ARTICLE IN PRESS

Tetrahedron: Asymmetry xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Enhanced enzymatic synthesis of the enantiopure intermediate for the blockbuster drug intermediate abacavir through a two-step enzymatic cascade reaction

Zsolt Galla^a, Enikő Forró^a, Ferenc Fülöp^{a,b,*}

^a Institute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, Eötvös u 6, Hungary
^b MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary

A R T I C L E I N F O

Article history: Received 15 June 2016 Accepted 23 June 2016 Available online xxxx

ABSTRACT

A very efficient enzymatic two-step cascade reaction was devised (E > 200) for the resolution of activated γ -lactams (±)-**1** and (±)-**2**. The *N*-hydroxymethyl group worked as a traceless activating group, when the reactions were performed with H₂O (0.5 equiv) in the presence of benzylamine (1 equiv) in *i*-Pr₂O at 60 °C. The ring-opened enantiomerically pure γ -amino acids (1*S*,4*R*)-**6** (*ee* = 99%, intermediate of abacavir) and (1*S*,3*R*)-**8** (*ee* = 99%) and unreacted lactams (1*S*,4*R*)-**1** and (1*R*,4*S*)-**2** (*ee* \geq 96%) were obtained in good yields (\geq 43%). Treatment of (1*S*,4*R*)-**1** and (1*R*,4*S*)-**2** with 18% HCl or NH₄OH resulted in (1*R*,4*S*)-**6** HCl and (1*S*,3*R*)-**8** HCl or (1*S*,4*R*)-**3** and (1*R*,4*S*)-**4** quantitatively, with *ee* \geq 96%.

© 2016 Elsevier Ltd. All rights reserved.

Tetrahedron

1. Introduction

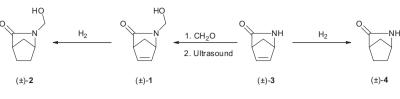
In recent years, some new enzymatic and asymmetric methods for the preparation of enantiopure γ -amino acids and γ -lactams have been published.¹⁻⁴ The enantiomers of 2-azabicyclo[2.2.1] hept-5-en-3-one are building blocks of pharmaceutically important molecules, which have antiviral or antibacterial activity.^{5,6} (1S,4R)-4-Aminocyclopent-2-ene-1-carbocyclic acid (1S,4R)-6 is a key intermediate for the blockbuster abacavir, which is a nucleoside analogue reverse transcriptase inhibitor.⁷ The importance of abacavir is also accentuated in the WHO's List of Essential Medicines. a list of the most important medication needed in a basic health system. A number of enzymatic methods have been developed for its synthesis. For example, Evans et al.⁸ worked out a method for the resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one by using lactamase ENZA-1 [Rhodococcus equi NCIMB 41213] or ENZA-20 [Pseudomonas solanacearum NCIMB 40249]). Taylor et al.⁶ described a more useful procedure for the enantioselective ring opening of the above racemic lactam by using ENZA-25 or ENZA-22 strains. Later, a very efficient lipase-catalysed route⁹ was developed for the ring cleavage of both β -¹⁰⁻¹² and γ -lactams.¹³ Very recently, a new enzymatic two-step cascade procedure was devised for rapid access to diverse β -amino acids from *N*-hydroxymethyl- β -lactams.⁹ Herein our aim was to devise an enantioselective cascade reaction

* Corresponding author. *E-mail addresses:* forro.eniko@pharm.u-szeged.hu (E. Forró), fulop@pharm.u-szeged.hu (F. Fülöp).

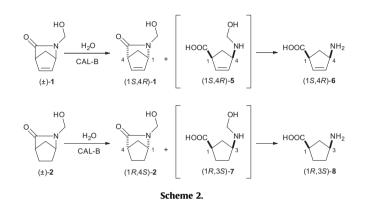
http://dx.doi.org/10.1016/j.tetasy.2016.06.019 0957-4166/© 2016 Elsevier Ltd. All rights reserved. for the synthesis of racemic *N*-hydroxymethyl-2-azabicyclo[2.2.1] hept-5-en-3-one (±)-**1** and *N*-hydroxymethyl-2-azabicyclo[2.2.1] heptan-3-one (±)-**2** (Scheme 1). Transformations of the enantiomeric *N*-activated γ -lactams into the desired inactivated γ -lactam and γ -amino acid hydrochlorides (Scheme 3) were also planned.

2. Results and discussion

Racemic γ -lactam **1** was synthesized from the commercially available 2-azabicyclo[2.2.1]hept-5-en-3-one (±)-**3** with paraformaldehyde under sonication.¹⁴ Catalytic transfer hydrogenation of (±)-**1** and (±)-**3** in the presence of cyclohexene as a hydrogen donor gave racemic **2** or **4** (Scheme 1).¹³


Based on the results achieved on the ring cleavage of *N*-hydroxymethyl- β -lactams, ring-cleavage reactions of (±)-**1** and (±)-**2** catalysed by CAL-B (lipase B from *Candida antarctica*, produced by the submerged fermentation of a genetically modified *Aspergillus oryzae* microorganism and adsorbed on a macroporous resin) were performed with H₂O (0.5 equiv) in the presence of benzylamine (1 equiv) in *i*-Pr₂O at 60 °C (Scheme 2, Table 1, entries 1 and 3).¹⁵ The role of benzylamine, as demonstrated earlier,⁹ is to restrict any adverse side-reactions capturing formaldehyde.

Comparing the ring-cleavage reaction rates of the *N*-hydroxymethyl lactams (\pm) -**1** and (\pm) -**2** to those of inactivated lactams (\pm) -**3** and (\pm) -**4** (Table 1, entries 1 and 3 vs 2 and 4) performed under the same conditions demonstrated the beneficial accelerator



ARTICLE IN PRESS

Z. Galla et al. / Tetrahedron: Asymmetry xxx (2016) xxx-xxx

Scheme 1.

CAL-B-catalysed ring opening of (±)-1^a, 2^a, 3^b and 4^b

Entry	Racemate	Reaction time (h)	Conv. ^c (%)	ees ^d (%)	ee _P e (%)	Ε
1	(±)- 1	0.5	45	80	99	>200
2	(±)- 3	0.5	33	50	99	>200
3	(±)- 2	48	41	70	99	>200
4	(±)- 4	48	33	50	99	>200

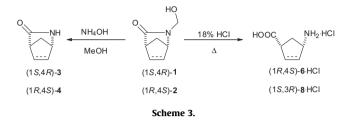
^a 0.05 M substrate, 0.5 equiv of H₂O, 1 equiv of benzylamine, *i*-Pr₂O, 60 °C.

^b 0.05 M substrate, 0.5 equiv of H₂O, *i*-Pr₂O, 60 °C.

^c Calculated from ee_s and ee_P .

^d According to GC analysis.

^e According to GC analysis after double derivatisation.¹⁶


effect of the activating group (Table 1, entries 1 vs 2 and 3 vs 4), as stated earlier for β -lactams.⁹

On the basis of the preliminary results, the preparative-scale reactions of (\pm) - $\mathbf{1}^{17}$ and (\pm) - $\mathbf{2}^{18}$ were performed with H₂O (0.5 equiv) in the presence of benzylamine (1 equiv) in *i*-Pr₂O at 60 °C. The results are reported in Table 2.

Hydrolysis of unreacted *N*-hydroxymethyl- γ -lactams (1*S*,4*R*)-**1** and (1*R*,4*S*)-**2** with 18% aqueous HCl gave γ -amino acid hydrochlo-

T	a	b	le	2	

CAL-B-catalysed ring opening of (±)-1^a and (±)-2^b

rides (1*R*,4*S*)-**6**·HCl and (1*S*,3*R*)-**8**·HCl (Scheme 3).²⁰ The deprotection of *N*-hydroxymethyl- γ -lactam enantiomers was performed with NH₄OH and MeOH²¹ affording γ -lactam enantiomers (1*S*,4*R*)-**3** and (1*R*,4*S*)-**4** (Scheme 3).²²

The absolute configurations were determined by comparing the specific rotation values with the literature data (footnote of Table 2).

3. Conclusion

In conclusion, a very efficient two-step enzymatic procedure has been devised for the preparation of *N*-hydroxymethyl γ -lactam and γ -aminoacid enantiomers, the abacavir intermediate amino acid [(1S,4R)-6] being one of them. The CAL-B-catalysed ring opening reactions were highly enantioselective (E > 200) when the reactions were performed with H_2O (0.5 equiv) in the presence of benzylamine (1 equiv) in *i*-Pr₂O at 60 °C. As the ring-opened amino acids formed, the N-hydroxymethyl groups underwent spontaneous degradation, and the desired enantiomeric γ -amino acid unreacted *N*-hydroxymethyl-γ-lactam and enantiomers ($ee \ge 96\%$) were obtained. The desired γ -amino acid (ee = 99%, yield \geq 43%) and γ -lactam enantiomers (*ee* \geq 96%, yield \geq 44%) could be easily separated. Transformations of the unreacted *N*-hydroxymethyl- γ -lactam enantiomers (1*S*,4*R*)-**1** and (1*R*,4*S*)-**2** through acidic hydrolysis or deprotection via NH₄OH resulted in the desired (1S,4R)-3 and (1R,4S)-4 lactams or (1R,4S)-6·HCl and (15,3R)-8-HCl amino acid hydrochlorides without a loss in ee ($ee \ge 96\%$).

	Reaction time (h)	Product enantiomer			Unreacted enantiomer				
		Yield (%)	Isomer	<i>ee</i> ^c (%)	$[\alpha]_D^{25}$ H ₂ O	Yield (%)	Isomer	ee ^d (%)	$[\alpha]_D^{25}$ CHCl ₃
(±)-1	2	49	(1 <i>S</i> ,4 <i>R</i>)- 6	99	-240 ^{e,f}	49	(1 <i>S</i> ,4 <i>R</i>)- 1	99	+342 ^{g,h}
(±)- 2	55	43	(1R,3S)- 8	99	-11 ^{i,j}	44	(1 <i>R</i> ,4 <i>S</i>)- 2	96	+49.8 ^k

 a 0.72 mmol substrate, 0.072 M, 0.5 equiv of H₂O, 1 equiv of benzylamine, *i*-Pr₂O, 300 mg CAL-B (30 mg mL⁻¹), 60 °C.

 $^{\rm b}$ 0.71 mmol substrate, 0.071 M, 0.5 equiv of H2O, 1 equiv of benzylamine, i-Pr2O, 300 mg CAL-B (30 mg mL $^{-1}$), 60 °C.

^c According to GC analysis after double derivatisation.

^d According to GC analysis.

^e c 0.30.

^f Lit.¹³ $[\alpha]_D^{25} = -243$ (*c* 0.34, H₂O) for (1*S*,4*R*)-**6**.

^g c 0.50.

^h Lit.¹⁹ $[\alpha]_D^{25} = +344$ (*c* 0.21, CHCl₃) for (1*S*,4*R*)-1. ⁱ 0.30.

^j Lit.¹³ $[\alpha]_D^{25} = -10.6 (c \ 0.35, H_2O)$ for (1R,3S)-8.

^k c 0.72.

ARTICLE IN PRESS

Acknowledgement

The authors acknowledge the receipt of OTKA Grants K-108943 and K115731 for financial support.

References

- 1. Companyo, X.; Geant, P.; Mazzanti, A.; Moyano, A.; Rios, R. Tetrahedron 2014, 70. 75-82.
- 2 Tan, Y.; Yang, X.; Liu, W.; Sun, X. Tetrahedron Lett. 2014, 55, 6105-6108.
- 3. Gao, S.; Zhu, S.; Huan, R.; Lu, Y.; Zheng, G. Bioorg. Med. Chem. Lett. 2015, 25, 3878-3881.
- Szakonyi, Z.; Csőr, Á.; Haukka, M.; Fülöp, F. *Tetrahedron* **2015**, *71*, 4846–4852. Singh, R.; Vince, R. *Chem. Rev.* **2012**, *112*, 4642–4686. 4.
- Taylor, S. J. C.; McCague, R.; Wisdom, R.; Lee, C.; Dickson, K.; Ruecroft, G.;
- O'Brien, F.; Littlechild, J.; Bevan, J.; Roberts, S. M.; Evans, C. Tetrahedron: Asymmetry **1993**, 4, 1117–1128. 7. Stuart, J. W. T. C.; Boucher, C. A. B.; Cooper, D. A.; Galasso, G. J.; Richman, D. D.;
- Thomas, H. C.; Whitley, R. J. Antiviral Res. 1998, 38, 75-93.
- Evans C. T.; Roberts S. M.; Stanley M. Eur. Pat. Appl. EP 424064 A17 1991, pp 7. 8.
- Forró, E.; Galla, Z.; Fülöp, F. *Eur, J. Org. Chem.* **2016**, *15*, 2647–2652. Forró, E.; Fülöp, F. *Org. Lett.* **2003**, *5*, 1209–1212. 10.
- Forró, E.; Fülöp, F. Curr. Med. Chem. 2012, 19, 6178-6187. 11.
- Forró, E.; Fülöp, F. *Mini-Rev. Org. Chem.* **2004**, *1*, 93–102. 12
- Forró, E.; Fülöp, F. Eur. J. Org. Chem. 2008, 31, 5263-5268. 13.
- Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 2351-2358. 14
- In a typical small-scale experiment, to the racemic substrate (0.05 M solution) 15. in i-Pr₂O (1 mL) CAL-B (30 mg), H₂O (0.5 equiv) and then benzylamine (1 equiv) were added. The mixture was shaken (167 rpm) at 60 °C. The progress of the reaction was followed by taking samples from the reaction mixtures and analyzing them by a GC method on a Chrompack Chirasil-Dex CB column [140 °C for 25 min \rightarrow 190 °C (temperature rise 20 °C min⁻¹; 140 kPa; retention times (min), (1S,4R)-1: 5.84 (antipode: 5.66)], (1R,4S)-2: 7.47 (antipode: 7.11)]. The *ee* values for the product γ -amino acids [after pre-column derivatization¹⁶ with CH₂N₂ (*Caution! derivatization with* CH₂N₂ should be performed under a well-ventillating hood)] were determined by a GC method $120 \degree C$ for 25 min $\rightarrow 160 \degree C$ (temperature rise 10 $\degree C$ min⁻¹; 140 kPa; retention times (min), (1S,4R)-6: 27.38 (antipode: 27.84)], (1R,3S)-8: 28.74 (antipode: 28.98)].
- Forró, E. J. Chromatogr., A 2009, 1216, 1025-1029. 16
- (±)-1 (100 mg, 0.72 mmol) was dissolved in *i*-Pr₂O (10 mL). Next, CAL-B 17. $(300 \text{ mg}, 30 \text{ mg mL}^{-1})$, benzylamine (79 µL, 0.72 mmol) and H₂O (6.5 µL, 0.36 mmol) were added and the mixture was shaken in an incubator shaker at 60 °C for 120 min. The reaction was stopped by filtering off the enzyme at 50% conversion. The solvent was evaporated and the residue was subjected to column chromatography (EtOAc:*n*-hexane 1:1). The resulting γ -lactam (15,4*R*)-1 was [49 mg, 49%; viscous oil {[α]_D²⁵ = +342 (*c* 0.50, CHCl₃); *ee* = 99%, lit.¹⁹ = +344 (c 2.1, CHCl₃); ee > 99%}. The filtered enzyme was washed with distilled $H_2O\left(3\times15\,\text{mL}\right)$ and after evaporation of H_2O yielded the crystalline using $H_2O(3 \times 15 \text{ Hz})$ and and evaporation $H_2O(3 \times 120 \text{ Hz})$ where $H_2O(3 \times 120 \text{ Hz})$, ee = 99%, $\text{lit.}^{13} = -243 \text{ (}c \text{ 0.34}, \text{ H}_2O), ee > 99\%$; $\text{m} > 260 ^{\circ}\text{C}$ with decomposition (recrystallized from $\text{H}_2O/\text{Me}_2\text{CO}$), lit.^{13} mp >260 $^{\circ}\text{C}$ with decomposition (recrystallized from $\text{H}_2O/\text{Me}_2\text{CO}$). lit.^{13} mp >260 $^{\circ}\text{C}$ with decomposition (recrystallized from $\text{H}_2O/\text{Me}_2\text{CO}$). It.^{14} MMR (400 MHz, CDCl₃, 25 $^{\circ}\text{C}$, TMS) data for (1S,4R)-1: δ = 2.10-2.34 (m, 2H, CH₂); 3.31-3.37 (m, 1H, CHCO); 4.30-4.37 (m,

1H, CHN); 4.45-4.52 (d, 1H, J = 10.96 Hz, CH₂OH); 4.80-4.88 (d, 1H, J = 10.96 Hz, CH₂OH); 6.52–6.96 (m, 2H, CHCH). Analysis: calculated for C₇H₉NO₂: C, 60.42; H, 6.52; N, 10.07; found: C, 61.10; H, 6.48; N, 10.02. The ¹H NMR (400 MHz, D₂O) data for (1*S*,4*R*)-**6**: δ = 2.05–2.64 (m, 2H, CH₂); 3.56– 3.63 (m, 1H, CHCOOH); 4.39-4.45 (m, 1H, CHNH₂); 5.99-6.39 (m, 2H, CHCH). Analysis: calculated for C₆H₉NO₂: C, 56.68; H, 7.13; N, 11.02; found: C, 56.74; H, 7.14; N, 10.97.

- Via the procedure described above,¹³ the reaction of racemic (\pm) -2 (100 mg, 18 0.71 mmol), benzylamine (79 μ L, 0.71 mmol) and H₂O (6.4 μ L, 0.35 mmol) in i-Pr₂O (10 mL) in the presence of CAL-B (300 mg, 30 mg mL⁻¹) at 60 °C after 55 h afforded the unreacted (1*R*,45)-**2** [44 mg, 44%; viscous oil, $[\alpha]_{25}^{25} = +49.8$ (*c* 0.72, CHCl₃), *ee* = 96%] and amino acid (1*R*,35)-**8** [39 mg, 43%; $[\alpha]_{25}^{25} = -11.0$ (*c* 0.30, H_2O , ee = 99%; lit.¹³ = -10.6 (c 0.35, H_2O), ee = 98%; mp >260 °C with decomposition (recrystallized from H_2O /Me₂CO), lit.¹³ mp >260 °C with decomposition (recrystallized from H₂O/Me₂CO)]. The ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) data for (1R,4S)-2: $\delta = 1.35-1.96$ (m, 6H, $3 \times CH_2$); 2.75-2.86 (m, 1H, CHCO); 3.95-4.06 (m, 1H, CHN); 4.49-4.87 (m, 2H, CH2OH). Analysis: calculated for C7H11NO2: C, 59.56; H, 7.85; N, 9.92; found: C, 59.62; H, 7.89; N, 9.86. The ¹H NMR (400 MHz, D₂O) data for (1R,3S)-8: δ = 1.72-2.41 (m, 6H, 3×CH₂); 2.84-2.96 (m, 1H, CHCOOH); 3.79-3.89 (m, 1H, CHNH₂). Analysis: calculated for C₆H₁₁NO₂: C, 55.80; H, 8.58; N, 10.84; found: C, 55.78; H, 8.60; N, 10.84.
- 19 Nakano, H.; lwasa, K.; Okuyama, Y.; Hongo, H. Tetrahedron: Asymmetry 1996, 7, 2381-2386.
- 20. The unreacted hydroxymethyl- γ -lactam enantiomers [(1S,4R)-1 and (1R,4S)-2] were dissolved in 18% HCl (10 mL) and kept at reflux for 5 h. The solvents were evaporated and the products, obtained almost quantitatively, were recrystallized from EtOH and Et₂O. Amino acid hydrochlorides (1R,4S)-6 HCl and (1S,3R)-8 HCl obtained as white crystals were characterized as follows: (1R,4S)-**6** HCl: $[\alpha]_D^{25} = +110$ (c 0.20 in H₂O), ee = 99%; lit.¹³ = +111.1 (c 0.35, 175–177 °C. The ¹H NMR (400 MHz, D₂O) data for (1*R*,4*S*)-**6** HCl: δ = 2.14–2.83 (m, 2H, CH2); 3.79-3.88 (m, 1H, CHCOOH); 4.45-4.54 (m, 1H, CHNH2); 6.03-6.36 (m, 2H, CHCH). Analysis: calculated for C₆H₉NO₂HCl: C, 44.05; H, 6.16; N, 8.56; found: C, 44.15; H, 6.10; N, 8.55. The ¹H NMR (400 MHz, D₂O) data for (1S,3R)-**8** HCl: $\delta = 1.78 - 2.55$ (m, 6H, $3 \times CH_2$); 3.03 - 3.14 (m, 1H, CHCOOH); 3.79–3.89 (m, 1H, CHNH₂). Analysis: calculated for C₆H₁₁NO₂·HCl: C, 43.51; H, 7.30; N, 8.46; found: C, 43.61; H, 7.35; N, 8.41.
- 21 Forró, E.; Árva, J.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 643-649
- The unreacted N-hydroxymethyl- γ -lactams (1S,4R)-1 and (1R,4S)-2, (20 mg, 0.14 mmol) were dissolved in MeOH (2 ml). Next, NH₄OH (2 ml) was added and the mixture was stirred at room temperature for 4 h. The solvent was evaporated, the residue was chromatographed on silica, and elution with ethyl acetate afforded white crystals of (15,4*R*)-**3** [15 mg, 95%; $[\alpha]_D^{25} = +545$ (*c* 0.3, CHCl₃), ee = 99%; lit.¹³ = +549 (c 0.26, CHCl₃) ee > 99%; mp 95-98 °C (recrystallized from *i*-Pr₂O), lit.¹³ 97-100 °C] or (1R,4S) = 9 [15 mg, 93%; [α]_D²⁵ = +125.5 (*c* 0.55, CHCl₃), *ee* = 96%; lit.¹³ = +158 (*c* 0.45, CHCl₃) *ee* >99%; mp 78-81 °C (recrystallized from i-Pr2O), lit.¹³ 78-81 °C]. The ¹H NMR (400 MHz, CDCl₃, $25 \,^{\circ}$ C, TMS) data for (1S,4R)-**3**: δ = 2.18–2.43 (m, 2H, CH₂); 3.18–3.24 (m, 1H, CHCO); 4.30-4.37 (m, 1H, CHNH); 6.05 (br s, 1H, NH); 6.63-6.82 (m, 2H, CHCH). Analysis: calculated for C₆H₇NO: C, 66.04; H, 6.47; N, 12.84; found: C, 66.12; H, δ_{-38} ; N, 12.82. The ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) data for (1*R*,4S)-4: δ_{-1} = 1.33–1.97 (m, 6H, 3×CH₂); 2.76–2.85 (m, 1H, CHCO); 3.04 (br s, 1H, NH); 3.95-4.08 (m, 1H, CHNH). Analysis: calculated for C₆H₉NO: C, 64.84; H, 8.16; N, 12.60: found: C. 64.81: H. 8.13: N. 12.68