

67% 68%

1) Tf2O, 2-F-pyridine
CH2Cl2, rt

2) H2O

O O
Me

O
Me

O N
Me

Me

Me

O N

I

Me

Me

Scheme 2. Synthesis of tricyclic lactone substituted at C-8b.

2124 M. Lachia et al. / Bioorg. Med. Chem. Lett. 24 (2014) 2123–2128
on the outcome of the reaction but the addition to two equivalents
of reagents and longer reaction time improved the conversion to
55% (entry 4). Different bases were then investigated (Table 1).
Diisopropylethylamine (DIPEA) gave the desired product, albeit
in only 26% yield. Triethylamine was too nucleophilic and decom-
position was observed whereas the addition of DMAP inhibited
completely the formation of the ketene-iminium (or quenched it
Table 1
Optimization of the cycloaddition of 3b

Entry Base Time and T (�C) Yield 4b

1 Collidine (1 equiv) 8 h at rt 10% (+85% 3b)
2 Collidine (1 equiv) 24 h at rt 8% (+85% 3b)
3 Collidine (1 equiv) 24 h at 40 �C 10% (+88% 3b)
4* Collidine (2.4 equiv) 70 h at rt 50% (+45% 3b)
5 DIPEA (1.1 equiv) 8 h at rt 26%
6 DIPEA (5 equiv) 8 h at rt Decomposition
7 DBU (1.1 equiv) 8 h at rt Starting material
8 Triethylamine (1.1 equiv) 8 h at rt Decomposition
9 Collidine, DMAP 8 h at rt Starting material
10* 2-F-pyridine (2.4 equiv) 70 h at rt 67%

* 2.0 equiv of Tf2O were used in the reaction.
after its formation). Recently, Maulide and co-workers have
reported the use of 2-fluoropyridine to improve the formation of
ketene-iminium salt.7 This condition showed a great improvement
in our system with 67% of the desired product isolated

The low reactivity of our substrates was surprising as Ghosez
and co-workers have shown that the formation of ketene-iminium
salts and their cycloaddition tolerate two adjacent substituents on
the amide.8 In our case, in the preferred conformation of the O-tri-
fluoromethylsulfonyl iminium intermediate, the benzylic proton
suffered from steric hindrance and from reduced kinetic acidity
due to its orthogonal orientation with the aryl ring. Both steric
and electronic factors led to a slow formation of the ketene-imin-
ium salt. The synthesis of the strigolactone analogue was carried
on and tricyclic lactone 5b was obtained (Scheme 2).

The synthesis of the C4-Me analogue required the introduction
of an additional methyl group in the allylic position prior to the
intramolecular [2+2] cycloaddition (Scheme 3). Stille coupling of
aryl iodide 1 with stannane 6 followed by hydrolysis gave ketone
7. Then, Wittig reaction between the ketone 7 and the phospho-
nium ylide 9 led to the compound 8 in good yield when n-BuLi
was used as a base, to avoid the intramolecular Claisen condensa-
tion product. The hydrolysis with HBr was quantitative and
another Wittig reaction afforded the olefin 3c in 70%.

The cycloaddition was carried out under our standard condi-
tions with the N,N-dimethylamide derivative 3c, expecting that
the additional methyl group in the allylic position could induce
some stereocontrol during the intramolecular [2+2] cycloaddition.
Cyclobutanone 4c was isolated in good yield, however has a
mixture of 2 regioisomers (6:1), each regioisomer being a mixture
of diastereoisomers (3:1). We had found in our recent studies on
GR-24 that the replacement of the N,N-dimethylamide by the
N,N-diisopropylamide reduced the reactivity of the ketene-imini-
um and increased the regioselectivity of the reaction.6 The N,N-
diisopropylamide 3d was prepared according to the same scheme.
Indeed, the cycloaddition of 3d gave 70% of the cyclobutanone 4c
as a single regioisomer and a 3.5:1 mixture of diastereoisomers.
The stereochemistry of the 2 compounds was determined by 1H
NMR-NOE analysis. Baeyer–Villiger oxidation of the cyclobutanone
4c afforded the tricyclic lactone 5c (The major diastereoisomer is
depicted in Scheme 3).

Finally, the incorporation of a hydroxy group at C-4 was inves-
tigated as a mimic of the natural products orobanchol and solana-
col (Scheme 4). Aldehyde 11 was obtained in 2 steps by Stille
coupling of aryl iodide 10 with vinyl stannane and oxidative
cleavage with OsO4 and NaIO4. Then vinyl magnesium bromide
was added and the resulting alcohol was protected with a TBS
group. Unfortunately, the cycloaddition was disappointing, giving
low yield of the desired cyclobutanone and with no diastereoselec-
tivity. The allylic silylether deactivates the C@C bond for the intra-
molecular [2+2] cycloaddition reaction (lowering the level of the
HOMO and the coefficient on the terminal carbon atom) and prob-
ably interferes through addition of one of the oxygen electron lone
pairs to the highly electrophilic ketene-iminium.9

Consequently, we turned our strategy towards the direct oxida-
tion of lactone 12, in a similar manner as reported by Zwanenburg
and co-workers.5a Treatment of lactone 12 with potassium
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permanganate or chromium trioxide gave lactone 13 in good yield
although with incomplete conversion.5a The ketone was reduced to
the alcohol with sodium borohydride in methanol/THF at 0 �C and
alcohol 5d was obtained as a mixture of cis and trans isomer (5:1),
which could be readily separated by chromatography. The hydroxy
group of 5d was methylated or protected with a TBS group to give
tricylic lactone 5e and 5f. In order to obtain the hydroxy analogue
with the natural configuration, the hydroxy group in 5d was
inverted by Mitsunobu reaction with chloroacetic acid followed
by hydrolysis of the corresponding ester to give tricyclic lactone
5g. The hydroxy group was methylated using silver oxide and
iodomethane leading to lactone 5h (Scheme 5).

With our eighth tricyclic ABC fragments in hand, the final steps
were performed to access the different strigolactones analogues
(Scheme 6). Formylation with tBuOK and ethyl formate gave the
corresponding potassium salt which was either reacted directly
in situ with the bromobutenolide 13 or after isolation of the enol
followed by base treatment. The strigolactone analogues were ob-
tained as a mixture of diastereoisomers 15 and epi-15 which were
easily separated by column chromatography. The strigolactone 15g
was also acetylated to give strigolactones analogues 15i. To our
surprise, reaction of the lactone 5d having the unprotected b C4-
OH with ethyl formate led to the formation of the hemiacetal 14.
The same was also obtained during deprotection of the TBS group
of lactone 15f with TBAF and acetic acid. We assumed that under
these conditions cleavage of the central linkage between the
A,B,C-rings and the butenolide occurred, leading to the correspond-
ing formyl derivative which cyclized into the stable lactol 14
(Scheme 6).

The nine GR-24 analogues were then tested for their germina-
tion activity on Orobanche cumana seeds (Table 2), a commercially
very relevant parasitic weed species (broomrape) causing signifi-
cant yield losses in sunflower.10 Standard protocol for broomrape
seed germination induction was used.11 All derivatives with the
a-stereochemistry for ring D showed potent seed germination
induction. For all compounds tested, the corresponding b-epimers
for ring D displayed much weaker activity. The methyl group was
very well tolerated at C-4 position (15c), but was otherwise detri-
mental to the activity when located at C-3a (15a) or at C-8b (15b).
For the solanacol analogues, introduction of a C-4 b-OMe with the
unnatural b-stereochemistry reduced the activity for 15e com-
pared to the parent compound GR-24. In sharp contrast, the C-4
hydroxy group with the ‘natural’ a-configuration had a beneficial
effect on the germination activity (15g) compared to GR-24, as well
as the corresponding acetylated alcohol 15i, which could act as a
procide of the alcohol. Compounds 15g and 15i are the most active
germination inducers of Orobanche cumana seeds that we have
identified, so far. In comparison to other parasitic weeds, Oroban-
che cumana seeds were highly sensitive to the stereochemistry of
the butenolide whereas addition of C-4-O acetate was beneficial
as observed with Striga hermontica and Orobanche ramosa.5a These
results provide us very useful insights for the design of further im-
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Table 2
Germination of Orobanche Cumana induced by GR-24 analogues.

Compounds Max. germination% at concentration of

0.1 mg l�1 0.01 mg l�1 0.001 mg l�1

15a + epi 15a

O O

O O
O

Me

Me a 82.6 72.6 11.5

15b

O O

O O
O

Me

Me

b 73.8 70.4 38.4

epi-15b

O O

O O
O

Me

Me

b 72.4 23.8 0

15c

O O

O O
O

Me

Me
b 75.2 79.4 70.0

epi-15c

O O

O O
O

Me

Me

b 75.6 60.0 0.6

15e + epi 15e

O O

O O
O

Me

OMe
c 29.6 17.6 3.2
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Table 2 (continued)

Compounds Max. germination% at concentration of

0.1 mg l�1 0.01 mg l�1 0.001 mg l�1

15f

O O

O O
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Me
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c 87.6 47.4 45.4
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O O

O O
O
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O O
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Me
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O O

O O
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c 93.8 74.0 22.4

15i

O O

O O
O

OAc

Me

c 94.8 95.4 75.8

epi-15i

O O

O O
O

OAc

Me

c 92.4 72.4 0.8

a Control = 0%, GR-24 (0.1 mg/L) = 88%; GR-24 (0.01 mg/L) = 78%.
b Control = 0.4%, GR-24 (0.1 mg/L) = 76%; GR-24 (0.01 mg/L) = 60%.
c Control = 0.4%, GR-24 (0.1 mg/L) = 60%; GR-24 (0.01 mg/L) = 70%.
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proved GR-24 analogues. We have identified few positions in the
reference compound GR-24 where substituents could be intro-
duced, without compromising biological activity, which could be
used for example to increase soil stability and bioavailability, resis-
tance towards hydrolysis and selectivity.

In conclusion, our approach using intramolecular [2+2] cycload-
dition of ketene-iminium salts to olefins is very efficient for the
synthesis of substituted GR-24 analogues offering the possibility
to introduce substituents able to modulate the activity and the
properties of these derivatives in order to potentially use them
for agronomical applications.
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of 100 seeds per replicate was evaluated on digital images. Seeds were
considered germinated when the radicle protruded from the seed coat.

12. (a) Hartman, G. L.; Tanimonure, O. A. Plant Dis. 1991, 75, 494; (b) Long, S.;
Lendzemo, V.; Kuyper, T. W.; Kang, Z.; Vierheilig, H.; Steinkellner, S. Seed Sci.
Res. 2008, 18, 125.
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