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ABSTRACT  

A successive metal-free TBHP-mediated regioselective C-H functionalization of coumarins 

towards expedient synthesis of 3-aroyl coumarins is unveiled. The ongoing method 

conducted through the reaction of either coumarins or coumarin-3-carboxylic acids with 

aromatic aldehydes. The optimized reaction condition also worked well with benzyl alcohols 

and styrenes as surrogates for aldehydes, which bear latent carbonyl functionality. 

 

Occurrence of 3-carbonyl coumarins in pharmaceutically active compounds justifies their 

versatility.
1
 3-Aroyl coumarins in particular, are proved to display varying degrees of α- 

glucosidase inhibitory and DPPH scavenging activity (Scheme 1, I),
1a

 antibacterial (II)
1b

 and 

as coumarin-chalcone hybrids, antioxidant activities(III).
1c

 Furthermore, as a fluorescent 

chemosensor, compound IV has shown a high affinity and selectivity for Pb
2+

 which would 

be helpful in clarifying the cellular role of lead ions in vivo.
1d

 Given that, many have made 
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considerable endeavours towards the synthesis of these motifs. Among the traditional 

methods,  

 

Scheme 1. Interesting compounds with 3-aroyl coumarin framework 

 

Scheme 2. Methods of direct 3-carbonylation of coumarins 
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Knoevenagel condensation is the most widely used route in which salicylaldehydes and β-

ketoesters are exploited as the starting materials.
2
 However, despite all virtues the 

aforementioned reaction suffers from some drawbacks, namely the necessity of basic or 

acidic conditions and/or a laborious synthetic procedure. Thus, lately efforts have been 

focused on direct acylation of coumarins through metal-catalyzed C-H functionalization 

reactions (Scheme 2). 

To this end, Zhou et al.
3a

 and Yuan et al.
3b

 individually reported synthetic procedures in 

which coumarins were coupled with aromatic aldehydes through metal catalysed reactions. In 

another effort, Duan and co-workers
 
showed that 3-aroyl coumarins could be achieved 

through the reaction of coumarins with phenylglyoxylic acid with the aid of silver catalyst, 

albeit in low yields.
4
 3-Aroyl coumarins were also prepared by the reaction of benzylether 

and oumarins promoted by FeCl3 as the catalyst.
5
 Nonetheless, a setback relevant to these 

methods, due to the use of metal catalysts, are incompatibility with instructions issued by 

Green Chemistry. Instead, metal-free reactions have recently come of age. Plethora of 

reactions released have now been conducted through metal-free reactions since they offer 

greener approaches which take advantages of cost-effective reaction-promoters.
6
 Despite the 

growing prevalence of these reactions, to the best of our knowledge, thus far no metal-free 

cross-dehydrogenative coupling (CDC) reaction for direct functionalization of coumarins has 

been precedented.
7
 Herein, we report a state-of-the-art metal-free acylation of this motif via 

cross-dehydrogenative coupling with aromatic aldehydes as well as benzyl alcohols which 

obviates the foregoing impediments of metal-catalyzed reactions. This approach benefits 

from smooth proceedings, is devoid of any kind of metals, and is promoted solely by TBHP. 

Among metal-free reactions, there are rare examples being promoted merely by TBHP as a 

catalyst without any contribution of halide salts or other oxidants.
8
 This reaction is notable 
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from another aspect since the competing aldehyde oxidation to its benzoic acid fails to 

outperform coupling procedure.
9
 

Table 1. Screening optimal conditions 

 

 

a
 Reaction conditions: Coumarin (0.3 mmol), benzaldehyde (4 equiv.), TBHP (4 equiv., 70% in water) were 

heated in a sealed tube at 100 °C for 20 h. 

 

Entry Initiator Additive Solvent Yield%
a
 

1 TBHP  neat 57 

2 DTBP  neat 52 

3 K2S2O8  neat trace 

4 TBHP/DTBP  neat 50 

5 AIBN  neat trace 

6 TBHP TBAI neat trace 

7 TBHP TBAB neat trace 

8 TBHP TBAC neat 40 

9 TBHP K2CO3 neat trace 

10 TBHP  EtOAc 45 

11 TBHP  ACN 48 

12 TBHP  DCE 35 

13 TBHP  H2O 25 

14 TBHP  PhCl 70 

15 TBHP TEMPO PhCl 0 
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First, we set out to functionalize coumarin regioselectively at C-3 by benzaldehyde using 

TBHP which is endowed by the commencement of SET (single electron transfer) reactions. 

To this end, coumarin was treated with benzaldehyde under TBHP at 100 °C for 20 h as the 

model reaction. At the outset, the effects of different oxidants were screened as the oxidant 

seemed to have the key role in conducting the reaction. Hence, an initial reaction was 

accomplished using 4.0 equiv. of TBHP at 100 °C for 20 h under neat conditions which gave 

rise to the desired product in 57% yield (Table 1, entry 1). When the oxidant was replaced 

with DTBP, it still resulted in the favourable product, albeit in a lower yield, but no product 

was observed when K2S2O8 was employed (entries 2 and 3, respectively). In the next step, we 

added some additives in hope of increasing the reaction efficiency but they had 

conspicuously deleterious effects on the yields (entries 6-9). In continuation, different 

solvents were taken into account among which chlorobenzene furnished the best yield 

(entries 10-14). Finally reducing the amount of TBHP to 2 equivs slightly reduced the yield. 

We were delighted to find that these conditions, afforded aroylated coumarin regioselectively 

at C-3 with 70% yield (entry 14). Introduction of coumarin to the optimized conditions in the 

presence of a radical scavenger like TEMPO (10 equiv), suppressed the formation of the 

desired aroyl compound markedly which indicated that a radical pathway could be involved 

(entry 15). 

Next, to investigate the scope and limitations of the regioselective direct carbonylation 

process, various aromatic aldehydes and coumarins were exposed to the reaction condition 

(Table 2). As we expected, p- and m-methylbenzaldehydes led to good yields (3b-3c). 

Employing highly electron-rich benzaldehyde increased the yield even more (3d). Also, halo 

substituted arenes were tolerated under these circumstances, making the way for further 

manipulation (3e-3f). Cuminaldehyde as a coupling partner also resulted satisfactory yield of 

the desired product (3g). The performance of this approach is also manifest in efficient 
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conversion of sterically encumbered trimethoxy substituted benzaldehyde as well as 

naphthaldehyde to their desired ketones (3h- 3i). Gratifyingly, various alkyl, alkoxy and halo 

substituted coumarins were also tolerated under the optimized conditions and the reactions 

proceeded smoothly furnishing the desired products in yields exceeding 65% (3j-3m). 

Unfortunately, electron-deficient p-nitro benzaldehyde, did not participate in the cross-

coupling reaction.  

Table 1. Substrate scope for construction of 3-aroyl coumarins
a
 

 

a All reactions were proceeded through the following conditions: Coumarin 1 (0.1 mmol), arylaldehyde 2 (4.0 

equiv.), TBHP (4 equiv., 70% in water) in 0.5 mL PhCl were heated in a sealed tube at 100 °C for 20 h.
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To our delight, the approach was also viable for some heterocyclic carboxaldehydes. When 

furfural, pyrrole- and thiophene-2-carboxaldehydes were exposed to coumarin under reaction 

conditions, the desired heteroaroyl coumarins 3o, 3p and 3q were obtained with satisfactory 

yields, respectively. 1,2-Dihydro derivatives of these motifs which can be readily prepared 

from reduction of the corresponding coumarins with sodium borohydride, are proved to show 

a marked selectivity for the inhibition of SIRT2 over SIRT1 (sirtuins’ inhibitors).
10

 

Surprisingly, when coumarin-3-carboxylic acid was reacted with arene aldehydes, a tandem 

decarboxylative/oxidative cross-coupling reaction proceeded and good yields of aroyl 

coumarins were obtained (Scheme 3). Although lately some reports on metal-free 

decarboxylation have been released,
11

 this is the first example of decarboxylation of 

coumarins under metal free conditions. Previous report in this field was also revealed by our 

group using palladium catalyst.
12

 

Scheme 3. The reaction of coumarin-3-carboxylic acid and benzaldehydes 

 

Next our thoughts were stimulated about other approaches for construction of 3-aroyl 

coumarins. Gratifyingly, when benzylalcohol was utilized as an acyl source for coupling with 

coumarin, the corresponding carbonylated coumarin was obtained albeit in low yield. A 

slightly altered reaction condition with increasing amounts of TBHP and a higher reaction 

temperature, afforded the desired products in moderate yields (Scheme 4). 
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As a final step, inspired by Patel, Bhanage, Pan and Shah's work,
13

 we set out to gain the 

desired product through the reaction of styrene with benzaldehyde (Scheme 5). Using slightly 

altered reaction conditions the desired ketones were obtained, delightfully (See Table S2, 

Supporting Information). Although the reaction yields are moderate to good, this is the first 

report of acylation of a heterocyle via reaction with styrene. 

 

Scheme 4. Oxidative coupling of benzylalcohols and coumarins
a
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a
 Reaction conditions: Coumarin (0.1 mmol), benzylalcohol (0.1 mL), TBHP (8 equiv., 70% in water) were 

heated in a sealed tube at 120 
o
C for 24 h.

 

 

Scheme 5. Acylation of coumarin via the reaction with styrene
a
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a
 Reaction conditions: Coumarin 1 (0.1 mmol), styrene (4.0 equiv.), TBHP (8 equiv., 70% in water), KIO3 (2 

equiv.) in 0.5 mL PhCl were heated in a sealed tube at 120 °C for 36 h. 
b 

Due to difficulties in purification a 

rough yield is given.
 

 

A tentative mechanism of the foregoing reaction has been shown below (Scheme 6). First, the 

aryl carbonyl radical A may be generated with the aid of TBHP. Then this radical would 

selectively attack coumarins at C-3 position and produce intermediate B which upon a 

hydrogen radical loss would deliver the target molecule.  

Scheme 6. Plausible mechanism for regioselective C-3 acylation of coumarins 

 

In summary, a regioselective direct carbonylation of coumarins via metal-free cross-

dehydrogenative coupling of coumarins and aromatic aldehydes has been developed which 

provides an expedient access to 3-aroyl coumarins. Benzylalcohol and styrene derivatives can 

also be used in this term enabling one to reach the same products with various reagents. 

Another privilege offered by this approach is that an in situ decarboxylation takes place 

simultaneously over the coupling process allowing this procedure to be extended for 

coumarin-3-carboxylic acids. Good tolerance towards different functional groups renders this 

method efficient and provides a simple alternative to its precedents. 

 

EXPERIMENTAL SECTION 

Typical Experimental Procedure for Metal-Free Direct Carbonylation of Coumarins. A 

vial equipped with a stir bar was charged with coumarin (0.1 mmol), arylaldehyde (4 equiv) 
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and TBHP (4 equiv). Chlorobenzene (0.5 mL) was added and the vial was capped. The 

resulting mixture was heated in an oil bath at 100 °C for 20 h. Removal of the solvent gave a 

crude mixture which was purified by flash column chromatography (hexane/EtOAc gradient) 

and recrystallization was conducted either using diethyl ether or a mixture of diethyl 

ether/hexane. 

 

3-Benzoyl-2H-chromen-2-one (3a). White crystal (18 mg, 70%), mp 131-133 °C (Ref.
2c

 

134-136 °C). 
1
H NMR (300 MHz, CDCl3): δ 8.07 (s, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.58-7.66 

(m, 3H), 7.31-7.49 (m, 4H); 
13

C{
1
H} NMR (75 MHz, CDCl3): δ 191.7, 158.5, 154.7, 145.5, 

136.2, 133.9, 133.7, 129.6, 129.2, 128.8, 128.6, 125.0, 118.2, 116.9. Anal. Calcd for 

C16H10O3: C, 76.79; H, 4.03. Found: C, 77.07; H, 4.16.  

 

3-(4-Methylbenzoyl)-2H-chromen-2-one (3b). White Crystal (19 mg, 73%),  mp 127-129
 

°C
 
(Ref.

2c
 132-134 °C).

 1
H NMR (300 MHz, CDCl3): δ 8.05 (s, 1H), 8.00 (d, J = 8.1 Hz, 1H), 

7.79(d, J= 8.1 Hz, 1H), 7.62 (dd, J= 7.8 Hz, J= 1.5 Hz, 2H), 7.26-7.40 (m, 4H), 2.43 (s, 3H). 

13
C{

1
H} NMR (75 MHz, CDCl3): δ 191.3, 158.5, 154.7, 145.1, 144.9, 133.6, 133.5, 129.8, 

129.4, 129.2, 127.2, 124.9, 118.2, 116.8, 21.8. Anal. Calcd for C17H12O3: C, 77.26; H, 4.58. 

Found: C, 77.53; H, 4.68. 

 

3-(3-Methylbenzoyl)-2H-chromen-2-one (3c). White Crystal (18 mg, 69%). 
1
HNMR (300 

MHz, CDCl3): δ 8.07 (s, 1H), 7.60-7.74 (m, 4H), 7.27-7.44 (m, 4H), 2.42 (s, 3H). 
13

C{
1
H} 

NMR (75 MHz, CDCl3): δ 191.9, 158.5, 154.7, 138.5, 136.2, 134.7, 133.6, 129.9, 129.2, 

128.4, 127.9, 127.2, 126.9, 125.0, 118.2, 116.9, 21.3. Anal. Calcd for C17H12O3: C, 77.26; H, 

4.58. Found: C, 77.57; H, 4.72. 
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3-(4-Methoxybenzoyl)-2H-chromen-2-one (3d). White Crystal (21 mg, 75%), mp 174-175
 

°C (Ref.
2d

 174-175
 
°C). 

1
H NMR (400 MHz, CDCl3): δ 8.02 (s, 1H), 7.88 (d, J = 8.8 Hz, 2H), 

7.65 (td, J = 8.8 Hz, 1.6 Hz, 1H), 7.58 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 

7.35 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H). 
13

C{
1
H} NMR (100 MHz, 

CDCl3): δ 190.0, 164.3, 157.4, 154.7, 144.6, 133.3, 132.2, 129.0, 127.7, 124.9, 118.3, 116.9, 

113.9, 55.6. Anal. Calcd for C17H12O4: C, 72.85; H, 4.32. Found: C, 73.10; H, 4.42. 

3-(2-Bromobenzoyl)-2H-chromen-2-one (3e). White Crystal (19 mg, 58%), mp 120-121
 
°C 

(Ref.
3b

 127-128
 
°C). 

1
H NMR (300 MHz, CDCl3): δ 8.41 (s, 1H), 7.66 (m, 2H), 7.65-7.74 (d, 

J = 7.8 Hz, 1H), 7.27-7.51 (m, 5H). 
13

C{
1
H} NMR (75 MHz, CDCl3): δ 191.8, 158.0, 155.3, 

147.7, 140.3, 134.5, 133.1, 132.2, 130.0, 129.8, 127.7, 125.5, 125.0, 119.7, 118.4, 117.0. 

Anal. Calcd for C16H9BrO3: C, 58.38; H, 2.76. Found: C, 58.66; H, 2.90. 

 

3-(3-Chlorobenzoyl)-2H-chromen-2-one (3f). White Crystal (19 mg, 66%),  mp 124-125
 

°C. 
1
H NMR (300 MHz, CDCl3): δ 8.15 (s, 1H), 7.82 (d, J = 1.5 Hz, 1H), 7.74 (d, J = 7.8 Hz, 

1H), 7.66 (t, J = 8.7 Hz, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.36-7.46 (m, 3H). 
13

C{
1
H} NMR (75 

MHz ,CDCl3): δ 190.6, 158.4, 154.9, 146.2, 137.9, 134.9 ,134, 133.7, 129.9, 129.4, 129.3, 

127.6, 126.3, 125.1, 118.1, 117.0. Anal. Calcd for C16H9ClO3: C, 67.50; H, 3.19. Found: C, 

67.80; H, 3.32. 

 

3-(4-Isopropylbenzoyl)-2H-chromen-2-one (3g). White Crystal (21 mg, 72%), mp 135-136
 

°C. 
1
H NMR (500 MHz, CDCl3): δ 8.03 (s, 1H), 7.83 (d, J = 7.4 Hz, 2H), 7.58-7.65 (m, 2H), 

7.32-7.40 (m, 4H), 2.95-3.00 (m, 1H), 1.27 (d, J = 7.0 Hz, 6 H). 
13

C{
1
H} NMR (100 MHz, 

CDCl3): δ 191.1, 158.5, 155.6, 154.7, 144.9, 134.0, 133.5, 130.0, 129.1, 127.4, 126.8, 125.0, 

118.3, 116.9, 34.4, 23.6. Anal. Calcd for C19H16O3: C, 78.06; H, 5.52. Found: C, 78.30; H, 

5.63. 
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3-(2, 3, 4-Trimethoxybenzoyl)-2H-chromen-2-one (3h). Red Solid (24 mg, 70%), mp 228-

230
 
°C. 

1
H NMR (500 MHz, CDCl3): δ 8.04 (s, 1H), 7.55-7.60 (m, 3H), 7.27-7.37 (m, 2H), 

7.76 (d, J = 8.8 Hz, 1H), 3.92 (s, 3H), 3.82 (s, 3 H), 3.72 (s, 3 H). 
13

C{
1
H} NMR (100 MHz, 

CDCl3): δ 189.7, 158.7, 158.4, 154.5, 154.0, 142.1, 141.4, 133.0, 130.2, 129.2, 126.1, 125.0, 

124.7, 118.6, 116.8, 107.3, 61.6, 60.9, 56.2. Anal. Calcd for C19H16O6: C, 67.05; H, 4.74. 

Found: C, 67.33; H, 4.87. 

 

3-Naphthoyl-2H-chromen-2-one (3i). White Crystal (21 mg, 68%), mp 251-252
 
°C (Ref.

3b
 

252-253
 
°C). 

1
H NMR (500 MHz, CDCl3): δ: 8.56 (d, J = 8.5 Hz, 1H), 8.23 (s, 1H), 8.04 (d, J 

= 8.2 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.1 Hz, 1H), 7.56-7.68 (m, 5H), 7.48 (t, J 

= 7.5 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H). 
13

C{
1
H} NMR (100 MHz, 

CDCl3) δ: 193.2, 158.1, 155.1, 146.6, 134.6, 134.0, 133.4, 130.7, 129.6, 129.5, 128.6, 128.2, 

126.7, 125.5, 124.9, 124.3, 118.3, 116.9. Anal. Calcd for C20H12O3: C, 79.99; H, 4.03. Found: 

C, 80.31; H, 4.16. 

 

3-Benzoyl-7-methoxy-2H-chromen-2-one (3j). White Crystal (20 mg, 70%), mp 159-160
 

°C (Ref.
3b

 150-151
 
°C).

1
H NMR (300 MHz, CDCl3): δ 8.11 (s, 1H), 7.88 (d, J = 7.2 Hz, 2H), 

7.61 (t, J = 7.2 Hz, 1H), 7.47-7.53 (m, 3H), 6.93 (dd, J = 8.7 Hz, 2.4 Hz, 1H), 6.89 (d, J = 2.4 

Hz, 1H), 3.94 (s, 3H). 
13

C{
1
H} NMR (75 MHz, CDCl3): δ 191.0, 163.6, 157.7, 156.1, 145.4, 

135.8, 132.4, 129.4, 128.5, 127.4, 121.9, 112.5, 110.9, 99.7, 55.0. Anal. Calcd for C17H12O4: 

C, 72.85; H, 4.32. Found: C, 73.12; H, 4.44. 

 

3-Benzoyl-6-methyl-2H-chromen-2-one (3k). White Crystal (21 mg, 76%), mp 163-164
 
°C 

(Ref.
14

 157.7-158.9
 
°C). 

1
H NMR (300 MHz, CDCl3): δ 8.05 (s, 1H), 7.89 (d, J= 7.5 Hz, 2H), 
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7.63 (t, J= 7.5 Hz, 1H), 7.28-7.52 (m, 5H), 2.45 (s, 3H). 
13

C{
1
H} NMR (75 MHz, CDCl3): δ 

190.8, 157.6, 151.9, 144.5, 135.3, 133.7, 132.7, 129.9, 128.6, 127.8, 127.6, 125.8, 116.9, 

115.6, 19.7. Anal. Calcd for C17H12O3: C, 77.26; H, 4.58. Found: C, 77.55; H, 4.71. 

 

3-Benzoyl-7-methyl-2H-chromen-2-one (3l). White Crystal (19 mg, 72%), mp 156-158
 
°C 

(Ref.
14

 157-158
 
°C). 

1
H NMR (300 MHz, CDCl3): δ 8.05 (s, 1H), 7.85 (d, J = 8.1 Hz, 2H), 

7.59 (t, J = 8.1 Hz, 1H), 7.44-7.48 (m, 3H), 7.14-7.18 (m, 2H), 2.48 (s, 3H). 
13

C{
1
H} NMR 

(75 MHz, CDCl3): δ 191.8, 158.6, 155.0, 145.7, 136.5, 133.6, 129.5, 128.9, 128.5, 126.3, 

125.6, 117.0, 115.8, 22.0. Anal. Calcd for C17H12O3: C, 77.26; H, 4.58. Found: C, 77.58; H, 

4.71. 

 

3-(Furan-2-carbonyl)-2H-chromen-2-one (3o). Brown Solid (15 mg, 63%), mp 155-156
 
°C 

(Ref.
3b

 157-158 °C). 
1
H NMR (400 MHz, CDCl3): δ 8.16 (s, 1H), 7.67-7.60 (m, 3H), 7.40 (d, 

J = 8.4 Hz, 1H), 7.37-7.33 (m, 2H), 6.61 (dd, J = 3.6 Hz, 1.6 Hz, 1H). 
13

C{
1
H} NMR (100 

MHz, CDCl3): δ 178.0, 154.8, 151.8, 147.7, 145.5, 133.8, 129.3, 128.8, 126.3, 125.0, 120.7, 

118.1, 117.0, 112.7. Anal. Calcd for C14H8O4: C, 70.00; H, 3.36. Found: C, 70.26; H, 3.47. 

 

3-(1-Methyl-1H-pyrrole-2-carbonyl)-2H-chromen-2-one (3p). Brown Solid (18 mg, 70%), 

mp 148-150
 
°C (Ref.

15
 162-163 °C). 

1
H NMR (300 MHz, CDCl3): δ 7.95 (s, 1H), 7.56-7.65 

(m, 2H), 7.28-7.41 (m, 2H), 6.98 (s, 1H), 6.83 (d, J = 2.1 Hz, 1H), 6.19 (d, J = 2.1 Hz, 1H), 

4.1 (s, 3H).
 13

C{
1
H} NMR (75 MHz, CDCl3): δ = 179.8, 158.6, 154.3, 142.6, 133.2, 132.9, 

130.9, 128.8, 127.9, 124.8, 123.3, 118.2, 116.9, 108.9, 37.7. Anal. Calcd for C15H11NO3: C, 

71.14; H, 4.38; N, 5.53. Found: C, 71.42; H, 4.50; N, 5.70. 
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3-(5-Methyl-thiophene -2-carbonyl)-2H-chromen-2-one (3q). Brown Solid (16 mg, 61%), 

mp 150-151
 
°C (Ref.

3b
 153-154 °C). 

1
HNMR (500 MHz, CDCl3): δ 8.05 (s, 1H), 7.64 (t, J = 

7.8 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 3.6 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.35 

(t, J = 7.6 Hz, 1H), 6.84 (d, J = 3.6 Hz, 1H), 2.6 (s, 3H).
 13

C{
1
H} NMR (100 MHz, CDCl3): δ 

= 182.4, 158.3, 154.6, 152.3, 144.3, 140.6, 136.0, 133.5, 129.1, 127.2, 127.0, 125.0, 118.2, 

116.9, 16.2. Anal. Calcd for C15H10O3S: C, 66.65; H, 3.73; S, 11.86. Found: C, 66.94; H, 

3.87; S, 12.07. 

3-(4-Fluorobenzoyl)-2H-chromen-2-one (3r). White Solid (13 mg, 47%), mp 165-166
 
°C 

(Ref.
3b

 167-168 °C). 1HNMR (500 MHz, CDCl3): δ: 8.11- 8.15 (m, 2H), 7.91-7.94 (m, 2H), 

7.66-7.68 (m, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 

7.14-7.18 (m, 1H). 
13

C{
1
H} NMR (100 MHz, CDCl3) δ: 190.2, 166.2 (d, JC-F = 254.7 Hz), 

158.5, 154.9, 145.7, 133.8, 132.3 (d, JC-F = 9.5 Hz), 129.3, 126.9, 125.1, 118.2, 117.0, 115.8 

(d, JC–F = 21.9 Hz, CH). Anal. Calcd for C16H9FO3: C, 71.64; H, 3.38. Found: C, 71.90; H, 

3.49. 
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