Accepted Manuscript

Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide

Yan Huang, Changyu Zhang, Zhen Xi, Long Yi

PII: DOI: Reference:	S0040-4039(16)30127-7 http://dx.doi.org/10.1016/j.tetlet.2016.02.017 TETL 47290
To appear in:	Tetrahedron Letters
Received Date:	22 November 2015
Revised Date:	30 January 2016
Accepted Date:	3 February 2016

Please cite this article as: Huang, Y., Zhang, C., Xi, Z., Yi, L., Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.02.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters

journal homepage: www.elsevier.com

Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide

Yan Huang^{a,†}, Changyu Zhang^{a,†}, Zhen Xi^{b,*}, Long Yi^{a,*}

^aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: <u>vilong@mail.buct.edu.cn</u> ^bState Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China. E-mail: <u>zhenxi@nankai.edu.cn</u> [†] The authors pay equal contributions to this work.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Bioimaging Fluorescence probe Hydrogen sulfide NBD amine Thiolysis

Introduction

Hydrogen sulfide (H₂S) is an important endogenous signalling molecule with significantly biological functions.¹ The production of endogenous H₂S in different organs and tissues has been majorly attributed to three distinctive enzymatical pathways including cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE) and 3-mercaptopyruvate sulfur transferase (3-MPST) coupling with cysteine aminotransferase (CAT).² It has been proved that abnormal endogenous level of H₂S relates to numerous human diseases, including symptoms of Alzheimer's disease, Down syndrome, diabetes and liver cirrhosis.³ Moreover, H₂S is proposed to play important roles in mediating a wide range of physiological processes, such as neurotransmission, vasodilation, inflammation, oxygen sensing, etc.⁴ Although those studies indicated that numerous physiological and pathological processes were linked to levels of H₂S, the molecular mechanisms dictating how H₂S influences cellar signaling and interrelated biological events were insufficient understood. Therefore, it presents significant research value to develop efficient methods for detection of H₂S in biological systems.

Traditionally, the main methods for H_2S detection are colorimetry, electrochemical assay, gas chromatography and sulfide precipitation.⁵ However, recent research indicated that fluorescent methods with excellent sensitivity and selectivity were highly desirable for *in situ* and real-time visualization of H_2S in living biological systems.⁶⁻¹¹ These H_2S probes are mostly based on specific H_2S -induced reactions, including reductionbased probes,⁶⁻⁸ metal sulfide precipitation-based probes⁹ and nucleophile-based probes.¹⁰ We have been interested in the biodetection of H_2S^{11} and biothiols¹² for some time. In our previous work, the thiolysis of the NBD (7-nitro-1,2,3-

Hydrogen sulfide (H₂S) is an important endogenous signaling molecule with a variety of biological functions. To detect H₂S in living biological systems, herein we developed a new fluorescent probe for highly sensitive and selective sensing of H₂S in cells. The probe is based on coumarin-triazole as the fluorophore and thiolysis of the NBD (7-nitro-1,2,3-benzoxadiazole) amine as the receptor. Bioimaging experiments indicated that this probe could be used to monitor H₂O₂-induced H₂S biosynthesis in yeast cells. Our results show that such thiolysis of the NBD amine can be used for development of fluorescent H₂S probes.

2009 Elsevier Ltd. All rights reserved.

benzoxadiazole) amine was explored for development of a FRET-based H₂S probe **1** (Scheme 1),^{11a} which displayed good selectivity for H₂S over biothiols or SO₃²⁻. However, Roubinet¹³ et al. recently reported another NBD-amine-based probe **2** (Scheme 1) which 1) possessed no selectivity for S²⁻ and SO₃²⁻ and 2) could only react with Na₂S, but not NaHS in their tests.¹³ To further investigate such thiolysis of the NBD amine for development of fluorescent H₂S probes, herein we reported the synthesis and characterizations of a new NBD-based probe **3**, which could be used to detect H₂S selectively and to monitor the H₂O₂-induced H₂S biosynthesis in yeast cells.

Scheme 1. Chemical structures of NBD-based fluorescent probes 1-3 and the reaction of 3 and H_2S to produce 4.

Herein, we developed a new NBD-based fluorescent probe 3 based on click reaction of alkyne-containing NBD 7 and

ACCEPTED MANUSCRIPT

Tetrahedron

azidocoumarin **8** (Scheme 2).¹⁴ The resulted coumarin-triazole fluorophore was water-soluble and bright,^{14b} whose fluorescence was quenched by the NBD moiety through the FRET effect, while the NBD fluorophore gave low fluorescence in aqueous solution.^{11b} As result, the probe **3** exhibited weak fluorescence in buffer. Fluorescence of the coumarin-triazole could be released after thiolysis of the NBD amine by H_2S .

Scheme 2. The synthesis route for probe 3.

The absorption spectrum of **3** displayed peaks at 490 nm and 394 nm (Fig. S1), which could be assigned as NBD and coumarin-triazole absorption, respectively. After reacting with H_2S (using Na₂S as an equivalent), the absorption at 490 nm decreased and a new peak at 535 nm appeared.¹⁵ The solubility tests based on absorption spectra indicated that **3** had good water-solubility in PBS buffer (Fig. S2).

Figure 1. a) Time-dependent fluorescent spectra of 1 μ M **1** with 100 μ M Na₂S; b) Dynamic simulation (the red solid line) of fluorescence intensity at 486 nm versus time from (a); c) Time-dependent fluorescent spectra of 1 μ M **1** with 100 μ M NaHS; d) Dynamic simulation (the red solid line) of fluorescence intensity at 486 nm versus time from (c). All experiments were carried out in PBS (pH 7.4, 50 mM, containing 10% DMSO).

We then carried out the time-dependent fluorescent tests in PBS buffer at room temperature (Figure 1). **3** showed very weak background fluorescence at 486 nm, which could enhance about 45-fold upon treatment with 100 μ M H₂S (using Na₂S as an equivalent). To obtain the reaction kinetics, the fluorescence signal at 486 nm was plotted as a function of time for data analysis (Figure 1b). The pseudo-first-order rate, k_{obs} , was found to be 3.3×10^{-3} s⁻¹ by fitting the fluorescence intensity data with single exponential function. The reaction rate, $k_2 (k_2 = k_{obs}/[H_2S])$, was calculated as 33 M⁻¹ s⁻¹. We also used NaHS as an equivalent

of H₂S to examine the fluorescent response of **3** toward H₂S (Figure 1c and 1d). Results indicated that fluorescence at 486 nm enhanced about 44-fold, and the reaction rate (k_2) was about 37 M⁻¹ s⁻¹. These studies clearly demonstrated that both S²⁻ and HS⁻ can trigger thiolysis of the NBD amine in physiological buffer. In fact, either Na₂S or NaHS in PBS buffer (pH 7.4) should majorly exist as HS⁻ anions and H₂S.⁷ Therefore, both NaHS and Na₂S could be used as an equivalent H₂S for tests.

Encouraged by the above results, we further checked the fluorescence signal change of probe **3** with various concentrations (0-100 μ M) of H₂S (Figure 2). As expected, a strong emission could be detected when the reaction mixture was excited at 394 nm. The fluorescence intensity at 486 nm was linearly related to the concentration of H₂S from 0 to 30 μ M (Figure 2b). The detection limit of **3** was determined to be as low as 56 nM based on the 3 σ /slope method.^{11d} The results demonstrated that probe **3** could react with H₂S highly sensitively.

Figure 2. a) Fluorescence response of **3** upon increasing concentrations of H_2S (0-100 μ M); b) linear relationship (R = 0.996) between fluorescence intensity at 486 nm of **3** and H_2S concentration.

A major challenge for H₂S detection in biological systems is to develop a selective probe that exhibits notably distinctive response to H₂S over other cellular molecules, especially for millimolar biothiols. To explore the selectivity of 3 for detection of H₂S, it was incubated with various biologically relevant species including reactive sulfur species (glutathione, cysteine, homocysteine, SO_3^{2-} , SO_4^{2-} , $S_2O_3^{2-}$), reactive oxygen species (H₂O₂, NaOCl), NaNO₂, and cations (Zn^{2+}, Fe^{3+}) . The fluorescence increase of millimolar biothiols, however, is far below that of H_2S . Among all the tested species, only SO_3^2 showed limited fluorescence response (Figure 3a), which was consistent with our previous observation.^{11a} We then examined the competitive selectivity of 3 toward H₂S in the presence of SO_3^{2}/HSO_3^{-} (Figure 3b). The results indicated that the fluorescence response of probe 3 toward H_2S over SO_3^{2-}/HSO_3^{-1} was about 5-fold, implying that sulfite anions showed limited influence on H₂S detection. Therefore, probe 3 can be used to selectively detect H₂S in physiological buffer.

We also investigated the turn-on fluorescence response of **3** to H_2S under different pH values (Figure S3). The probe could functionalize over pH from 7.0 to 8.5. Under weak acid conditions, the fluorescence turn-on fold of **3** upon H_2S activation became smaller, because the thiolysis of the NBD amine became slower at weak acid buffers.^{11g} To explore the plausible reaction mechanism, the stoichiometry of a reaction between **3** and H_2S was tested. Data from Job's plot implied the 1:1 stoichiometry for the reaction between **3** and H_2S (Figure S4).

ACCEPTED MANUSCRIPT

Figure 3. a) Fluorescence response (486 nm) of **3** (1 μ M) upon incubation with various analytes (H₂S, SO₄²⁻, SO₃²⁻, S₂O₃²⁻, NO₂⁻, H₂O₂, ClO⁻, Zn²⁺ and Fe³⁺ were 100 μ M; Cys and Hcy were 1 mM; GSH was 5 mM) for 20 min; b) Competitive selectivity of **3** (1 μ M) toward 100 μ M SO₃²⁻/HSO₃⁻ in the absence or presence of 100 μ M H₂S after 20 min incubation.

To study the biological application of probe 3. we preliminarily tested whether $\mathbf{3}$ could be used for sensing H_2S in yeast cells. The cells were treated with 5 μ M 3 for 30 min and then washed by PBS. The resulted 3-treated cells were then incubated with 200 µM H₂S for 20 min and subsequently imaged by a fluorescence microscopy. An obvious cyan fluorescence could be observed for the H₂S-treated cells (Figure S5), implying that probe 3 is cell-permeable and can image intracellular H_2S . We further examined whether 3 could be used to detect the H₂O₂induced H₂S in yeast cells (Figure 4). In our previous work, the first H₂O₂-H₂S dual-response probe was successfully used for visualization of the H2O2-induced H2S biogenesis in living HEK293 cells.^{11f} Herein, yeast cells were stimulated with 100 or 200 μ M H₂O₂ for 30 min and then incubated with 5 μ M 3 for 20 min. As shown in Figure 4, significantly fluorescent enhancement can be observed in 3-loaded cells upon H2O2 treatment (Figure 4e,4f), implying that H₂O₂ could induce endogenous H₂S production in yeast cells.¹⁶ These preliminary tests suggested that probe 3 could be used to visualize endogenous H₂S in cells.

Figure 4. Fluorescent microscopy images of the H₂O₂-induced endogenous H₂S in yeast cells using **3.** Cells were incubated with (a,d) **3** (5 μ M) for 20 min; (b,e) H₂O₂ (100 μ M) for 30 min and then **3** (5 μ M) for 20 min; (c,f) H₂O₂ (200 μ M) for 30 min and then **3** (5 μ M) for 20 min. (a-c) show the bright field images and (d-f) show the fluorescent images.

In summary, click synthesis of NBD amine and coumarin led to a new fluorescent probe **3** for selective H_2S detection in cells. Spectra studies indicated that **3** could rapidly react with H_2S using either Na₂S or NaHS as an equivalent in buffer. The selectivity study demonstrated that probe **3** could selectively detect H_2S even in the presence of $SO_3^{2^2}/HSO_3^{-}$. Moreover, bioimaging experiments indicated that this probe could be used to monitor the H_2O_2 -induced endogenous H_2S in yeast cells, which was the first *in-situ* observation of such phenomenon. Therefore, probe **3** could be a promising tool for potential applications in H_2S biology. This work further highlights that thiolysis of the NBD amine is a useful reaction for development of fluorescent H_2S probes.

Acknowledgments

This work was supported by the MOST (2010CB126102), NSFC (21332004, 21402007), 111 project (B14004).

References and notes

- (a) Szabó, C. Nat. Rev. Drug Discovery, 2007, 6, 917; (b) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 169.
- (a) Predmore, B.; Lefer, D.; Gojon, G. Antioxid. Redox Signaling, 2012, 17, 119; (b) Whiteman, M.; Moore, P. K. J. Cell. Mol. Med., 2009, 13, 488; (c) Kimura, H. Exp. Physiol., 2011, 96, 833.
- (a) Kamoun, P.; Belardinelli, M.-C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. Am. J. Med. Genet. Part A, 2003, 116, 310; (b) Yang, W.; Yang, G.; Jia, X.; Wu, L.; Wang, R. J. Physiol., 2005, 569, 519; (c) Fiorucci, S.; Antonelli, E.; Mencarelli, A.; Orlandi, S.; Renga, B.; Rizzo, G.; Distrutti, E.; Shah,V.; Morelli, A. Hepatology, 2005, 42, 539.
- (a) Yang, G.; Wu, L.; Jiang, B.; Yang, B.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, H.; Wang, R. *Science*, 2008, 322, 587; (b) Li, L.; Bhatia, M.; Zhu, Y. Z.; Zhu, Y. C.; Ramnath, R. D.; Wang, Z. J.; Anuar, F. B.;Whiteman, M.; Salto-Tellez, M. P. K. *FASEB J.*, 2005, 19, 1196; (c) Peng, Y. J.; Nanduri, J.; Raghuraman, G.; Souvannakitti, D.; Gadalla, M. M.; Kumar G. K. *Proc. Natl. Acad. Sci. U.S.A.*, 2010, 107, 10719.
- (a) Jime'nez, D.; Martinez-Manez, R.; Sancenon, F.; Ros-Lis, J. V.; Benito, A.; Soto, J. J. Am. Chem. Soc., 2003, 125, 9000; (b) Searcy, D. G.; Peterson, M. A. Anal. Biochem., 2004, 324, 269; (c) Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G. J.; Davies, S. N.; Compton, R. G. Electroanalysis, 2000, 12, 1453; (d) Radford-Knoery, J.; Cutter, G. A., Anal. Chem., 1993, 65, 976.

4

ACCEPTED MANUSCRIPT

Tetrahedron

- (a) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc., 6. 2011, 133, 10078; (b) Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.; Lefer, D. J.; Wang, B. Angew. Chem. Int. Ed., 2011, 50, 9672; (c) Montoya, L. A.; Pluth, M. D. Chem. Commun., 2012, 48, 4767; (d) Chen, S.; Chen, Z.; Ren, W.; Ai, H. J. Am. Chem. Soc., 2012, 134, 9589; (e) Das, S. K.; Lim, C. S.; Yang, S. Y.; Han, J. H.; Cho, B. R. Chem. Commun., 2012, 48, 8395; (f) Wan, Q.; Song, Y.; Li, Z.; Gao, X.; Ma, H. Chem. Commun., 2013, 49, 502; (g) Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Chem. Commun., 2013, 49, 403; (h) Chen, B.; Li, W.; Lv, C.; Zhao, M.; Jin, H.; Jin, H.; Du, J.; Zhang, L.; Tang, X. Analyst, 2013, 138, 946; (i) Wang, R.; Yu, F.; Chen, L.; Chen, H.; Wang, L.; Zhang, W. Chem. Commun., 2012, 48, 11757; (j) Wu, M.-Y.; Li, K.; Hou, J.-T.; Huang, Z.; Yu, X.-Q. Org. Biomol. Chem., 2012, 10, 8342; k) Lin, V. S.; Lippert, A. R.; Chang, C. J. Proc. Natl. Acad. Sci. USA, 2013, 110, 7131; 1) Zhou, G. D.; Wang, H. L.; Ma, H. L.; Chen, X. Q. Tetrahedron, 2013, 69, 867.
- For recent reviews: (a) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev., 2015, 44, 4596. (b) Yu,F.; Han, X.; Chen, L. Chem. Commun., 2014, 50, 12234.
- (a) Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem. Commun., 2012,48, 2852; (b) Wan, Q.; Song, Y.; Li, Z.; Gao, X.; Ma, H. Chem. Commun., 2013, 49, 502; (c) Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Joe, E. H.; Cho, B. R.; Kim, H. M. J. Am. Chem. Soc., 2013, 135, 9915; (d) Zhang, L.; Li, S.; Hong, M.; Xu, Y.; Wang, S.; Liu, Y.; Qian, Y.; Zhao, J. Org. Biomol. Chem., 2014, 12, 5115; (e) Chen, B.; Wang, P.; Jin, Q. Tang, X. Org. Biomol. Chem., 2014, 12, 5629.
- (a) Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura, Y.; Komatsu, T.; Ueno, T.; Takuya, T.; Kimura, H.; Nagano, T. J. Am. Chem. Soc., 2011, 133, 18003; (b) Wang, J.; Long, L.; Xie, D.; Zhan, Y. J. Luminescence, 2013, 139, 40.
- 10. (a) Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem. Int. Ed., 2011, 50, 10327; (b) Liu, J.; Sun, Y.-Q.; Zhang, J.; Yang, T.; Cao, J.; Zhang, L.; Guo, W. Chem. Eur. J., 2013, 19, 4717; (c) Cao, X.; Lin, W.; Zheng, K.; He, L. Chem. Commun., 2012, 48, 10529; (d) Chen, Y.; Zhu, C.; Yang, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z. Angew. Chem. Int. Ed., 2013, 52, 1688; (e) Xu, Z.; Xu, L.; Zhou, J.; Xu, Y.; Zhu, W.; Qian, X. Chem. Commun., 2012, 48, 10871; (f) Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun., 2011, 2, 495; (g) Hu, C.; Sun, W.; Cao, J.; Gao, P.; Wang, J.; Fan, J.; Song, F.; Sun, S.; Peng, X. Org. Lett., 2013, 15, 2310; (h) Wang, X.; Sun, J.; Zhang, W.; Ma, X.; Lv, J.; Tang, B. Chem. Sci., 2013, 4, 2551; (i) Qian, Y.; Zhang, L.; Ding, S.; Deng, X.; He, C.; Zheng, X.; Zhu, H.; Zhao, J. Chem. Sci., 2012, 3, 2920; (j) Yuan, L.; Zuo, Q.-P. Sensor Actuat. B-Chem., 2014, 196, 151; (k) Liu, T.; Xu, Z.; Spring, D. R.; Cui, J. Org. Lett., 2013, 15, 2310; (1) Yuan, L.; Zuo, Q.-P. Chem. Asian J., 2014, 9, 1544; (m) Huang, Z.; Ding, S.; Yu, D.; Huang, F.; Feng, G. Chem. Commun., 2014, 50, 9185; (n) Yuan, L.; Jin, F.; Zeng, Z.; Liu, C.; Luo, S.; Wu, J. Chem. Sci., 2015. 6. 2360.
- (a) Wei, C.; Wei, L.; Xi, Z.; Yi, L. Tetrahedron Lett., 2013, 54, 6937; (b) Wei, C.; Zhu, Q.; Liu, W.; Chen, W.; Xi, Z.; Yi, L. Org. Biomol. Chem., 2014, 12, 479; (c) Wei, C.; Wang, R.; Wei, L.; Cheng, L.; Li, Z.; Xi, Z.; Yi, L. Chem. Asian J., 2014, 9, 3586; (d) Wei, L.; Yi, L.; Song, F.; Wei, C.; Wang, B.; Xi, Z. Sci. Rep., 2014, 4, 4521; (e) Wei, L.; Zhu, Z.; Li, Y.; Yi, L.; Xi, Z. Chem. Commun., 2015, 51, 10463; (f) Yi, L.; Wei, L.; Wang, R.; Zhang, C.; Zhang, J.; Tan, T.; Xi, Z. Chem. Eur. J., 2015, 21, 15167; (g) Zhang, J.; Wang, R.; Zhu, Z.; Yi, L.; Xi, Z. Tetrahedron, 2015, 71, 8572; (h) Zhang, C.; Wei, L.; Wei, L.; Wei, C.; Zhang, J.; Wang, R.; Zhu, Z.; Yi, L.; Chem. J., 2015, DI: 10.1002/asia.201500940.
- (a) Yi, L.; Li, H.; Sun, L.; Liu, L.; Zhang C.; Xi, Z. Angew. Chem. Int. Ed., 2009, 48, 4034; (b) Zhang, H.; Zhang, C.; Liu, R.; Yi L.; Sun, H. Chem. Commun., 2015, 51, 2029; (c) Zhu, Z.; Wei, L.; Cheng, L.; Li, Z.; Xi Z.; Yi, L. Tetrahedron Lett., 2015, 56, 3909; (d) Men, Y.; Li, Z.; Zhang, J.; Tong, Z.; Xi, Z.; Qiu, X.; Yi, L. Tetrahedron Lett., 2015, 56, 5781.
- Roubinet, B.; Bailly, L.; Petit, E.; Renard, P.-Y.; Romieu, A. Tetrahedron Lett., 2015, 56, 1015.
- (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed., 2001, 40, 2004; (b) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q. Org. Lett., 2004, 6, 4603.
- Montoya,L. A.; Pearce, T. F.; Hansen, R. J.; Zakharov, L. N.; Pluth, M. D. J. Org. Chem., 2013, 78, 6550.

 Saiki, R.; Ogiyama, Y.; Kainou, T.; Nishi, T.; Matsuda, H.; Kawamukai, M. *BioFactors*, 2003, 18, 229.

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.xx.xxx.

the online version p://dx.doi.org/10.1016/j.tetlet.2015.xx.xxx.

ACCEPTED MANUSCRIPT

Graphical Abstract Thiolysis of the NBD amine was employed for development of a highly sensitive and selective fluorescent H_2S probe, which could be used to detect H_2S in buffer and in cells.

Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide	
Yan Huang ^{a,†} , Changyu Zhang ^{a,†} , Zhen Xi ^{b,*} , Long Yi ^{a,*}	0-
HO O NAHS&Na ₂ S	