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Abstract: Compounds simultaneously carrying the monoterpene and coumarin 

moieties have been tested for cytotoxicity and inhibition of activity against 

influenza virus A/California/07/09 (H1N1)pdm09. The structure of substituents in 

the coumarin framework, as well as the structure and the absolute configuration of 

the monoterpenoid moiety, are shown to significantly influence the anti-influenza 

activity and cytotoxicity of the compounds under study. The compounds with a 

bicyclic pinane framework exhibit the highest selectivity indices (the ratios between 

the cytotoxicity and the active dose). The derivative of (-)-myrtenol 15c, which is 

characterized by promising activity, low cytotoxicity, and synthetic accessibility, 

has the greatest potential among this group of compounds. It exhibited the highest 

activity when added to the infected cell culture at early stages of viral reproduction. 
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 Influenza A virus is the major cause of seasonal or pandemic influenza worldwide. These 

annual epidemics are estimated to result in about 3 to 5 million cases of severe illness, and about 

250,000 to 500,000 deaths.1 New influenza viruses are constantly evolving by mutation or by 

reassortment, giving rise to new strains that can infect people who are immune only to the pre-

existing influenza strains.
2
 Although vaccination against the virus is quite effective, low-

molecular anti-influenza drugs are the first line of protection against the virus during an 

epidemic outbreak, since an effective vaccine for the circulating strains usually takes at least 6 

months to be developed.3 The ability of the influenza virus to develop resistance to the available 
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drugs is a serious problem
4,5

 that necessitates designing new structural types of drugs with novel 

targets, improved antiviral effects, higher safety, and increased tolerability. 

 An important area in searching for novel antiviral agents is using natural compounds, 

including marine natural products,
6
 monoterpenoid derivatives,

7-13
 phenylethanoid glycosides,

14
 

etc., as starting compounds. Natural coumarins and their derivatives are attracting significant 

attention as lead structures to search for orally bioavailable antiviral agents.15 Thus, it has 

recently been suggested using the pharmacophore-based virtual screening of the library of 

natural compounds taken from the Princeton database that some coumarin derivatives, for 

example 1 (Fig. 1), may act as novel neuraminidase inhibitors.
16

 Coumarin derivative 2 was 

identified as a promising anti-influenza agent by cell-based high-throughput screening of 20,000 

compounds.17 The detailed studies focused on structure–activity relationship revealed that BPR2-

D2 (Fig. 1) exhibits an excellent antiviral efficacy against the oseltamivir-resistant virus.18 virus. 

BPR2-D2 may target viral ribonucleoproteins that are responsible for viral RNA synthesis. A 

promising group of sesquiterpene coumarins with anti-influenza activity was isolated from 

Ferula assafoetida.
19

 The structure of one of these compounds (3) is presented in Fig. 1. This 

compound contains a set of functional groups with fixed stereoconfiguration; synthesizing this 

compound is very challenging. We supposed that replacement of the sesquiterpene moiety with a 

monoterpene might give rise to new synthetically accessible compounds with anti-influenza 

activity. Hence, this study was aimed at searching for novel agents that would possess activity 

against H1N1 influenza virus among synthetic coumarin derivatives containing a monoterpenoid 

moiety. 

 

 

Fig. 1. Structures of anti-influenza active coumarin derivatives and umbelliferone. 
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The commercially available umbelliferone 4 (Fig. 1) and its analogues 5-7 synthesized 

via interaction between resorcin 8 and esters of the corresponding β-keto acids 9-11 (Scheme 1) 

as described previously
20,21

 were used as a coumarin component. 

 

Scheme 1. Synthesis of coumarins 5-7 and their yields. 

 

Aurapten 13a and its analogues 13b-e (Scheme 2) were obtained by interaction of 

umbelliferone 4 with monoterpenoid bromides 12a-d and, for the sake of comparison, with aryl 

bromide 12e using DBU in DMF.22 Bromides 12a, 12b, 12c, 12d and 12e were synthesized by 

interaction between the corresponding alcohols and PBr3 with the yields of 91%, 55%, 60%, 

24% and 65%, respectively.
23

 Compound 12d obtained by interaction between nopol and PBr3 

was insufficiently pure, thus making it necessary to use column chromatography for purification 

and abruptly decreasing its yield. 

In a similar manner, compounds 14a-c,e, 15a-e, and 16a-e were prepared as described 

previously
21

 using K2CO3, ethanol, and coumarins 5-7 as phenol components.
24

 The products 

were purified by recrystallization or column chromatography (the yields of 29-56%). the reaction 

of nopyl bromide 12d with methylcoumarin 14 was not successful due to the formation of a 

complex reaction mixture with high level of resinification. 

 

Scheme 2. Synthesis of substituted coumarins. 
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The water/octanol partition coefficient (Log P)) is often considered to be an important 

molecular descriptor as it is linked to toxicity issues and oral bioavailability. The Calculated Log 

P (cLog P) data are presented in Table 1. Although cLog P of all the compounds carrying the 

monoterpene and coumarin moieties exceeds the Lipinski’s cLog P = 5 limit,
25

 most of them are 

within the known drug chemical space according to this criterion (cLog P ≤ 6.5).26 

The antiviral activity of the synthesized compounds was studied27 against the pandemic 

influenza virus A/California/07/09 (H1N1)pdm09 cultivated in cell culture by the technique 

described earlier.
28

 Cytotoxicity of the compounds was evaluated
29

 in uninfected MDCK cells as 

described previously.
30

The selectivity index was calculated for each derivative based on the data 

obtained. The compounds with SI = 10 and higher were regarded as active. The test results are 

summarized in Table 1. Rimantadine was taken as a reference drug due to its polycyclic structure 

being close to the pinane scaffold used in the study. 

 

Table 1.  
Antiviral activity and cytotoxicity of compounds 13a-e, 14a-c,e, 15a-e, and 16a-e  

against influenza virus A/California/07/09 (H1N1)pdm09 in MDCK cells 

Compound R cLogP
a 

CC50
b
, µM IC50

b
, µM SI

d 

13a 

 

 
5.69 7±1 7±2 1 

13b 
 

5.04 7±0 >10 1 

13c 
 

5.04 310±22 >101 3 

13d 
 

5.52 10±1 0.5±0 20 

13e 
 

3.35 >1170 >1170 1 

14a 

 

 
6.28 28±2 >10 3 

14b 
 

5.63 130±9 10±2 13 

14c 
 

5.63 30±2 4±1 9 

14e 
 

3.94 >1115 1014±113 1 

15a 

 

 
6.75 >888 >888 1 

15b 
 

6.09 133±8 33±5 4 
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15c 
 

6.09 982±47 36±5 28 

15d 
 

6.57 >857 21±3 41 

15e 
 

4.40 >932 >932 1 

16a 

 

 
7.31 100±6 >85 1 

16b 
 

6.66 415±29 149±18 3 

16c 
 

6.66 857±71 64±5 13 

16d 
 

7.14 18±1 3±1 6 

16e 
 

4.97 >982 >982 1 

Rimantadine   363 ± 20 41 ± 7 9 

a
 cLog P Calculated using the ACD/LogP ChemSketch 12 software 

b
 CC50 is the median cytotoxic concentration; i.e., the concentration causing 50% cell death. 

c IC50 is the 50% inhibiting concentration; i.e., the concentration causing a 50% decrease in 
virus replication. 

d SI is the selectivity index, which is the CC50/IC50 ratio. 

 

 First, we studied the antiviral activity of aurapten 13a that is the most abundant natural 

prenyloxycoumarin. Aurapten 13a exhibits versatile biological activities, but to the best of our 

knowledge, no data on its antiviral activity have been reported.
31

 We found that aurapten 13a, 

identically to its analogue 13b containing a (+)-myrtenol fragment, exhibits high cytotoxicity 

against MDCK cells that is comparable to its antiviral activity and, therefore, possesses zero 

selectivity (SI = 1). Compound 13c synthesized from (-)-myrtenol turned out to be both less 

toxic and less active than its enantiomer 13b. The methylene moiety inserted between the 

monoterpene and coumarin moieties when proceeding to compound 13d drastically increased its 

activity: IC50 of this compound lay in the nanomolar concentration range, which made it possible 

to achieve a good selectivity index (SI = 20) despite the significant cytotoxicity. The use of an 

aromatic moiety (13e) resulted in complete disappearance of antiviral activity. Hence, compound 

13d is the most promising umbelliferone derivative. 

 When proceeding to type 14 compounds, insertion of methyl group into the coumarin 

framework decreased toxicity and increased the selectivity index in all compounds excluding 

14c, while the level of activity remained the same. Compound 14b showed the greatest 
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selectivity index (SI = 13). Unfortunately, we did not succeed in obtaining an analogue of 

compound 13d with an acceptable purity for compounds of this structural type. 

 Compound 15a, which has the cyclopentane ring annulated with the coumarin framework 

and containing a geraniol moiety, was inactive. Meanwhile, compounds 15b-d containing the 

bicyclic monoterpene moiety exhibited a significant antiviral activity. Due to their low 

cytotoxicity, compounds 15c and 15d synthesized using (-)-myrtenol and nopol, respectively, 

exhibited a selectivity index as high as 41. 

After proceeding to type 16 compounds that contained the cyclohexane ring annulated 

with the coumarin framework, we found that the selectivity index was higher than 10 only for 

compound 16c. Although compound 16d exhibited good antiviral activity, its selectivity index 

was low because of high cytotoxicity. 

The compounds containing an aromatic moiety (13e, 14e, 15e, and 16e) exhibited no 

anti-influenza activity regardless of the structure of the coumarin component in the molecule. 

Hence, compounds 15c and 15d, which exhibit both high activity and low cytotoxicity 

with the highest selectivity indices, are the most promising ones among the compounds under 

study. Taking into account the availability of the starting compound ((-)-myrtenal) and simplicity 

of its synthesis procedure, 15c shows greater potential among these two compounds. Compound 

15c was earlier found21 to be a low-toxicity inhibitor of Tdp1, one of the enzymes of DNA repair 

system.
32

 These inhibitors can increase the potency of some anti-tumor agents whose activity is 

based on inhibition of topoisomerase 1 (Top1), even though they exhibit no intrinsic 

cytotoxicity.
33

 It should be mentioned that inhibition of Tdp1 does not cause any problems 

associated with toxicity in the absence of Top1 inhibitors and, therefore, is expected to cause no 

adverse events when inhibitors are used in anti-influenza therapy. Indeed, it is known that Tdp1-

/- mice were fertile and had a normal life expectancy.
34

 

As can be seen from the data presented, 5 of 19 (26%) tested compounds have 

demonstrated good selectivity (SI>10). All 3-metoxybenzene derivatives of coumarin (13e, 14e, 

15e, 16e) possessed low toxicity but no virus-inhibiting activity. Elongation of the linker 

between the coumarine and pinane moieties in groups of 13’s and 16’s dramatically increased 

cytotoxicity (13c and 13d, 16c and 16d). 

Pinane stereoisomers conferred different toxicity levels to the compounds. In most cases, 

(+)-isomers were more toxic than (-)-isomers, although to different degrees. 

Compounds 15c and 15d possessed the highest selectivity among all the compounds 

tested. This selectivity was provided by low toxicity rather than by very high anti-influenza 

activity. Compound 13d had the best IC50 value but its high cytotoxicity resulted in moderate SI 

(20). 
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In order to assess what stage of the viral life cycle is affected by compound 15c, we 

carried out a series of experiments that differed in time when the compound was added.
35

 It 

turned out (Fig. 2) that 15c exhibits the highest activity when added to the infected cell culture at 

early stages of viral reproduction (1-2 hours after infection). The potency of the agent decreased 

with time. Viral infectivity statistically did not differ from the control values starting with 6 

hours after infection. 

 

 

 

Fig. 2. Time-of-addition activity of 15c against influenza virus A/PR/8/34 (H1N1). 

A/Puerto Rico/8/34 (H1N1) was absorbed to MDCK cells (m.o.i. 10) for 1 h at 4 
o
C. After 

removal of the non-absorbed virions, the plates were incubated for 8 h at 36
o
C in 5% CO2. The 

starting point of incubation was denoted as 0. Cells were treated with 15c (500 µmol) for the 

following time: (-2) – (-1) (before being infected); (-1) – 0 (simultaneously to absorption); 0 – 2; 

2 – 4; 4 – 6; 6 – 8 and (-2) – 8 h. After 8 h of growth, the virus titer was determined in the culture 

medium according to TCID50 in the MTT assay. 

 

Hence, the specific target of 15c is critical for viral cycle at its early stages. The most 

probable targets are viral hemagglutinin or proton channel M2. It should be mentioned that the 

virus used for testing is resistant to adamantane derivatives due to S31N substitution in M2 

protein. This results in low activity of rimantadine against this virus (SI=9, Table 1). Several 

attempts have been made to develop the “universal” M2 inhibitor; i.e., a compound that would 

inhibit both wild-type (with serine at position 31, M2wt) and resistant (bearing substitution 

S31N, V27A, L26I or G34E) M2 channels.
36

 Thus far, no compound has been identified with 

equal activity against M2wt and S31N viruses
37

, although a spiroadamantane amine derivative 

has recently been shown to inhibit M2wt and V27A resistant mutant in in vitro and in vivo 

models.38 

Most of the compounds for inhibiting M2 ion channel are polycyclic amines.
37

 The 

Coumarine derivatives studied here are of different chemical structures and should therefore be 

considered as having different viral target(s). Computer simulation of the interaction between the 

two most active compounds, 15c and 15d, suggests that they may bind to viral hemagglutinin 

between the head and the stalk in the region of fusion peptide. Their bulky polycyclic moiety is 

inserted into a pocket formed by amino acids 556-IEMNI-561 (15c), probably via hydrophobic 

interaction with I556 and I561, or into a wide pocket formed by L48-K49-S81 and S118 (15d). 

The tricyclic coumarine-derived moiety is stabilized by either serines 291 and 292 (15c) or T264 
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and F563 (15d) on one side and either E305 and K281 (15c) or F264 (15d) on another side. 

Using this mechanism, compounds might suppress the conformational changes in an HA 

molecule, thus interfering with membrane fusion. 

On the other hand, one cannot rule out that these compounds are directed against cellular 

target(s) important for viral life cycle at early stages, such as the components of cytoskeleton, 

transport proteins, lysosomal components, etc. Further studies are therefore needed to identify 

the exact mechanism of activity of coumarin derivatives, as well as their range of activity against 

influenza viruses. 

Hence, we have studied the anti-influenza activity of a series of compounds containing 

both the coumarin and monoterpenoid moieties. The compounds having the bicyclic pinane 

framework were shown to exhibit the highest selectivity index (the ratio between cytotoxicity 

and the active dose). Both the structure of substituents in the coumarin framework and the 

absolute configuration of the monoterpene moiety have a significant effect on the selectivity 

index. The (-)-myrtenol derivative 15c, which is simultaneously characterized by promising 

activity, low cytotoxicity, and synthetic accessibility, shows the greatest potential among this 

group of compounds. It is found to exhibit the highest activity when added to the infected cell 

culture at the early stages of viral reproduction. 
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Fig. 3. Model of binding of coumarine derivatives 15c (A, B) and 15d (C, D) to trimeric 

hemagglutinin of influenza virus A/Puerto Rico/8/34 (H1N1). A, C – general view. Ligands are 

shown in magenta and indicated with arrows. B, D – a close view with specific amino acids. 
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